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1. General introduction 

This document serves as the Smart Advanced Report and provides a final overview of the work 
completed in Work Package 3 (WP3) of the SSI project.   

The primary objective of WP3 is to develop microservices as part of the broader goal: to design, 
implement, and demonstrate the concept of Trusted Smart Surveys, delivering a proof of concept for 
a complete, end-to-end data collection process. WP3 operates at the Development level, where 
microservices are designed as platform-independent components.   

Initially, three microservices were identified for development. However, as the project progressed, it 
was decided that each microservice would consist of two underlying components:   

§ A non-domain-specific part, which can be utilized across various statistical domains.   
§ A domain-specific part, tailored to a specific statistical domain, often incorporating country- 

and language-specific requirements.   

Below is an overview of the developed microservices along with their respective leading partners: 

• Receipt Scanning Microservice (overall lead hbits) 
o OCR Microservice – non-domain specific (lead hbits) 
o COICOP classification Microservice – HBS + country/language restrictions (lead 

Destatis/CBS) 
• GeoService Microservice (overall lead hbits) 

o Geolocation microservice – non-domain specific (lead hbits/CBS) 
o HETUS classification Microservice – TUS + country/language restrictions (lead ISTAT) 

• Energy Microservice (overall lead CBS) 
o Feasibility setup of study and roll-out 

WP3 is responsible for developing non-domain-specific microservices as shareable environments for 
SSI/ESS and integrating them into the end-to-end data collection process. It is closely linked to 
WP2.2, which defines the AI/ML models that WP3 further develops.   

Additionally, WP3 works on domain- and country-specific solutions, such as HETUS and COICOP 
classification, ensuring they are adapted and integrated into microservices. The requirements for 
this integration are discussed within WP3, while the actual implementation occurs at the country 
level.   

WP3 also supports the integration of microservices with data collection platforms. Once integrated, 
WP2 can test the microservices in interaction with users, completing the end-to-end process.   

Each microservice can contain multiple models or algorithms, which together form a process flow 
within the microservice. When one or more microservices are integrated into a data collection 
platform, they create a structured process for collecting and processing statistical data. 

1.1. Objectives of WP3 
The main objectives of WP3 are: 

• Develop and containerise the selected microservices.  
• Develop the APIs between the microservices and the core platforms.  
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• Document the microservices and APIs.  
• Support platforms and NSIs to include the microservices in the core platforms.  
• Perform a “pentest” (security, penetration) and stress test (load performance).  
• Describe the architecture of the core platforms.  
• Describe the architecture of the (developed) microservices.  
• Describe and execute the deployment strategy for both the core and microservices.  
• Keep and maintain a public GitHub repository to make the microservices available as open 

source. 

1.2. Documentation strategy 
This report presents the technical documentation for the developed microservices. It begins with an 
overview of the general microservices architecture, followed by detailed documentation of the 
microservices developed within WP3. 

A consistent approach is applied to the microservices related to receipt scanning and geotracking. 
First, the business, functional, and non-functional requirements are outlined, serving as the 
foundation for the subsequent work. Each microservice consists of two parts: a non-domain-specific 
component and a domain-specific component. The non-domain-specific part allows integration into 
various data collection processes beyond the HBS and TUS processes envisioned in the SSI project. 
The domain-specific part is tailored to align with HBS/COICOP and TUS/HETUS guidelines. Despite 
this distinction, both parts follow the same structure: design, implementation, integration, and 
testing. The Energy Microservice has a more moderate approach showing a feasibility output. 

The report concludes with details on the data collection platforms that integrate these 
microservices, namely the @CBS platform (CBS) and the MOTUS data collection platform (hbits). 
Additionally, INSEE and SSB assessed the feasibility of integrating the microservices into their 
respective data collection environments. 

1.3. GitHub repository and demonstrations 
WP3’s output is only partially captured in the written documentation. The most significant results 
are available in the GitHub repository (https://github.com/essnet-ssi; under the EUPL-v1.2 license), 
which not only hosts the code developed by WP3 but also provides detailed and specific guidance 
for National Statistical Institutes (NSIs) on integrating these environments into their own end-to-end 
data collection processes.  

Another level of providing results is the demonstration of the developed solutions. During the SSI-
project multiple demonstrations were given. These demonstrations are recorded and are made 
available via the CROS portal, which is described in the connected Deliverable 3.3.  
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2. Timeline 

During the project a timeline was kept structuring the development and integration work, and to 
keep aligned with the usability task of WP2 (also called Test within this document). 

2.1. Microservice Architecture and General Approach   
The first key task in WP3 was to establish a general approach for designing a microservice software 
architecture. This architecture defines a structure of runtime elements that connect the 
microservices to the platform, adaptable based on specific microservice and platform needs.  

The SSI consortium recommends that the ESS adopt this structure for newly developed 
microservices within NSIs. Additionally, it suggests containerising microservices, as documented in 
the project.   

2.2. Receipt Scanning Microservice   
The first microservice developed was the Receipt Scanning Microservice.  

Development of the Receipt Scanning Microservice, including the OCR and COICOP microservices, 
began in May 2023 with the definition of functional and non-functional requirements. The progress 
was demonstrated to the consortium through two key presentations.  

The first demonstration in October 2023 showcased three AI/ML models within the OCR 
microservice:   

§ Preparing ticket images by detecting contours and orientation.   
§ Detecting and recognizing text, positioning it in boxes, and performing OCR.   
§ Connecting extracted text to standardized labels for ticket elements.   

The second demonstration in April 2024 showed enhancements in all three models and their 
integration into a sequential process. Upon receiving a ticket, the microservice automatically 
processes it through the models, stores the derived data in the microservice database, and makes it 
accessible via an API.   

The OCR Microservice was designed to be language-, country-, and shop-independent, requiring 
training of the individual models, which is handled in WP2.2. A PDCA model, developed in WP4, was 
introduced for training and annotation of ticket data.   

Development concluded in March 2024, with documentation compiled in this final report and code 
available in the GitHub repository. The COICOP classification microservice was developed under WP2 
with support from WP3, and its outputs are included in this report.   

From April 2024 onwards, hbits and CBS have the knowledge and code required to integrate the OCR 
Microservice into their respective platforms, MOTUS and @HBS. The integration, primarily for the 
Household Budget Survey (HBS), follows a structured process:   

§ A user takes or uploads a receipt via the MOTUS/@HBS app.   
§ The receipt is sent to the OCR Microservice, where it is processed.   
§ The extracted data is displayed to the user for review and editing.   
§ Once validated, the data is committed.   
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To ensure privacy and security, additional processing may occur within the platform's core 
environment before final data exchange. Once integration and technical testing were complete, WP2 
conducted pilot studies with users. A large-scale field test, coordinated by the University of 
Mannheim, was presented in November 2024 to demonstrate progress.   

A crucial output of the OCR Microservice is product descriptions, alongside prices and other 
purchase details. These descriptions require classification into COICOP codes, handled by WP2 
through the COICOP microservice, which can – after the SSI project - be integrated into the end-to-
end process once fully functional.   

2.3. GeoService Microservice   
The second microservice developed was the GeoService Microservice.  

Development of the GeoService Microservice began in November 2023, following the same 
approach as the Receipt Scanning Microservice. The first phase involved defining functional and non-
functional requirements, followed by microservice development.   

The development was divided into:   

§ A non-domain-specific component, the Geolocation Microservice, which can be used in any 
system requiring geolocation data.   

§ A domain-specific component, the HETUS Classification Microservice, designed for HETUS 
data collection.   

The Geolocation Microservice derives information on stop points, also called clusters, and transport 
modes using spatial and temporal parameters. Stop points are contextualized using third-party POI 
databases, such as OpenStreetMap or Google Places. Originally planned for completion by June 
2024, development was extended to December 2024 to accommodate integration into data 
collection platforms like MOTUS.   

By November 2024, WP2 utilized the Geolocation Microservice for pilot testing, ensuring it could 
effectively classify stop clusters and integrate external POI data. The transport mode classification 
model, however, was not yet mature for full implementation. 

For Time Use Surveys (TUS), WP2 applies the HETUS Classification Microservice to predict activities 
related to the stop cluster. This process incorporates social and work-related background 
characteristics. To maintain privacy, the data collection platform acts as an intermediary between 
the Geolocation Microservice and the HETUS Classification Microservice.   

A third demonstration in July 2024 showcased:   

§ Progress in the clustering and transport mode models.   
§ Predictions for HETUS activities based on stop clusters, POI data, and user background 

characteristics.   
§ Integration steps for incorporating the GeoService Microservice into MOTUS, supported by a 

UI/UX demonstration.   

2.4. Energy Microservice   
The Energy Microservice is the third microservice. And is considered under PoC development.  
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CBS carried out a feasibility study and roll-out. A substantial part of the work is described in WP2. 

2.5. Real-Time Data Processing Considerations   
A key challenge identified during the project is the need for real-time data processing. Since 
microservices interact with users in real time, ticket and geolocation data must be processed 
efficiently. During algorithm development, performance limitations of certain programming 
languages became evident. For example:   

§ R exhibited slower processing speeds compared to C++.   
§ Python was preferred over R for integration due to better library support for connecting 

with bus systems.   

2.6. Project Collaboration and Review Process   
The work described in this report has been discussed in online meetings and physical workshops 
organized by CBS in Heerlen, Destatis in Bonn, and hbits in Brussels. The chapters have been 
reviewed by work package leaders, and additional feedback was gathered from participating 
countries and WP3 experts.   

Given its technical nature, this report is intended for NSI staff responsible for integrating 
microservices into end-to-end data collection processes. The development process involved many 
research and development actions. In case of the development of the algorithm for the prediction of 
the COICOP classification (Chapter 4, section 4.3) and the transport mode prediction (Chapter 5, 
section 5.3) an extra Annex was produced with more information.   

In addition to this report, further resources, including demonstrations and source code, are available 
via Deliverable 3.3. 
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3. Microservice software architecture 

This chapter describes a generic architecture for data processing microservices. 

The structure of this chapter is based on views and perspectives. Views illustrate the structural 
aspects of an architecture (e.g. where is data stored?), while perspectives consider the quality 
properties (e.g. scalability) of the architecture across a number of views. 

A microservice is seen as an independent environment and, is in that respect, not coupled to a 
specific data collection platform. 

3.1. Views 
Below the context, functional, information, concurrency, deployment and operational view are 
presented. 

3.1.1. Context view 
Figure 1 below shows how microservices fit into a general data collection platform architecture. 

Figure 1: Context view - microservices as part of a system 

 

The respondent is the end-user of the system and uses the functions (e.g. TUS, HBS) provided by the 
data collection platform. The platform contains the main database and benefits from the 
microservices to perform specific algorithms such as stop/track segmentation or receipt analysis. 

The microservices are represented as a black box. Infrastructure between platform and 
microservices allows for communication using specific protocols and/or APIs. 

It is important to mention that: 

• there is no direct link between the respondent and the microservices: the data collection 
platform has full control over microservice usage (who/when). 

• there is no direct link between the microservices and the main database. This means that 
the data collection platform has full control over which data is delivered to the 
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microservices. The exact mechanism which guarantees privacy will be explained in the 
“Regulation perspective” section. 

3.1.2. Functional view 
Figure 2 describes the different runtime functional elements of the microservice. Typically, each 
runtime element is deployed as a container (see Deployment View). 

Figure 2: Functional view - overview of the runtime elements 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

The diagram is complex because it must be generic enough to support different types of 
microservices and different types of platforms. It is though not obligatory to implement all runtime 
elements if there is no need for it. 

For example, the architecture could be simplified to DataProcessors alone when: 

• all input data is directly delivered to the DataProcessor (without DataWriter and other DBs) 

• the output data (~result) is also directly pushed on the message bus (without the need for an 
API or websocket) 

Main elements and their responsibilities are: 

Message bus 

The message bus allows for asynchronous communication between the data collection platform and 
the microservice. 

Rationale: 
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• avoid blocking calls e.g. the platform must be able to quickly forward data (scanned receipt 
information, geolocation point) to the microservice without being blocked for too long. The 
message bus is able to fulfil this requirement by putting the data in a queue without any 
processing. In addition, by putting the message bus on the same server, networking issues 
between platform and bus are being avoided. 

• notification service e.g. the DataProcessor can send a message that (some) data is 
processed. The platform can then take appropriate action. 

Chosen technology: RabbitMQ (https://www.rabbitmq.com/) 

API and GUI 

The API and GUI are the synchronous interfaces of the microservice. 

The API is used by the platform to fetch microservice data, request processed data results etc. 

The GUI is used by a researcher or operator to: 
• browse and inspect the results of the DataProcessor in the processor result DB 
• browse, inspect and edit the data of the microservice DB 
• possibly other functions e.g. add a scanned receipt and test the outcome 

Because microservices have different functionalities, the (optional) GUIs are microservice-
dependent. The GUIs are typically built with web technology and preferably share the same web 
framework than the API part. 

Preferably, the GUI is integrated in the platform UI/backoffice in order to get an integrated user 
experience. This also avoids possible data inconsistencies between microservice database and 
platform database (e.g. a researcher edits the microservice DB but this change is not propagated to 
the platform database). 

It is possible to extend the API with a synchronous call to the DataProcessor’s internal algorithm i.e. 
without doing a request to the DataProcessor container. This is a simpler but more limiting design: 

• the number of parallel requests might be limited by the webserver, 
• it is a synchronous interface which means the call might block for a while, 
• in case of networking issues, there is no queuing of requests or messages (in contrast to the 

message bus). 
 
The synchronous call might be more practical than the asynchronous one for debugging the 
algorithm e.g. because no message bus is needed. 

Websocket API 

The websocket provides a synchronous interface as well. It can be used though to call the 
DataProcessor’s internal algorithm synchronously. See discussing above. 

Added value: if deployed, it is an independent product which can be directly used via internet, and 
which can be used as a test platform. 

DataWriter 
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Receives push messages with data from the platform via the message bus. The DataWriter writes the 
data in the microservice DB. Data push messages are queued in the message bus until the 
DataWrites is able to accept them. 

There is only one DataWriter process in order to guarantee that the received data is written to the 
database in the same order as the data was pushed by the platform. This avoids (subtle) race 
conditions in which a DataProcessor start processing data with missing in-between data (e.g. a 
tracking point is missing in the DB between the first and the last tracking point). 

Because the DataWriter only writes data to the database and doesn’t process data (no CPU time), it 
is expected that it will be fast enough to always empty the queue. If this is not the case, platform 
design (and not microservice design) must be reconsidered e.g. by limiting the number of messages 
sent to the message bus. 

DataProcessor 

Does the real work of processing the data. 

Starts processing when it receives a push message of what to process. Note that a single push 
message is delivered to one and only one DataProcessor. Scalability is achieved by load balancing the 
requests over the DataProcessors, which is a feature of the message bus. See the perspective on 
performance and scalability. 

Given the required processing time needed by the processors, the platform should limit the number 
of messages sent to the data processors (via the message bus). In this regard, system design is 
important. E.g. in case of geo tracking, the processors shouldn’t be triggered for each tracking point 
to recalculate the respondent’s itinerary, rather, the tracking points should be bundled before the 
recalculation is done. 

Because data processors act independently, the concurrency aspect of the data processor must be 
taken into account in its design. At an infrastructure level, limiting resources (e.g. in a k8s cluster) 
might be necessary. 

Processor Result DB 

This DB stores the results of the DataProcessors. Since results can be re-calculated, persistent 
storage is not a strict requirement e.g. one might opt to make it a RAM only DB. 

A non-sql database is probably most convenient to store the results. 

It is accessed by the API/GUI element to fetch the results. 

It can be consulted by DataProcessors to avoid the re-calculating of data, it therefore also act as a 
cache. 

Chosen technology: REDIS (https://redis.io/). It is also possible the replicate a REDIS DB over several 
nodes if needed so (see perspective on performance and scalability). 

Microservice DB 
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Used by the DataWriter to store pushed data. 

Data is consulted by the DataProcessors. 

GUI is able to change data if needed so. 

DB scaling is achieved by replication, see perspective on performance and scalability perspective. 

3.1.3. Information view 
Figure 3 describes the way that the microservice stores, manipulates, manages, and distributes 
information. The diagram highlights the key points. 

Figure 3: Information view - how the microservice handles information 

 

Also here, if DBs and DataWriter are not required, the diagram can be simplified to bidirectional 
communication between MessageBus and DataProcessor. 

3.1.4. Concurrency view 
This view identifies the parts of the microservice that can execute concurrently and how this is 
coordinated and controlled. 

All functional runtime elements are allowed to run in parallel since their responsibilities are clear 
and non-conflicting (e.g. the DataWriter writes data while the DataProcessor processes data). 

The most important concurrency aspect in the microservice architecture are the different 
DataProcessors which can process data in parallel. 
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Figure 4: Concurrency view – how the microservice is horizontally scalable 

 

Care must be taken to: 

• avoid race conditions: if 2 DataProcessor calculate the same thing, then one DataProcessor 
might overwrite the results of the other, also if the other’s results were more recent. 

• avoid unnecessary recalculations: DataProcessors should check the database to make sure 
the results for its calculation are not already there. In that sense, the processor result DB 
also acts as a kind of cache. If a single result is a combination of multiple small results, then 
cache optimizations might be possible by re-using the finer-grained results. E.g. suppose you 
need to calculate a timelog of a day. If a day is in progress, then possibly only recalculating 
the last hours is enough instead of recalculating the whole day. 

3.1.5. Deployment view 
A microservice is deployed as a collection of Docker containers: each functional runtime element is 
built as a Docker container. This makes all elements (almost) independent from the host OS. 

Depending on the performance and scalability requirements (see perspective), different deployment 
strategies are possible. The figure below provides some examples. 
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Figure 5: Deployment view – different deployment strategies depending on the system’s needs 

 

Note that the message bus should always be ready to accept messages from the platform (to avoid 
the platform to be blocked). To exclude networking issues, platform and message bus are on the 
same machine. 

3.1.6. Operational view 
This view relates to the installation and upgrade, and to the backup and recovery. 

Installation and upgrade 

The microservice is a collection of Docker containers that will be managed, scaled and deployed with 
a container-runtime platform (e.g. Kubernetes https://kubernetes.io/ for production environments, 
docker-compose for development etc.). 

Backup and recovery 

Two databases are (potentially) part of a microservice: 

• processor result database: because results can be recalculated, no backup is needed here 
except to speed up the recovery process. If Redis is used as technology, then persistency is 
built in. Backup/restore is the responsibility of the platform owner (and not of the 
microservice). 

• microservice database: backup/restore is the responsibility of the platform owner. 

Note that the choice can be made to store data sent to or received from the microservice also in the 
platform core database. When the microservice is disabled or not needed anymore, then the 
platform core can function without the microservice (e.g. the respondent’s geo itinerary can be 
retrieved without the microservice). 
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3.2. Perspectives 
Perspectives are split in regulation and performance and scalability perspectives. 

3.2.1. Regulation perspective 
Sensitive information must be restricted to the database of the main application. The microservice is 
not allowed to pull user/respondent private information into its own databases. 

The following mechanism is foreseen: 

Figure 6: Regulation perspective – decoupling the main database from the microservice 

 

The platform (:Platform) request a microservice link to the microservice (:microservice), and creates 
a respondent-link mapping in its main database. 

The Respondent X entry is never visible in the microservice. Platform and microservice are linked to 
each other via a “microservice link”. The microservice only has knowledge of the abstract 
“microservice link”, which essentially is only an id (UUID, GUID...). 

If the microservice database would be shared for researchers (e.g. for postprocessing), then the 
sensitive information of the respondent cannot be leaked. 

3.2.2. Performance and scalability perspective 
Depending on the application (e.g. type of research) and the type of microservice (e.g. processing 
intensive vs IO intensive), performance and scaling of the microservice can be tuned as follows: 

• DataProcessors can be scaled: 
o by creating multiple instances 
o by distributing instances over multiple machines 
o see ‘concurrency view’ of how they distribute work 

• microservice DB can be scaled: 
o by DB replication 
o by distributing the replication databases over multiple machines 

• microservice results DB could be scaled similar to the main microservice DB. Since this is 
probably not a heavily loaded database (no complicated queries, only results), scaling might 
not be needed 
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4. Receipt Scanning Microservice 

The Receipt Scanning Microservice is the first environment being developed in this project. The 
development process began with outlining both the functional and non-functional requirements 
(4.1), followed by a description of its two main parts: the non-domain specific OCR microservice (4.2) 
and the (domain) HBS-specific COICOP classification microservice (4.3). For each part, the design, 
implementation, integration, and testing are discussed. 

As a more general-purpose microservice, the OCR microservice is documented from a technical 
perspective. In contrast, the COICOP classification microservice is presented from a practical 
standpoint, reflecting established practices and experiences from Destatis and CBS. In doing so also 
strategies and techniques used by these institutions are presented. 

The Receipt Scanning Microservice has been successfully integrated into the MOTUS platform, and 
integration with the @HBS platform is currently underway. Additionally, INSEE and SSB have 
evaluated the feasibility of integrating the Receipt Scanning Microservice into their respective 
platforms. Testing has been performed through the MOTUS platform in collaboration with WP2. 

4.1. Functional and non-functional requirements of the Receipt Scanning Microservice 
This first section of chapter 4 addresses the functional and non-functional requirements of the 
Receipt Scanning Microservice. The goal of the SSI project is to involve and engage households and 
citizens, and to define and operationalize a new/modified end-to-end data collection process.  

Central to the SSI project stands the use of smart devices and other connected devices to obtain the 
data. NSIs and linked organizations have worked on platforms to allow households to register their 
purchases online. These platforms are @HBS by CBS, MOTUS by hbits as well as the developments at 
SSB and INSEE.  

An important criterion within the SSI project is the realization of an end-to-end data collection 
process, that results in qualitative and comparable data. The definition of quality and comparability 
stems from the mission of the ESS and trust upon the Principles of the European Statistics Code of 
Practice, which in its latest update also takes into account the emergence of new data sources and 
use of new technologies. 

Within SSI, WP3 is the gateway to include smart data. The inclusion of smart data is seen as a need 
to further support the participation of the respondent in studies like TUS and HBS. In WP3 the Smart 
inclusion is realized by the development of microservices.  

This section has a focus on Household Budget Survey (HBS) and the definition of requirements for 
the Receipt Scanning Microservice. The microservice is seen as a middle part software that is 
supportive to the household in reducing their burden to complete a consumption diary.  

The microservice comprises two underlying microservices. The first (OCR microservice) is designed to 
perform Optical Character Recognition (OCR) and Document Understanding. The second is tasked 
with COICOP classification (COICOP classification Microservice), with the objective of classifying a 
product/service to a COICOP category. 
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Note: when referred to ‘ticket’ the document also means receipt or invoice, note, e-tickets, etc. All 
of these artefacts can be processed as an image, as long as the procedures were nationally trained 
for all variations. 

4.1.1. Business requirements 
HBS collects in a large detail what households spend on goods and services. In this way, the survey 
gives a picture of the living conditions and spending habits in the EU. HBS is performed by each 
Member State to calculate weighted macroeconomic indicators used for national accounts and 
consumer price indices. Eurostat publishes output since 1988 in intervals of 5 years. The last waves 
are from 2010 and 2015. In 2026 HBS will enter the IESS agreement and HBS will become a 
mandatory data delivery. 

In the majority of member states, in a HBS study, (a member of) a household records tickets in a 
diary. Besides information on the store itself (name, address, logo, registration number, …) a ticket 
at minimum holds information on the different purchases (or product rows; consisting of product 
name and product price) that are bought and the total price of the ticket. Depending on the shop 
and product type, a ticket can also contain various different contexts to the purchase as well as 
information on reductions, amounts, units, return items or even empty good claims. The design of 
the diary defines the amount of detail that needs to be transferred to the diary. 

This altogether creates a demanding effort from the participants to the study. Given the declining 
trend in participation rates and supported by the request of the Wiesbaden Memorandum, in 2011 
Eurostat and the NSIs started to develop and implement new data collection modes to call a hold to 
this downward trend, and to even improve the quality of the collected data.  

Initiatives of various countries, and previous EU-funded projects have translated the paper-and-
pencil method to an online data collection process, giving households the opportunity to digitally 
respond to all questionnaires as well as digitalize their ticket by adding purchase by purchase in a 
step-by-step manner in order to submit the entire ticket into a digital diary. 

Notwithstanding the added value of these online applications, the burden on the participants 
remains high, and the process is still too much error prone. The goal of WP3 is to reduce these gaps 
by developing and implementing microservices that acquire, process and (can) combine data 
collected from smart devices and other applications, in the case of HBS through the development of 
a receipt scanning microservice. This will transform the way digital diaries have been used so far and 
is aimed to result in a true added value of digitalization. Also for the (end) users. 

A successful realization of the development and implementation will not entirely reduce the active 
participation of households in the registration of their tickets and purchases, but will provide 
support and guidance in their task to arrive to qualitative and comparable data for the ESS. It means 
that besides the development of the microservice also the implementation of the service to the 
platforms is important, as well as the UI/UX that presents the output of the microservice to the user, 
and the ease in which the user can verify, adapt, or even delete the output. 

The following objectives are essential in reaching this goal: 

• Objective 1: To adopt the generic architecture of a microservice  
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• Objective 2: To develop a Receipt Scanning Microservice that includes the use of an OCR 
model and a document understanding model 

• Objective 3: To implement classification solutions (string matching, machine learning, or 
search algorithm based) to classify purchases to a COICOP-list 

• Objective 4: To develop an API to connect to/from other environments  
• Objective 5: To deploy the microservice as a containerized application in the cloud 
• Objective 6: To implement/integrate specific microservice parts in the app (e.g. algorithm). 

This integration should be feasible, should have an added value for the platform and/or 
should improve the user experience. 

The stakeholders are the NSIs and their product owners (who represent the households (citizens)). 

HBS study 
In this section HBS studies are being described as they provide the context in which the Receipt 
Scanning Microservice operates. 

In HBS studies questionnaires and a consumption diary are completed by the households. At the 
moment household members arrive in the diary phase they, at the least, already have completed a 
questionnaire. If this member is the reference person, or the head of the household also a 
household questionnaire and a matrix to compose the household is part of the pre-diary tasks. All 
tasks are defined in a respondent journey or study flow that shows a sequence of tasks. Since the 
HBS diary setup requires an equal distribution of participation over the entire fieldwork period, and 
household members are requested to keep their diaries for the same period this study flow can be 
quite complex. This is without saying that different NSIs (can) make use of different data collection 
strategies, and that e.g. the questionnaire and the diary can be in a different sequence or taken with 
a different tool. 

Central to a HBS study is the registration of tickets and purchases of goods and services in a diary. 
Households keep one diary over a period of (minimum) 2 weeks/15 days. Left aside paper-and-pencil 
diaries, a household member partakes in a HBS study via an application, be it via a mobile 
application, be it via a web application running in a browser. 

HBS diary 
The diary collects at the minimum: 

• a description of the products and services that are bought (some countries also include the 
fixed (repeating) costs into the diary, others collect this information via a questionnaire) 

• the price of each product or service, and 
• the date of the purchases and periodicity of fixed costs 

The registration of the products and services is linked to a COICOP-classification. COICOP stands for 
Classification Of Individual Consumption by Purpose. 

The matching COICOP code is selected/mapped from a list: 

• a COICOP-code1 

In addition, on the level of the ticket, extra information is/can be gathered: 

 
1 Note: NSI’s can decide to classify a product/service to a COICOP also after the data collection stage. 
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• the country of purchase 
• the shop (brand/type) 
• ticket reduction 
• professional purchase 
• payment method 

As an extra, on the level of the product or service, extra information is/can be gathered (depending 
on national needs): 

• number of items 
• price per item 
• quantity and metric/unit per item 
• discount 
• return 

4.1.2. Functional requirements 
Figure 7 gives an overview of the main functional requirements: 

• functionality related to user handling is indicated by the green boxes. The respondent must 
be able to submit an image of a receipt or invoice by taking a picture or by uploading a 
document (e-ticket) and (if needed to be able) to indicate the receipt location on the image 
and provide some receipt details for verification. 

• functionality related to the microservice is indicated by the blue boxes. The essential function 
is to find and provide information that the HBS diary collects in a receipt (i.e. all bullet items 
in section ‘HBS Diary’). 
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Figure 7: Receipt scanning functional requirements – flow diagram 

 

 

User handling 

Respondent handling (green boxes) 

REQ R1a Respondent takes photo of receipt within the HBS application 

 Open the in-device functionality called from the app to take a photo 

 Real-time camera opens 

In order to improve photo quality, the app can optionally hint the respondent about: 

• the contrast of the ticket vs the background 
• exposure 
• the detected contour of ticket (4 dots or polygon around receipt when 

stabilized)  

Contour detection is also done by the first part of the OCR microservice. 
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 Respondent takes picture when stabilized and the entire ticket is captured within one 
image. 

 If the respondent is not satisfied with the photo, the process of taking a photo can be 
restarted. 

 Additional quality checks might be performed later by the app software itself and/or 
the server-part microservice. 

REQ R1b Respondent uploads a document (e-ticket) via the HBS application (alternative to taking 
a photo of a receipt) 

 Upload a document (e-ticket) from the local filesystem 

 The application needs to accept images and PDFs in order to send this information over 
to the microservice. 

REQ R1c Respondent shares a document (e-ticket) from another application (e.g. store app) to 
the HBS application (alternative to taking a photo of a receipt) 

 Not part of the microservice. Platform-specific (app) implementation. 

REQ R1d In case of a web app: scanning is done by the browser of the smartphone and sent over 
to the browser running on a computer or laptop 

 Respondent is on the web app 

Respondent wants to take a picture with the smartphone so that it automatically is 
loaded in the web app 

This requirement is a nice to have. 

REQ R2 Respondent changes contour of receipt [optional] 

 Respondent can change the contour (4 dots connected with lines) to define the ticket 
by moving dots or the line segment (handles) between two dots (parallel movement of 
two dots). 

 Could be skipped if an automatic contour detection is embedded and works very well. 

Ideally, this step is not necessary (same as R3). 

 Can be omitted when the microservice (a model within the microservice) is able to find 
the ticket within the image itself. 
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 Having the complete receipt is important because it contains more info than only the 
product/service rows. Extra info on the receipt includes: store logo, store details, 
payment info etc. 

REQ R3 Respondent selects other details of the receipt [optional] 

 Selection of product/service rows. Helps the OCR process. 

 Could be skipped if automatic product/service row detection works very well. 

 Although extra work for the respondent, this step ensures the software knows the 
most relevant part of the ticket i.e. the product/service rows. Also, the positional data 
could be used later for ML training. 

Ideally, this step is not necessary (same as R2). 

 This step does not involve a crop of the image, so at submission, the whole image will 
be sent to the microservice. 

REQ R4 Respondent answers some questions about the ticket (questionnaire) [optional] 

 The following questions could be asked: 

• Country 
• Shop 
• Language 
• Date 
• Total price 

 Depending on the specific-platform UI, it must be possible to skip this step. Note 
however that the output of this step is very interesting for internal quality checks in the 
OCR process. 

Furthermore, knowing the store might/will be important for the COICOP classification. 

REQ R5 Respondent submits ticket image 

 A button allows the respondent to submit the ticket image, together with gathered 
information (contour hint, expense items area, question answers) 

 Different UI implementations are possible: 

• the image is uploaded in the background and the respondent gets a notification 
when it is done, or 

• a dialog should run to show the continuation of the upload. 
• Or, user settings whether he/she wants to send real-time or in background; or, 
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via mobile or only wifi 

 Communication of success or failure which has to be acknowledged by the user by 
pressing OK. 

If a failure occurs, the required action varies depending on the UI or platform. For 
instance, one might choose to wait for a Wi-Fi connection before attempting to upload 
the image again. The specific course of action is determined by the platform in use. 

 

The Receipt Scanning Microservice has advanced to a point where it significantly reduces respondent 
tasks. For example, users no longer need to manually outline the receipt, as the current AI/ML 
model reliably detects its contours and orientation. Additionally, based on initial developments and 
testing, a well-trained document understanding model should achieve a high success rate in 
identifying key details such as the store, date, total price, and individual product entries on the 
receipt.  

Despite this, it is important to mention that an AI model never provides guarantees. If certain input 
(e.g. shop name) is required or essential, then a respondent’s input or correction is necessary making 
it a decision of the platform owner to include certain User handling, yes or no. 

Microservice 

Microservice (blue boxes) 

REQ M1 Microservice collects receipt information 

 The service is best effort and should try to retrieve the following receipt information (if 
available on the receipt): 

• date of the purchases 
• a description and price of the products and services that are bought 
• the country of purchase 
• the shop (brand/type) 
• ticket reductions 
• payment method 

Then, at the level of a product or service: 

• number of items 
• price per item 
• amount and metric/unit per item e.g. 1,5 L 
• discount 
• return or not 

 Information received from the user in step (e.g. R2, R3 and R4) could be used as a 
verification step. E.g. the total price as answered by the respondent should match the 
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total price as derived from the image. If not, the user’s input has priority (esp. in the UI 
as we don’t want to overrule user’s input). 

However, the aim is to accurately retrieve this information from the ticket through OCR 
and document understanding. 

 Depending on the performance and quality of M1, the number of respondent actions in 
the UI (more specifically, R2, R3 and R4) might change (e.g. if the service is almost 
always able to retrieve the product/service rows then step R3 is probably not needed 
anymore). 

 Because the output (receipt information) might contain several text mistakes, it might 
be desirable to let the user correct those mistakes before the receipt information is 
handed over to the COICOP classification algorithm. Whether or not user correction is 
desirable strongly depends on the input requirements of the COICOP classification 
algorithm. 

REQ M2 Microservice performs COICOP classification on detected products and services 

 The model (algorithm + training) classifies the product/service description to a COICOP. 

 Integration of the COICOP Classification Microservice together with the OCR 
Microservice. 

 Support for different COICOP classifications (the code should not hard-code one 
specific COICOP classification since NSIs are free to extend the 5-digit demanded 
classification). 

REQ M3 Microservice sends notifications when results are available 

 A pop-up in the app informs the respondent that the scanned ticket is added to the 
overview on the day of the purchases. 

 In case of multiple submitted receipts, the microservice will generate a notification for 
each receipt. It is up to the app (platform-specific) how to handle multiple notifications. 

REQ M4 Microservice provides a service to retrieve results 

 The output of the microservice can be requested by the connected platform to e.g. 
include the user into quality control. 
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4.1.3. Non-functional requirements 

Non-functional requirements 

REQ N1 The microservice should be independent from any specific HBS platform. 

 The microservice has no dependency to other environments, and has an independent 
operation. 

REQ N2 It must be possible to connect and communicate with the microservice from any HBS 
platform. 

 The microservice receives input, and provides output making use of APIs. 

REQ N3 The microservice must have a design in which algorithms (computer vision, AI, ML) 
can be easily improved/updated. 

REQ N4 The service must be deployable at any institute/NSI (shareability). 

 The microservices are provided as software packages in containers, which can be 
easily shared and deployed. Docker is a software that can host containers. 
Kubernetes is often used as software to orchestrate various containers. 

REQ N5 The service must be scalable with the number of receipts it needs to handle. 

 The microservice must be designed in such a way that several container instances can 
be running in parallel. 

The container platform (e.g. Kubernetes) should support horizontal scaling so that 
the system is able to handle the expected number of receipts. 

REQ N6 Security by design 

 Using the container technology barriers are created between various components 
used in the study setup, which deliver better privacy, security and maintainability, 
scalability and high availability. 

Communication between the platforms runs through APIs and https communication. 

REQ N7 Privacy by design 

 Using the container technology barriers are created between various components 
used in the study setup, which deliver better privacy, security and maintainability, 
scalability and high availability. 

Communication between the platforms runs through APIs and via UUIDs to avoid 
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transferring personal information. 

REQ N8 Support for localization 

 Algorithms being applied by the microservice should be configurable or trainable (in 
case of ML) to support localization, which includes different languages, different 
currencies, date formats, dots vs commas etc. This is required to make the 
microservice shareable. 

REQ N9 Offline vs online support (app) 

 Parts of the microservice are/can be selected to be developed in a Library to run 
offline in an application. The library must take into account platform-dependency 
(Angular, ionic, Flutter …) to function. 

 

4.2. OCR microservice (Receipt Scanning Microservice – part 1) 
The Receipt Scanning Microservice is supported by two microservices: the OCR Microservice (part 1) 
and the COICOP Classification Microservice (part 2). 

The second section of Chapter 4 deals with the OCR Microservice holding three AI/ML models. This 
part is non-domain specific. In this section the software design, software implementation, and 
platform integration of the OCR Microservice are discussed. Software design and implementation 
explain the inner workings of the microservice, while platform integration explains how the 
microservice should be integrated technically in a platform. The responsibility for platform 
adaptations and UI elements lies with the platform developers and is not part of the SSI scope. The 
integration of the OCR microservice by hbits (MOTUS) is realised, the integration on the side of CBS 
(@HBS) has not been realised within the boundaries of the SSI project. The CBS has given notice of 
their state of play later in the document. INSEE and SSB have been given information during an 
introduction meeting with IT personnel. This information is accompanied with the documentation to 
let them evaluate the feasibility to integrate the microservice into their production environment. A 
short report is made on this action point. Other countries are invited to request information on how 
to integrate this shareable component into their platforms. 

Code is to be found in the Github repository https://github.com/essnet-ssi/receiptscanner-ssi. 

Demonstrations that were given are available on OpenSocial via https://cros.ec.europa.eu/book-
page/information-session-march-2024-wp3 and via https://cros.ec.europa.eu/book-
page/information-session-november-2024-wp2. 

As a last point this chapter will discuss test information. 

4.2.1. Design 
The core of the microservice is the OCR pipeline which takes a receipt in the form of: 

• a set of images (typically only one image), or 
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• a (pdf) e-ticket (which accordingly is processed as an image) 

Once the receipt has arrived it goes automatically and sequentially through 3 steps: 

• Pre-OCR: receipt detection and rotational correction 
• OCR: text detection and text recognition 
• Post-OCR: machine learning-based and rule-based logic 

o document (receipt) understanding, and 
o final post-processing which has as an output a json file.  

The OCR Microservice returns all available information, so that that information can be used by the 
platform (and its UI/mobile and web application) and/or accordingly to the COICOP Classification 
Microservice. For example, if a product row cannot be parsed (e.g. price cannot be found), it returns 
the whole (unparsed) row. 

Figure 8: Receipt scanner processing pipeline 

 

The letters (A-D) indicate a pre-OCR processing function/block in the whole chain. E.g. a receipt 
detection function, orientation correction etc. The letters O-Q are similar but then for post-OCR e.g. 
document understanding, combining detected rows, validating the total price etc. 

Pre-OCR 
The main responsibilities of pre-OCR steps are receipt detection, orientation correction and image 
cropping. Other techniques like noise removal were listed in a MOSCOW analysis and were taken in 
consideration but did not improve the results and are therefore not taken on board. 

The input is a single receipt in the form of: 

• a set of images (this means that the microservice can deal with multiple images), or 
• an e-ticket (pdf). The pdf is converted into a set of images which then follows the same flow 

as normal images. 
• Optionally: contour coordinates 

The output of the pre-OCR step is a correctly oriented, cropped receipt image. 
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For receipt detection2, two methods have been deployed: 

• semantic segmentation, and 
• object detection 

Semantic segmentation 
1. The pre-OCR pipeline takes as input an image of a receipt. 
2. It then segments the image. Which means that it labels each pixel of the receipt as belonging 

to the receipt or not. 
3. It then draws the smallest possible bounding rectangle around the pixels classified as 

belonging to the receipt. 
4. It uses heuristics to try and correctly orient the receipt, such that it is upright. 
5. It crops the receipt using the bounding rectangle. 
6. It then adjusts the orientation again slightly, using paddle_OCR to fine tune the orientation. 

Model training 

This section outlines the training process for the SegFormer model, designed to segment  
and identify the area of store receipt on photos.  

- URLs  
A guide for training this model can also be found in the code repository:  

https://github.com/essnet-ssi/receiptscanner-
ssi/blob/main/src/ocr_microservice/model_training/segformer/train.md 

The training script itself is located here:  

https://github.com/essnet-ssi/receiptscanner-
ssi/tree/main/src/ocr_microservice/model_training/segformer.py 

- Data Preparation  
Labelled Dataset: The training data consists of labelled images exported from Label Studio.  
The exported dataset is provided as a CSV file containing:  

Image Paths: Paths referencing receipt images.  

Polygon Points: JSON-formatted polygon coordinates indicating regions of interest  
on the receipts.  

 
2 These processes have utilised open-source-code and models. This is also true for PaddleOCR. PaddleOCR stands as an open-source 
optical character recognition (OCR) solution crafted by PaddlePaddle, the deep learning platform nurtured by Baidu. Its primary objective 
is precise text extraction from images, boasting proficiency across diverse languages and font types. Employing cutting-edge deep learning 
architectures, PaddleOCR excels in both text detection and recognition tasks. Its adaptability shines through the provision of several pre-
trained models, each tailored for distinct scenarios like scene text, ID card, and table structure recognition. Offering standalone models 
and end-to-end OCR pipelines, it accommodates various use cases and deployment settings. Appreciated for its user-friendly interface, 
robust performance, and comprehensive documentation, PaddleOCR has garnered favor within research and developer circles. Its utility 
spans document digitization, image text extraction, and intelligent document processing. Furthermore, its open-source nature fosters 
community engagement, permitting customization to suit specific language or application needs. 
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All referenced images must be stored locally within a designated directory.  

- Training Procedure  
The segmentation model training is managed through the primary script train.py. The  
following parameters guide the training process:  

• Batch Size: 8  
• Learning Rate: 1e-4  
• Number of Epochs: 500  
• Loss Function: BCEWithLogitsLoss (binary cross-entropy with logits), using positive class  

weighting  

- Training Steps:  

1. Environment Setup: Install necessary Python packages using: pip install pandas torch  
torchvision matplotlib pillow tqdm  

2. Data Organization:  
• Place receipt images in the images/ directory.  
• Include the CSV file containing label annotations (labels.csv) in the project's root. 

3. Configure and Train: Adjust paths within train.py: image_dir = './images/'  
label_csv = './labels.csv'  
result_dir = './outputs/' Begin training by executing: python train.py  

4. Model Outputs: Model checkpoints are saved during training as  
follows: images/checkpoints/model_epoch_X.pth  

5. Visualization: A visualization feature in the dataset class allows inspection of original and  
segmented images to verify data accuracy.  

6. Using the trained model: To use the model, move it to 
src/ocr_microservice/ocr_pipeline/resources/segformer, and update  
src/ocr_microservice/ocr_pipeline/config/default.py to match the name of the trained 
model. 

Object detection 
An alternative method is to use object detection for receipt detection. In this case a rectangular box 
is drawn around the receipt in the image. The detection is very accurate but less fine-grained than 
semantic segmentation. Furthermore, it requires quite some processing to correct the receipt 
orientation. The orientation of the image is corrected by sequentially applying PaddleOCR to derive 
text orientation. 

The used AI model for object detection is YOLOS. For more information, please visit this link: 
https://huggingface.co/docs/transformers/model_doc/yolos 

Model training 

The training of the object detection model holds 4 steps: 

• Collect images and divide them into 3 subsets: training, test and validation. 
o Training: for training the YOLOS model,  
o Test: for testing the YOLOS model while it is being trained, 
o Validation: for validating the final YOLOS output (which is not used by YOLOS itself). 



 

31 
 

• Rotate all images: This step is needed to make the crop of the receipt as tight as possible. 
• Annotate and create Coco output: Use a tool to add bounding boxes for object detection to 

the images (e.g. Label Studio), export in Coco format (note: validation images should not be 
annotated because they are not being used in YOLOS training). 

• Training and retraining 

More detailed description can be found in the Github repository under the folder: 
https://github.com/essnet-ssi/receiptscanner-
ssi/tree/main/src/ocr_microservice/model_training/lilt. 

OCR 
Several OCR models were compared:  

• EasyOCR 
• Tesseract 
• PaddleOCR 
• TrOCR 

A fine-tuned PaddleOCR model provided the best accuracy for this task. The model was trained on a 
small, labelled dataset of ~300 receipts. 

Model training 
Training can be split into two (or three, depending if the CLS model also is counted) groups: 
detection model and the recognition model.  

• The detection model detects words in an image and binds them to a bounding box with 
annotation.  

• The recognition model recognizes shapes within that bounding box and tries to classify them 
(by 'assigning' meaning to them e.g. characters).  

The following specific steps have to be taken in order training own PaddleOCR models: 

-1- Convert the image data and annotations in a required format 

For the de Detector, at least two .txt files are needed as training and validation sets (make three, to 
also have an evaluation set). The format of these text-files is as follows (without spaces): 

image_name.ext \t [{"points":[[x1,y1],[x2,y2],[x3,y3],[x4,y4]], "transcription":text_annotation, 
{"points":[...]}] \n 

With each image a new line. The same amount of .txt files should be made when training the 
Recognizer (training, test, eval) with the following format (without spaces): 

image_name.ext \t Annotation \n 

-2- Download models and sources form the PaddleOCR Website 

These can be downloaded via the Github project page of PaddleOCR. You can use an existing, 
already trained, model for finetuning (look up their models such as en_PP-OCRv3_rec) or you can 
download other pre-trained models like the MobileNet_V3_Large. The available models for 
detectors and recognizers vary. 
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-3- Change the .yml config files 

When cloning the PaddleOCR project, configs for training are already included. These can be found 
within the configs folder, and are seperated per type of training configs (folder det for detector, 
folder rec for regocnizer etc.). Within these folders, .yml files can be found for specific training 
routines. You can also create one an own, but going with an existing config like det_mv3_db.yml is 
easier. Change the following fields: Global.pretrained_model (path of the weights that have been 
downloaded in step 2), Train.dataset.data_dir and Train.dataset.label_file_list (path of training 
images and training .txt-file respectively) and finally under Eval.dataset.data_dir and 
Eval.dataset.label_file_list (path of test images and test .txt-file). Other fields (like output directory, 
learning rate, loss-functions etc.) can also be set here. 

-4- Start training 

For training, use the following commands: 

#Training 
!python tools/train.py -c config/det/det_mv3_db.yml \ 
-o Global.pretrained_model=./pretrained/MobileNetV3_large_x0_5_pretrained 
 
This the training-script recognizes whether it is a detector-training or recognizer-training. Do not 
forget to enable/disable gpu-training in the config. GPU/CPU training is set in the config. 

-5- Inference 

The last step is to convert the model and export it to a usable format. This can be done through the 
following commands: 

!python tools/export_model.py -c config/det/det_mv3_db.yml -o 
Global.pretrained_model="./output/trained_model/best_accuracy" 
Global.save_inference_dir="./output/trained_inference/" 
 
-6- Use it 

Load the weights when running PaddleOCR. This can be done by entering the rec_model_dir and 
det_model_dir when 

Post-OCR 
The output of the OCR step includes text and text locations (bounding boxes). That information is 
used: 

• to understand the receipt i.e. trying to give a meaning to the recognized text (by OCR), 
• to correct OCR mistakes (date, time corrections etc.), 
• to produce a final json output which contains all receipt details (and some metadata). 

Receipt understanding 
In order to understand the receipts, the pipeline applies a fine-tuned model of LiLT. See also here for 
more information: https://arxiv.org/abs/2202.13669.  
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LiLT combines text and layout (text position) information to label a text box. A variety of labels were 
defined within the SSI project to arrive to standardisation, ranging from store address to tax price. 
See table below. 

Table 1: Label descriptions for receipt text 

Id Label Description 

0 O ignore 

1 I-date_text date string e.g. Date 

2 I-date_value date e.g. 10/9/23, Thursday 3 aug 2019 

3 I-time_text time string e.g. Time 

4 I-time_value time value e.g. 10:29 

5 I-datetime 
combination of date and time (because combined by OCR) e.g. 3-12-
2021 15:04 

6 I-heading 

Main heading of the ticket, typically between store details and products 
e.g. Receipt, Account, rekening, klantenbon etc., to distinguish from 
item.header 

7 I-unused8  

8 I-unused7  

9 I-unused6  

10 I-tax.header tax table: header e.g. Tax, Incl., Excl. 

11 I-tax.description tax table: typically percentage or total e.g. 10%, total 

12 I-tax.price tax table: tax price e.g. 9 EUR (which is 10% of 90 EUR) 

13 I-tax.price_excl tax table: total price excluding tax i.e. total cost without tax e.g. 90 EUR 

14 I-tax.price_incl 
tax table: total price including tax i.e. what the customer had to pay e.g. 
99 EUR 

15 I-unused5  

16 I-unused4  

17 I-unused3  

18 I-unused2  

19 I-unused1  
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20 I-store.name name of the store e.g. lidl, Coopcentrum Bert Stuut 

21 I-store.address address e.g. 9693 AE Bad Nieuweschans, Hoofdstraat 41 

22 I-store.phone phone e.g. Tel:0597-621678 

23 I-store.email email e.g. Email:stk@jumbo.com 

24 I-store.website website e.g. WWW.KWANTUM.NL 

25 I-store.tax_id tax identification number e.g. B0840.591.904 

26 I-store.unused3  

27 I-store.unused2  

28 I-store.unused1  

29 I-store.etc 
belongs to store but combination of several items e.g. Rotterdam 010 
414 46 98 (which is part of address and tel. nr) 

30 I-item.header product table: header e.g. EUR, TOT, Price, Description 

31 I-item.quantity 
product table: quantity, how many items of this product e.g. 2 OR 
wieght e.g. 0.213kg 

32 I-item.description product table: description e.g. tomatos 

33 I-item.unit_price product table: unit price e.g. 1.00, 1.02 EUR/kg 

34 I-item.price 
product table: total price of this item row e.g. 2.00 (which is 2x 1.00 in 
this example) 

35 I-item.id 
product table: number, code or id of item e.g. 2751338001839, Article 
20470047 

36 I-item.discount_description product table: kind of discount e.g. set 2 for 9.99, DISCOUNT 

37 I-item.discount_price product table: discount price e.g. -1,31, 1.31 

38 I-item.etc 
product table: sometimes contains non-product items e.g. BONUS CARD, 
Parking ticket etc. 

39 I-item.unused11  

40 I-item.unused10 reserved for e.g. multi-line support 

41 I-item.unused9  

42 I-item.unused8  

43 I-item.unused7  
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44 I-item.unused6  

45 I-item.unused5  

46 I-item.unused4  

47 I-item.unused3  

48 I-item.unused2  

49 I-item.unused1  

50 I-sub_total.text subtotal string e.g. SUBTOTAL 

51 I-sub_total.price subtotal price e.g. 95 

52 I-sub_total.discount_text receipt discount string e.g. DISCOUNT, KORTING 

53 I-sub_total.discount_price receipt discount price e.g. -3,99 

54 
I-
sub_total.discount_item_text 

discount item table (overview of discounts, similar to product items but 
then for discounts): text e.g. discount 

55 
I-
sub_total.discount_item_price dicount item table: price e.g. -45,6 EUR 

56 I-sub_total.tax_text tax text (not from the tax table! see line 10-14) e.g. TAX 

57 I-sub_total.tax_price tax price e.g. 9 EUR 

58 I-sub_total.tax_excl_text total price excluding tax (string) e.g. Ex TAX 

59 I-sub_total.tax_excl_price total price excluding tax (price) e.g. 90 

60 I-sub_total.tax_incl_text total price including tax (string) e.g. TOTAL incl TAX 

61 I-sub_total.tax_incl_price total price including tax (price) e.g. 99 

62 I-sub_total.service_text service text e.g. SERVICE 3% 

63 I-sub_total.service_price service price e.g. 3 EUR 

64 I-sub_total.item_rows_text total number of item rows (string) e.g. ? (remove?) 

65 I-sub_total.item_rows_value total number of item rows (value) e.g. 10 (remove?) 

66 I-sub_total.quantity_text total number of items (value) e.g. ITEM COUNT 

67 I-sub_total.quantity_value total number of items (value) e.g. 20 

68 I-sub_total.etc_text related to subtotal (string) e.g. ROUNDING 
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69 I-sub_total.etc_price related to subtotal (price) e.g. 0,00 

70 I-total.text total string e.g. TOTAL, TOTAAL 

71 I-total.price total price (typically incl tax) e.g. 99,7 

72 I-total.rounded_text 
rounded total (in case cash cannot be paid in certain amounts) e.g. 
ROUNDED TOTAL 

73 I-total.rounded_price rounded total price e.g. 100 

74 I-total.unused4  

75 I-total.unused3  

76 I-total.unused2  

77 I-total.unused1  

78 I-total.etc_text related to total but no other correct label (remove?) 

79 I-total.etc_price related to total but no other correct label (remove?) 

80 I-payment.cash_text string which indicates payment in cash e.g. CASH 

81 I-payment.cash_price value of cash payment e.g. 100 

82 I-payment.change_text change string e.g. CHANGE 

83 I-payment.change_price amount of change e.g. 1.00 

84 I-payment.other_text other payment type e.g. CARD, MEASTRO 

85 I-payment.other_price other payment price e.g. 99 

86 I-payment.details_total_text 
payment details (esp credit card details on the receipt) can also contain 
the total price e.g. total 

87 I-payment.details_total_price 
payment details (esp credit card details on the receipt) can also contain 
the total price e.g. 100,00 

88 I-payment.etc_text related to payment but no other correct label (remove?) 

89 I-payment.etc_price related to payment but no other correct label (remove?) 

 

Model training 

The training of the receipt understanding model holds 4 steps: 

• Collect receipts: Images need to be correctly oriented and cropped. Collect receipts in 3 sets: 
o training: for training the LiLT model, 
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o test: for testing the LiLT model while it is being trained, 
o validation: for validation after the LiLT has been trained. The validation set does not 

need to be annotated (except if needed for automatic regression testing). 
• Apply OCR to get boxes with text: Tools: e.g. PaddleOCR. 
• Annotate and compose the dataset. Every OCR detected text box must get a label (see table 

of labels in previous section, including the O label, first row to when a text box needs to 
become ignored). Tools: e.g. Excel. 

• Training and retraining. 

More detailed description can be found in the Git repository: 

https://github.com/essnet-ssi/receiptscanner-
ssi/blob/main/src/ocr_microservice/model_training/lilt/README.md 

Corrections 
This section explains the post-processing methods applied after the OCR step to extract and  
correct specific receipt information, enhancing accuracy and usability.  
  
- URLs  
Relevant code can be found here:  
 
https://github.com/essnet-ssi/receiptscanner-ssi/tree/cbs-
final/src/ocr_microservice/ocr_pipeline/rule_based_extractor 
 
- Extraction of Key Receipt Information  
Post-processing involves extracting structured information from raw OCR results using text  
analysis techniques. The main steps include:  
  

• Receipt Date: Extracted using regular expressions that identify date patterns in the  
OCR output.  

• Total Price: Identified by scanning for specific keywords (configurable in 
total_price_extractor.py). When keywords are detected, the corresponding numerical price 
values on the same line are captured.  

• Shop Name: Determined by matching specific keywords listed in shop_extractor.py, 
facilitating accurate identification.  

• Products and Prices: Columns of products and corresponding prices are identified by 
examining consistent alignment and similar text height, enabling accurate extraction of 
product-price relationships.  

  
Each step of the extraction can be customized or expanded according to the project's  
requirements. 

Final post-processing 
Given the output of receipt understanding and its corrections, a json output is being generated 
which contains all found information as well as metadata (i.e. where the information came from). 

The json output has the following fields (for explanation please view the aforementioned label list): 

• date 
• time 
• tax_table which has rows with following fields: 
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o description 
o price: 
o price_excl 
o price_incl 

• store which has next fields 
o name 
o address 
o phone 
o email 
o website 
o tax_id 
o etc 

• item_table which has rows with following fields: 
o quantity 
o description 
o unit_price 
o price 
o id 
o discount_description 
o discount_price 
o etc 

• sub_total 
o price 
o discount_price 
o discount_item_text 
o discount_item_price 
o tax_price 
o tax_excl_price 
o tax_incl_price 
o service_price 
o item_rows 
o quantity 
o etc_price 

• total 
o price 
o rounded_price 
o etc_price 

• payment 
o cash_price 
o change_price 
o other_price 
o details_total_price 
o etc_price 

Simplified example of a json output: 

{ 

 “receipt”: { 
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  “date”: { 

   “text”: “23-04-2024”, 

   “corrected”: “2024-04-23”, 

   “bbox”: [[422, 2253, 574, 2280],[422, 2253, 574, 2280]], 

   “ocr_confidence”: 0.9, 

   “du_confidence”: 1.0 

  }, 

  ... 

 } 

} 

Explanation of fields: 

• text: text as recognized by the OCR engine 
• corrected: post-processed text e.g. normalized date 
• bbox: bounding box as detected by the OCR engine 
• ocr_confidence: OCR engine confidence score 
• du_confidence: document understanding confidence score 

4.2.2. Implementation 
The OCR pipeline is a python runtime. The code is available in the Github repository 
(https://github.com/essnet-ssi/receiptscanner-ssi). The code also includes an example Docker file for 
integration into a platform as is discussed in the next section. 

Depending on the platform, the python runtime can be deployed as a (containerized) microservice in 
various ways. In the following sections, the data collection platform developers discuss their specific 
integration. In sequential order these are the platform of hbits, CBS, INSEE and SSB. 

4.2.3. Integration: hbits MOTUS platform 
MOTUS is developed by hbits, as a spin-off of the Vrije Universiteit Brussel. How the integration of 
the OCR microservice is viewed on the user side can be seen in the demonstration videos (see 
Deliverable 3.3). These videos provide a view on how the MOTUS application presents, on the user 
side, the output of the OCR microservice. Further information is available via the usability tests in 
WP2. 

Below the integration of the OCR microservice in MOTUS is discussed, as well as how MOTUS 
communicates via its API. 

Integration in MOTUS 
The integration in MOTUS discusses the views as explained in Chapter 3 of the Microservice software 
architecture. 
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Context view 
Figure 9: Context view of receipt scanner integration in the MOTUS platform 

 

Table 2 describes the functionalities of the different components. 

Table 2: Description of functionalities of the MOTUS components 

Component Functionalities 

Mobile app receipt 
scanning functionality 

• Camera view (take photo) 
• Gallery view (select image from gallery) 
• File view (select pdf from local phone storage) 
• Photo view + contour editing 
• Pre-process image: decrease resolution 

Send photo + coordinate data to backend 

Web app receipt scanning 
functionality 

Scanning functionality is not (yet) foreseen. The output of the OCR 
microservice is nevertheless available via the web app. 

Receipt Scanning 
Microservice 

From receipt photo + coordinate data to receipt information (store, 
total, product/service rows, etc.) 

Backoffice functionality Researcher can review respondent receipt 

Respondent functionality Respondent receives tentative data via the mobile and/or web app, 
can edit the ticket to commit the ticket 
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Functional view 
Figure 10 below shows the functional view (runtime elements) of the Receipt Scanning Microservice. 

Figure 10: Functional view of the receipt scanner microservice in the MOTUS platform 

 

The components have the following functionalities: 

• Sftp server: makes receipt images available to the microservice 
• Rabbitmq message bus: used for asynchronous communication between backend and 

microservice. Messages are requests for processing and notifications when processing is 
finished 

• Mariadb microservice database: stores images (which can be coupled to respondents in the 
backend) 

• Redis result database: stores processing results 
• Receiptscanner-processor: downloads a receipt from the sftp server, processing it (pre-OCR, 

OCR and post-OCR), publishes the results in the redis database and notifies the backend via 
rabbitmq 

• Receiptscanner-api: used by the backend to manage scanners (which can be coupled to 
respondents in the backend) and to retrieve results 
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Information view 
Figure 11 below shows the informational view of the receipt scanner microservice. 

Figure 11: Information view of the receipt scanner in the MOTUS platform 

 

A more detailed sequence diagram (Figure 12) highlights the different calls between the various 
runtime elements. 

Figure 12: Sequence diagram of receipt scanner integration in the MOTUS platform 

 

Flow: 

• Backend requests the receiptscanner-api to create a scanner entry for a respondent (if 
Receipt Scanning Microservice is allowed and activated for that respondent via the 
backoffice configuration) 

• When the backend receives a receipt image 
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o it saves the image on the sftp server. Files are organized by scanner-UUID directories. 
Filenames are date and UUID based. 

o it sends an asynchronous message (receipt.process) on the rabbitmq bus to process the 
receipt image. 

• Receiptscanner-processor 
o reads the processing request message from rabbitmq 
o fetches the receipt image via sftp 
o processes the image 
o puts the results in the redis db 
o notifies the backend that processing is done via a rabbitmq asynchronous message 

(receipt.processed) 
• Backend 

o reads the notification message 
o requests the results from the receiptscanner-api 
o returns the results to the respondent when requested by the mobile/web app. 

Concurrency view 
In mobile/web app is respondent identification via authentication used to isolate backend requests 
from each other. 

The platform backend and microservices are able to handle multiple requests concurrently. The 
generic microservice architecture (see chapter 3) supports concurrent and parallel handling of 
requests by queuing requests and scaling data processors. 
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Deployment view 
Figure 13: Deployment view of receipt scanner functionality in the MOTUS platform 

 

The components are 

• Mobile app: via app stores 
• Web app: loaded via browser from the web server which is part of the platform backend 
• Microservices: as pointed out in the generic microservice architecture, a microservice is a 

collection of Docker containers. The receiptscanner containers are deployed on the MOTUS 
Kubernetes cluster platform (except for COICOP Microservice -- see later). 

API 
The asynchronous interface consists of 2 rabbitmq messages: 

• The microservice listens for a ProcessReceipt message with format: 
o scanner_uuid: the scanner (~ mapping of respondent) 
o receipt_uuid: identification of the receipt 
o receipt_filename: name of the receipt on the ftp server 
o timestamp of format ‘Y-m-d\TH:i:sP' 
o user_selection: optional array of x,y coordinates indicating the corner points which were 

assigned by the respondent 
• When processing is finished the microservice pushes a ReceiptProcessed message on the 

bus: 
o scanner_uuid: the scanner 
o receipt_uuid: identification of the receipt 
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The MOTUS backend can then fetch the results via the synchronous REST interface, which has the 
following functions: 

• GET scanners: returns the list of scanners 
• POST scanners: create a new scanner 
• DELETE scanners: delete a scanner-uuid 
• GET scanners/{scanner_uuid}: show a specific scanner-uuid 
• GET scanners/{scanner_uuid}/receipts: get receipts of a specific scanner-uuid 
• GET scanners/{scanner_uuid}/receipts/{receipt_uuid}: get specific receipt of specific scanner 
• DELETE scanners/{scanner_uuid}/receipts/{receipt_uuid}: delete specific receipt 

4.2.4. Integration: CBS @HBS platform 
The OCR microservice is currently not yet integrated into the CBS HBS application, but preparations 
are underway for full implementation in January 2026. A successful field test has already been 
conducted, validating core functionalities for the user like manually adding expenses and taking 
picture of receipts. The OCR microservice is built as a standalone containerized API, designed to 
integrate seamlessly into the HBS app.  
 
Upon deployment, the mobile app will upload scanned receipt images to temporary backend 
storage, after which the OCR service will be triggered. The microservice – as described earlier this 
chapter – will take over from there and possibly interact back with users.  
 
Authentication for all API communication, including OCR interactions, will be handled through CBS’s 
internal Phoenix IAM system. Mobile and web clients will authenticate via OAuth2, with tokens 
verified by the API Gateway before requests reach any backend service. The OCR microservice, like 
other services, will use secure, token-based communication with Phoenix IAM for authorization and 
access control. 
 
All data processed by the OCR service—both raw and structured—will be stored securely in CBS-
managed backend infrastructure, using in-house storage to comply with GDPR requirements. 
Integration with Phoenix’s identity and access management ensures that only authorized services 
and users can access sensitive content throughout the pipeline. 
 
4.2.5. Integration: INSEE evaluation microservice 
INSEE is part of the consortium of the Smart Survey Integration (SSI) project aiming in advancing 
innovative data collection tools for household surveys, particularly for the Household Budget and 
Time Use Surveys. 

As part of Work Package 3, a generic microservice architecture, a microservice for performing OCR 
and automatic classification from an image of a receipt/digital receipt has been developed, and a 
microservice for the collection, analysis and classification of geolocation points. 

This following aims to evaluate the feasibility of integrating the microservice into the Household 
Budget Survey process of INSEE, from a business need perspective as well as taking into account 
technical considerations. Prior to this evaluation, information was received from WP3 on the generic 
architecture of the microservice and the example of the OCR+classification of images. 
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Business integration of the microservice 
The microservice meets an essential need in collecting information for the Household Budget Survey 
(HBS) by enabling, through two steps, the conversion of a receipt photo/digital receipt into an 
expense coded in the survey's target nomenclature. In this section, first a description is given on how 
these steps will be implemented during the collection of the next survey wave in 2026, and then 
how the microservice could be used in 2030. 

OCR and Classification process planned for HBS in 2026 
The HBS application developed by INSEE from CBS's @HBS application does not perform OCR and 
classification from the receipt photo/digital receipt. It verifies the presence of written characters in 
the photo (which prevents accepting photos that are too blurry or dark) and stores the photos in a 
binary format in the SQL database. 

A Python program generates and names JPEG files from this database. These files will be sent to a 
service provider, who will transcribe the data line by line. Two providers were tested in 2024: one for 
manual data entry by human operators and another for automated entry. For 74% of the receipts, 
automated entry provided a total amount and number of lines similar to manual entry. Due to its 
low marginal cost, automated entry is the preferred solution for data entry in 2026. 

The coding of product labels into COICOP 2018 is performed by a machine learning model trained on 
scanner data from supermarkets. The relevance of integrating data from the 2024 test into the 
training corpus is currently under study. There might be (at least) two types of labels not found in 
scanner data: 

• Receipts from other stores (clothing stores, specialized retailers, etc.)  
• Handwritten labels in paper notebooks, written in a more "natural" language than checkout 

receipts  

The microservice is not planned to be integrated into the production of the 2026 HBS because the 
timeline does not allow for testing and evaluating the performance of this new method compared to 
the existing one. 

Possibility of integrating the microservice for 2030 
For the 2030 HBS edition, the integration of the microservice developed under SSI could be studied. 
Using an external provider for expense data entry incurs a cost, and mutualizing these tools among 
countries is a direction in which INSEE is moving. 

The microservice integration can be done in two ways: 

• Maximalist Integration, with Feedback in the Application within Minutes: 

The microservice can be interfaced with the application, being remotely invoked by the application 
and returning the OCR and classification results to the user within minutes. If the design choice for 
2026, which is not to show the OCR and classification results to the respondent, is maintained in 
2030, this usage is not relevant for INSEE. 

• Integration of the Microservice into the Statistical Processing Chain of the Survey: 
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The microservice can be used in the processing chain planned for 2026, replacing the already 
implemented data entry and coding steps. A preliminary step would be testing the microservice on 
the data collected in 2026 to compare its performance with the reference chain. It would then be 
necessary to study how to integrate French training data into the two process steps so that the 
microservice can produce satisfactory results. Given the exceptionally short period between the two 
survey editions (2026 and 2030), these tasks will need to be carried out within a constrained 
timeline. 

Technical integration of the microservice 
If the hypothesis of testing the OCR microservice for the 2030 HBS is validated, INSEE's IT 
infrastructure would be capable of hosting it. 

Current choices and architecture 
Before presenting a target solution for integrating the microservice, it is necessary to review the 
current architecture implemented for the HBS data collection. 

INSEE has forked the project https://gitlab.com/tabi/projects/budget. This project contains the code 
necessary for building native mobile applications (iOS/Android) for expense recording, the Back 
Office API (HBS API), and the scripts required to initialize the database. 

As mentioned earlier, INSEE's choice for 2026 is to store receipt images in the database with minimal 
control before saving, ensuring only that the photo contains characters. The corresponding data for 
the receipt photos is retrieved downstream using Python scripts connected to a clone of the 
production database. 

Beyond ergonomic work within the application, a significant portion of INSEE's development effort 
has been devoted to interfacing the application and the HBS API with the authentication system 
based on the Keycloak solution. 

The current architecture is shown below. 
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Figure 14: INSEE current data collection architecture 

 

The exchange dynamics between the application and the API are as follows: 

• Upon login, the user retrieves a Keycloak token by logging into a page on the Keycloak 
authentication server. This token is then used in exchanges between the mobile application 
and the HBS API, where it is verified with each call.  

• The HBS API handles calls from the mobile application and links data persistence in the 
database.  

For information, the application modules are currently installed on virtual machines, but INSEE now 
has Kubernetes environments in open environments (DMZ). 

Integration of the microservice at INSEE 
Two possible integrations can be imagined on INSEE's production environments: 

• "Classic" Production Infrastructures (Maximalist Integration) 

INSEE now has a fairly complete Kubernetes offering, allowing the deployment of containerized 
microservices. This offering of development, testing, and production environments, whether in the 
internal zone or DMZ (for production only), enables these services to be accessible outside INSEE's 
network. 

These infrastructures can easily deploy the OCR microservice. The constraints posed by these 
production environments mainly concern the quality of Docker images. A promotion pipeline is 
responsible for verifying this quality before making the image available in a trusted registry, thus 
enabling its effective deployment (searching for vulnerabilities, secrets, misconfigurations, etc.). 
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In the case of the maximalist integration mentioned above, the data synchronization process 
between the mobile application and the HBS API would need to be modified as follows: 

§ Sending a new image from the application to the HBS API will trigger its storage in the 
database and the sending of a message containing the image to be scanned. This "dual" 
processing could, in some cases, result in the photo not being sent to the microservice. 
This problem can be circumvented by slightly complexifying the architecture by adding a 
dedicated service to scan the database for images that were not sent to the microservice 
(see https://microservices.io/patterns/data/transactional-outbox.html). 

§ Once the receipt is processed by the microservice, the HBS API will retrieve this 
information to insert it into the database. It is not planned at this stage to send the 
information back to the respondent's mobile device. If this were to be the case, the 
synchronization process would likely need to be revised to send the scanned receipt data 
back to the respondent's device.  

Below a simplified Architecture for Microservice Integration in Production is shown. 

This "streamlined" processing mode would allow smoothing the load and retrieving the data 
immediately after collection without additional processing. 

Since it is not planned to send the information back a priori, another relevant solution would be to 
process the images in a single batch after collection. INSEE has a "self-service" Kubernetes 
infrastructure that statisticians can use for this purpose. 

• A Self-Service Offering for Statisticians 

INSEE has developed and made available to statisticians a platform called LS³ (for Libre Service 
"Kube"), which is the new internal data science platform at INSEE. 

It allows statisticians to deploy containerized applications on demand for their specific needs. An 
ArgoWorkflow service is provided, enabling statisticians to schedule tasks. These platforms have the 
advantage of accessing production databases. 

An alternative solution for integrating the microservice would be to use these tools for mass 
processing of receipts by the OCR microservice. 
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Figure 15: INSEE possible microservice integration architecture 

 

This "streamlined" processing mode would allow smoothing the load and retrieving the data 
immediately after collection without additional processing. 

Since it is not planned to send the information back a priori, another relevant solution would be to 
process the images in a single batch after collection. INSEE has a "self-service" Kubernetes 
infrastructure that statisticians can use for this purpose. 

• A Self-Service Offering for Statisticians 

INSEE has developed and made available to statisticians a platform called LS³ (for Libre Service 
"Kube"), which is the new internal data science platform at INSEE. 

It allows statisticians to deploy containerized applications on demand for their specific needs. An 
ArgoWorkflow service is provided, enabling statisticians to schedule tasks. These platforms have the 
advantage of accessing production databases. 

An alternative solution for integrating the microservice would be to use these tools for mass 
processing of receipts by the OCR microservice. 
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4.2.6. Integration: SSB evaluation microservice 
WP3, represented by hbits and CBS, introduced the Generic Microservice Architecture and the OCR 
microservice as an example in an informational meeting with both SSB and INSEE. Documentation 
was provided, as well as recordings of the meeting. 

Following is a brief assessment by SSB of its current setup, which includes the use of a third party 
OCR scanning integrated into the household budget survey, and an evaluation of the possible 
deployment of the within the SSI developed Receipt Scanning Microservice. 

Technical architecture and considerations for OCR integration 
The SSB system is already microservice-based, covering both OCR and backend services, making 
migration from the existing external OCR provider relatively straightforward from an architectural 
standpoint.  

WP3 shows a Microservice architecture in which microservices can be coupled to a platform via 
Message Queues. Message Queues allow for asynchronous, non-blocking communication between 
platform and microservice, thereby increasing platform stability and efficiency. 

At present, in the SSB system, direct API calls are used for sending receipts and receiving OCR 
results, but implementing Message Queues (Pub/Sub) could improve efficiency, reduce duplicate 
purchase registrations, and enhance backend stability. This approach would also facilitate smoother 
future migrations if needed.   

Regarding classification services, a tailored model must be developed to meet specific requirements, 
as no universal model currently exists. Additionally, the absence of a "man-in-the-loop" classification 
feature within the SSI solution is a factor to consider. It remains undecided whether classification 
should take place in real time or post-processing, but Message Queues could be beneficial in either 
scenario.   

With Firebase being phased out at SSB, a structured method is needed to transfer purchase data, 
including receipt images and OCR results, between the frontend and backend. Implementing 
Message Queues could provide a scalable and efficient solution for this transition.   

For HBS 2026, it is too late to adapt to a different OCR microservice. However, planning for the use 
of Message Queues in receipt and OCR data exchange is something to follow up upon.   

OCR data quality and classification 
At SSB, the existing OCR service effectively extracts structured data from receipts and invoices, 
converting images and PDFs into text with high accuracy, provided the image quality is sufficient. It 
successfully categorizes key receipt components such as itemized prices, total amounts, and store 
names while remaining cost-effective. Additionally, the provider is responsive to feedback and 
willing to fine-tune models based on incorrect recognition examples. 

Despite its strengths, the current OCR service has limitations, also in the case of SSB with Norwegian 
receipt structures. Variations in discount logic across different retailers pose challenges, some of 
which can be addressed through post-processing, while others require manual editing. An advanced 
feature of the current used OCR service is its custom classification, allowing receipts to be 
categorized according to COICOP standards. This functionality has not yet been tested but could be 
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valuable for the 2026 implementation. The OCR service also performs well in processing invoices and 
digital receipts. 

While the SSI OCR microservice architecture shows some benefits, it still needs to show its feasibility 
within the Norwegian context. It would need to be seen whether the model would be able to deal 
with handling important nuances, especially given that it is not currently trained on Norwegian 
receipts. It needs to be underlined that the SSI solution makes use of a document understanding 
model to label different parts on the receipt. The SSI microservice can also take into account digital 
receipts and processes this via the same pipeline. 

Besides OCR scanning and document understanding a second part of the microservice is in 
development and this to classify the purchases to a COICOP code. To this end WP3 developed a 
pipeline making use of string-matching principles and AI/ML-models. 

Vulnerability and privacy 
Using an external OCR provider carries the risk of service discontinuation, pricing changes, or major 
technological modifications. 

The OCR Microservice solution is an output of the SSI Eurostat funded project and has a EUPL-v1.2 
license. This SSI microservice provided a foundation that can be adapted to the Norwegian context 
while at the same time cooperation initiatives between users (eg. NSIs) of the solution could 
enhance scalability. The SSI solution is designed to run as an image in a container that can be 
deployed at a location of choice. 

From a Data Protection Impact Assessment (DPIA) perspective, the greatest privacy concern relates 
to the transmission of images containing personally identifiable information, particularly invoices. 
The SSI setup could have an advantage here. 

COICOP-classification 
The COICOP classification model SSB has used has been effective for Norwegian data in 2022. This 
model needs to be updated and retrained with new data before it is used in 2026. Currently, we 
have no preference whether the classification will be performed live or post-collection. The SSI 
solution can provide output to the user in near real time. 

During the presentation the annotation tool tick-it has been mentioned to standardise and structure 
the training of the models of the microservice. 

Conclusion 
At this moment SSB does not have important arguments to change the current OCR provider, 
especially since the production pipeline is already configured to handle the structure and 
peculiarities of this data. 

Since the SSI microservice has the opportunity to train and to focus eg. on discounts it might become 
a viable option. 

Implementing a message queue architecture could enhance system resilience and facilitate potential 
future migration to the SSI solution or an internally developed OCR solution. 
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4.2.7. Test 
Via MOTUS the integration of the OCR Microservice, and so the Receipt Scanning Microservice part 1 
was tested by WP2 in their small-scale tests in Belgium and Germany, and in the large-scale 
fieldwork carried out by the University of Mannheim. 

4.3. COICOP classification microservice (Receipt Scanning Microservice – part 2) 
The Receipt Scanning Microservice is supported by two microservices: the OCR Microservice (part 1) 
and the COICOP Microservice (part 2). 

This part describes the COICOP Microservice, which has the task of assigning a 5-digit COICOP code 
to each product description that has been extracted from a receipt using the OCR Microservice. 
Hence, the COICOP Microservice is a classical text to classification task, integrated into the Receipt 
Scanning Microservice. The scope of the SSI project is to develop the technical possibility to 
integrate one or multiple different COICOP classification techniques into the Receipt Scanning 
Microservice.  

This means that NSI-specific techniques will have to be developed by each NSI, and training is not 
part of the SSI. Yet, different methodological considerations will be outlined to inform data scientists 
and methodologists who want to deploy their own NSI specific model into the OCR Microservice. 
The SSI project will also provide a generic string-matching approach which can be used without 
advanced technical adaptations, but should be tested thoroughly.  

Additionally, it is important to note that the use of the COICOP Microservice is methodologically 
recommended but technically not strictly necessary. The Receipt Scanning Microservice could also 
be used without the COICOP Microservice, hence using only the OCR Microservice. This would then 
result in the need to manually or automatically (but independently from the Receipt Scanning 
Microservice in a separate data post-processing system) classify each product description to COICOP. 
In essence, the Receipt Scanning Microservice would then turn into a mere data collection tool, still 
reducing the participation burden, but not using its full potential.  

4.3.1. Design 
Matching data 
Regardless of the technique employed, assigning a 5-digit COICOP code to a product description 
requires a dataset linking product descriptions to COICOP codes, referred to here as the matching 
data. When a new receipt is scanned and product descriptions are identified, the task is to find the 
best possible COICOP match for each product description based on the matching data. 
Consequently, an extensive matching data corpus is a prerequisite for the COICOP Microservice.  

One promising source of matching data is scanner data from price statistics, collected from retail 
scanners at points of sale and typically used for compiling national price indices. This data is 
comprehensive and systematically gathered but is often limited to specific retail sectors, such as 
supermarkets or drugstores. This data usually gets automatically classified to COICOP and therefore 
serves as a directly usable matching data source. 

If such data is unavailable or inaccessible, an alternative approach is to gather matching data 
manually, for example, by collecting receipts directly from consumers or retailers. Once the data is 
collected, a crucial step is coding all extracted product descriptions to their corresponding COICOP 



 

54 
 

codes before using the data as matching data. While this approach can provide a representative 
dataset of the most consumed goods, capturing all products in this manner is likely impractical. 

Lastly, manually curated tag lists created and maintained by subject-matter experts can serve as a 
matching data source. While such lists may not cover the full range of products found in dynamic 
receipt data, they often include the most essential products. 

The coverage of the matching data is a critical factor on two levels. First, if the data only includes 
products within a specific COICOP range—such as food and near-food products from supermarkets 
or items from drugstores—the COICOP Microservice should be restricted to those ranges. Users 
should also be informed that receipts from other sectors, such as hardware or home improvement 
stores, cannot be automatically classified to COICOP. It is up to app developers to integrate an 
automatic detection whether a given receipt is eligible for the COICOP Microservice or not. Second, 
once a specific retail sector is included, it is crucial to ensure that coverage within this sector is 
sufficiently comprehensive. One way to address these challenges is by combining multiple matching 
data sources, which can significantly enhance both coverage and comprehensiveness. 

Another related challenge is the timeliness of the data. Maintaining and regularly updating the 
matching data is essential, as new products are frequently introduced. Systems with regular 
updates, such as those typically used in price statistics, provide significant advantages in ensuring 
the data remains reliable and relevant. Additionally, it should be ensured that frequently unclassified 
product descriptions are added to the matching data along with their corresponding COICOP codes. 
This requires either an automated data base monitoring or manual quality control measures.  

A key requirement for the matching data is that product descriptions should closely resemble, or 
ideally match, the product descriptions extracted from receipts. For example, price statistics scanner 
data from certain stores may closely align with receipt product descriptions, while in other cases, 
significant differences may exist. The accuracy of the COICOP Microservice will largely depend on the 
extent of this overlap. 

The work described below was developed and tested using price statistics data from Germany and 
the Netherlands as the matching data source. The variables extracted from this data include the 
product description, the assigned COICOP code, the product id, and the name of the retail store, all 
of which were supermarkets.  

Matching techniques 
To successfully find the best matching COICOP for an OCR-extracted product description from a 
scanned receipt, three distinct techniques were identified in this project: (1) automatic string 
matching, (2) machine learning, and (3) manual string searching.  

Automatic string matching (1) involves directly comparing receipt extracted product descriptions to 
the matching data, offering simplicity and efficiency. Machine learning (2), on the other hand, uses 
models trained on the matching data, i.e., the product description and the corresponding COICOP. 
As a result, the model learns to recognize more generic patterns and structures with which it can 
classify previously unseen product descriptions to a certain degree. The downside is the significant 
initial effort required for training a model as well as the need for substantial computational 
resources. Finally, manual string searching (3) involves the respondents in the classification process. 
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In this solution, a receipt extracted product description is entered into a search algorithm and the 
respondent selects the best-fitting COICOP category. This method is the most burdensome for the 
participant but can be highly precise since it leverages the respondent’s expertise on their own 
private purchases and can be applied to purchase domains where no matching data is at hand. Also, 
the respondent could change the search string if the product description itself is not diagnostic 
enough.  

If a given NSI has the matching data and technical resources, we recommend using all three 
techniques in sequence. Additionally, as a final resort it should be considered to accept unclassified 
data which is then classified during data post-processing. Therefore, the idealized process can be 
divided into four main steps within the COICOP Microservice, where each step is initiated in 
sequence and only if the previous one does not yield a satisfactory result for a given product 
description. Note that the criteria for such thresholds are country-specific and require calibration.   

• Step 1a: If specific matching data for a given store is available, attempt automatic string 
matching on the matching data of this selected store.  

• Step 1b: Attempt automatic string matching on the full matching data.     
• Step 2: Prediction made from machine learning model trained on the full matching data to 

find the highest scoring COICOP match.3 
• Step 3: Allow the user to manually search within the full matching data, with the option to 

alter the search string.  
• Step 4: COICOP classification by the NSI during data post-processing. 

Figure 14 provides an overview of the complete COICOP classification pipeline. Steps 1 and 2 were 
developed within the SSI project. Steps 3 and 4 depend on the functionalities provided by the app 
which is used as well as on data processing routines employed by NSIs. The next section will describe 
the string-matching and machine learning techniques in more detail.  

Step 1: String-matching 
Step 1 of the COICOP Microservice involves automatic string-matching to assign the most 
appropriate COICOP code to a product description extracted from a receipt. This step consists of two 
main pipelines: store-specific (1a) string-matching and (1b) generic string-matching.   

Store-specific matching (1a): If a retail store can be identified on the scanned receipt which is also 
provided in the matching data, the matching is first performed on a store-filtered subset of the 
matching data. This store-filtered matching ensures that the product descriptions are matched with 
the most relevant dataset for the given store. If no satisfactory match is found within the shop-
filtered corpus, the process returns to a broader step and performs the matching on the complete 
matching data (see generic matching). 

Generic matching (1b): If no store-specific match is found, no store is detected on the receipt or the 
detected store is not found in the matching data, the process bypasses the store-specific pipeline 
and directly matches the product description with the complete matching data. 

 
3 There would also be the option to split Step 2 following the same logic as for Steps 1a and 1b. Hence, 
first store-specific models would be used, followed by a generic model. This option was discussed, but not 
systematically tested or implemented within the project.  
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Both of these main pipelines run through various sub-steps. These sub-steps are described next. 
Note that the first sub-step (product ID matching) is only used in the store-specific pipeline for a 
selected subset of retail stores. The str_which and stringsim sub-steps are used in both pipelines. 
The last approach (str_split) is only used as a final sub-step in the generic string-matching pipeline. 
Also see Figure 16.  

Figure 16: Process model of the COICOP Microservice 
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Product ID matching 

Scanner data deliveries from retail stores usually contain some type of product ID. In most cases this 
information is irrelevant, however, selected retail stores print the product ID on their receipts. One 
such example is the supermarket chain Aldi in Germany. Therefore, if the possibility is given, the 
most straightforward way of matching product descriptions is by means of such a product ID. This 
method is highly accurate and relies on the correct extraction of product IDs from the receipt.  

str_which matching 

In most cases the matching process will rely on actual product description comparisons between the 
receipt extracted text and the matching data. The str_which represents an exact 1:1 match and 
therefore checks whether a receipt strings is found in the matching data. 

Example process 

If the receipt string is "apple spritzer," the str_which function identifies potential matches such as: 

• "apple spritzer," 
• "apple spritzer 6x1.5l," or 
• "apple spritzer bottles 6x0.5l." 

In case multiple potential matching candidates are identified, the process evaluates the string 
similarity between the receipt string and all potential matches by using a fuzzy-string matching 
algorithm. For instance, in the case of "apple spritzer," an exact match (e.g., "apple spritzer") is 
identified as the best match. If no match is found, the next sub-step is initiated. 

stringsim matching 

The stringsim function calculates a similarity score between the receipt string and all strings in the 
matching data that are between 30% less or 30% more string length. This limits the number of 
computations to the most plausible comparisons and increases performance. The similarity score 
then indicates how closely a product description matches entries in the corpus based on the 
minimum number of operations (insertions, deletions, or substitutions) needed to align one string 
with another. The algorithm used here is called optimal string alignment.  

Example process 

Each product description in the matching data is scored on a scale from 0 to 1, with higher scores 
indicating a closer match to the receipt string. Strings with a similarity score above a predefined 
threshold (e.g., 0.7) are considered potential matches. If different potential matches are available, as 
earlier fuzzy matching is used to fine the best potential match.  

str_split matching 
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The str_split function introduces an additional preprocessing step before performing string 
matching. The receipt extracted product description is tokenized at the word level and split into 
substrings based on delimiters such as spaces, commas, periods, or dashes. Before this step is 
applied, special characters are removed and substrings with a length of 2 characters or fewer are 
excluded, as they are often non-informative or may introduce noise. The idea of this step is to find 
partial string matches which are close enough to be deemed equivalent.  

Example process 

The receipt string "rücker Käse Natur" is split into the following substrings: 

• "rücker," 
• "Käse," and 
• "Natur" 

Starting with the first substring ("rücker"), the matching data is filtered using str_which. Only strings 
containing "rücker" are retained. The process is repeated iteratively for each subsequent substring 
("Käse" and then "Natur"), progressively narrowing the search corpus. After applying str_split, a 
vector of potential matches is generated. From this vector, fuzzy matching is used to identify the 
best possible match and assigned if a certain threshold is reached. 

Summary 

Step 1 uses a combination of direct string-matching, similarity-based matching, and substring 
tokenization to identify potential COICOP matches. The integration of fuzzy matching ensures that 
even when exact matches are unavailable, a well-fitting COICOP code is identified based on string 
similarities. By prioritizing shop-specific matching data when available, the process enhances both 
efficiency and accuracy. If no match can be identified, the machine learning step 2 is initiated.  

Step 2: Machine learning 
When the string-matching techniques in Step 1 do not yield a satisfactory COICOP classification, we 
turn to machine learning as the next step. Machine learning offers the advantage of handling textual 
data with greater flexibility, allowing for the classification of product descriptions that may not 
exactly match entries in the existing matching data. Unlike rule-based approaches, machine learning 
models learn patterns from data, enabling them to generalize to a certain extent beyond the exact 
words seen during training. This is particularly useful when dealing with variations in wording, 
spelling errors, abbreviations, or newly introduced products. 

A text information to COICOP coding task represents a supervised learning task where the input is a 
product description and the output is a predicted COICOP code. The success of this approach heavily 
depends on the quality and quantity of labelled training data (i.e., the matching data), as well as the 
choice of modelling and pre-processing techniques. In our project, we explored various approaches, 
but two distinct approaches will be described here as potential candidates. Note that the 
performance and accuracy of these approaches will depend heavily on country-specific 
characteristics of the data and should be evaluated individually. 

A machine learning model will always generate a prediction, even if the model is uncertain about its 
classification. Therefore, some caution should be exercised when using these outputs. One way to 
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mitigate incorrect classifications is by considering the confidence score of a prediction. Only 
predictions with a confidence score above a predefined threshold should be automatically accepted. 
If the score falls below this threshold, the product description should remain unclassified (i.e., as a 
"no match"). It would then get passed on to Step 3, which is not a focus of this project (see Figure 
16).  

N-gram based preprocessing with logic regression and random forest 

This approach begins by transforming product descriptions into a series of string character chains. In 
our case, we used three- and four-character n-grams. For example, the product description "apple 
juice" would be broken down into n-grams like "app," "ppl," "ple," "le," "jui," and so on. N-grams can 
make the model more resilient to minor variations or spelling errors. Once the textual data is 
transformed into n-gram representations, we explored two classification modelling techniques, 
which yielded similar results in terms of accuracy: Logistic regression and random forest.  

FastText 

FastText represents a popular approach to text classification tasks. Unlike the more traditional n-
gram approach described above, FastText learns word embeddings, which are dense vector 
representations capturing semantic meanings. Additionally, FastText incorporates subword 
information, allowing the model to understand and generalize across different word forms and 
spelling variations. For instance, the words "yogurt" and "yoghurt" would be recognized as similar 
due to shared subword components. FastText excels in scenarios where the textual data is rich in 
linguistic nuances or domain-specific terminology. It can quickly train over large datasets, making it 
highly efficient for large-scale classification tasks. Moreover, its ability to perform well with limited 
computational resources makes it an attractive choice for (near) real-time applications. Accordingly, 
the accuracy of the FastText model was quite similar to the n-gram based models, but the processing 
time and efficiency was much better.  

Summary 

Both approaches offer unique benefits. N-gram-based models are straightforward to implement and 
interpret, but can take up much more computational resources than FastText. The choice between 
these techniques depends on factors such as data availability, computational constraints, and 
accuracy with NSI-specific data. Destatis has adopted a FastText model for integration.  

4.3.2. Implementation 
The code can be found under the following two links:  

https://github.com/essnet-ssi/cbs_coicop 

https://github.com/essnet-ssi/destatis_coicop 

4.3.3. Integration 
The integration of COICIOP classification in a platform involves: 

• the implementation of the algorithm/code in a microservice e.g. docker container, 
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• providing support in the microservice for configuration and artifacts e.g. algorithm 
parameters, models... 

• enabling communication between microservice and platform, 

• the execution of the COICOP classification algorithm in the microservice when a request has 
been received, and 

Figure 17 gives a high-level overview of the different aspects. 

Figure 17: Microservice integration 

 

Since this microservice is domain-specific, it is - in the context of this project - not integrated in a 
platform. It will be integrated in a later phase. 

4.3.4. Test 
Two different approaches were undertaken to test the two COICOP classification techniques. CBS 
conducted tests where the scanner data used as matching data was divided into two separate sub-
datasets. The first one was used as actual matching data, while the second was used as test data to 
validate the accuracy of the developed techniques and run comparison benchmark tests. Since no 
actual receipt data was used, this test approach can be called an internal validity test. Conceptually 
this test assumes that product descriptions on receipts are identical to production description in 
scanner data records. Given that deviations between these two data sources are likely, the accuracy 
scores should be interpreted with caution when it comes to the absolute levels.   

In contrast, Destatis collected a sample of receipts from actual supermarkets and manually classified 
product descriptions to COICOP. This data was then used with the different COICOP classification 
techniques to validate and benchmark their accuracy and performance. These tests mimic the actual 
production use case and can be termed external validity tests. However, they come with the 
limitation that the sample size was not very large and test results should be interpreted with caution 
as well. 

Internal validity tests – CBS 

Test strategy  
CBS used scanner data of three supermarkets: Lidl, Albert Heijn (AH), Plus. The data lists all their 
products offered in each month, allowing us to track products that were added and removed. The 
volume of data varies per supermarkets: 7 million records for Plus, 3 million records for AH, and 
400,000 records for Lidl. 
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Using this scanner data, we test how well an ML approach classifies product descriptions. These 
tests are centred around two research questions: 

(1) How well do ML models classify product descriptions into COICOP-classifications, and does it 
change over time? 

(2) How well do ML models classify product descriptions from supermarkets not encountered 
during training? 

The first question addresses how quickly ML models becomes outdated. This is relevant given that 
supermarkets constantly add and remove products from their changing catalogue. This question 
gives insight into how well models handle new products, how quickly they degrade over time, and 
how frequently they need to be retrained. 

The second question addresses whether ML models can handle supermarkets absent from the 
training set. It answers the scope of its use in the real-world. If ML models perform well on unseen 
supermarkets, then we may use it for other supermarkets without collecting its data. If not, then its 
use is limited to the supermarkets in the training set. Classifying a new supermarket will also require 
new training data. 

To translate the questions into concrete experiments, we split the data set in different ways. Each 
way of splitting simulates the relevant conditions for the ML model in the real-world. 

For question (1) we split the data by some date. The products offered before this split date will be 
used as matching data, or as training data in ML terms. The products after this split date will be used 
to test the models, where we form separate validation sets for each month. Indeed, we validate the 
trained models on multiple sets rather than one, allowing us to track the performance of ML models 
over time. 

In our validations we chose June 2023 as the split date. All products before this date form the 
matching data, and the products in the months June 2023, July 2023, and August 2023 form 
separate validations sets. With this setup, we therefore validate the ML models on three consecutive 
months. Table 1 shows an overview of the sets, along with the number of instances. 

To translate question (2) into experiments, we make data splits for each supermarket. In each split, 
we leave out one supermarket for validation and use the remaining supermarkets as matching data. 
By leaving out one supermarket, we validate how well ML models deal with supermarkets absent 
from the matching data. Table 2 shows an overview of the splits along with the number of instances. 

We emphasize one key difference in the splits for questions (1) and (2), which is how the 
supermarkets are divided between the matching data and the validation data. In the time split for 
question (1), we test ML models on instances only from supermarkets seen earlier in the matching 
data; the validation data will not feature unseen supermarkets. In the supermarket splits for 
question (2), however, we test ML models precisely on supermarkets not encountered during 
training. The splits therefore test the ML models under different assumptions. 
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Table 3: Validation split by time 

Split nr. Months of products in matching data Month of products in validation set 

1 < June 2023 (n=445,468) June 2023 (n=66,860) 

2 July 2023 (n=88,741) 

3 August 2023 (n=74,248) 

 

Table 4: Validation split by supermarket 

Split nr. Stores in matching data Supermarket in validation set 

1 Lidl, Plus (n=476,946) AH (n=26,198) 

2 AH, Plus (n=477,425) Lidl (n=25,719) 

3 AH, Lidl (n=51,917) Plus (n=451,227) 

 

Tested ML algorithms and feature extractors 
This section outlines ML algorithms and the feature extractor tested. These are the two ML 
components needed to classify product descriptions. Since ML models only accept numerical input, 
and cannot classify the product descriptions directly, feature extractors first transforms them into a 
numerical representation. From this, an ML algorithm can then produce a classification model, a 
process also known as training. 

Since there are many options for feature extractors, we have conducted preliminary experiments for 
finding the most suitable feature extractor for product descriptions. The results showed that the tf-
idf4 vectorizer with character-level n-grams performed best, most likely because these texts are 
short and riddled with abbreviations. All ML algorithms in the following will be tested with 
character-level tf-idf. 

The ML algorithms tested, including some string-matching methods for comparison, are listed in 
Table 5. It also lists the string-matching pipeline by Destatis, described earlier in Figure 16. We have 
included two versions of the pipeline. This is because the full version has a subroutine that matches 
products by article ID, giving it an unfair advantage over the other algorithms. Another version was 
therefore added to remove this unwanted advantage. 

We note that some ML algorithms were trained on a simple random sample of 100,000 product 
descriptions rather than the full matching data set. These are marked with an asterisk in Table 5. All 
other algorithms are trained on the full matching data. A random sample is used because these 
algorithms were designed to handle only 100,000 instances in the sci-kit learn implementation. 
Exceeding this number may lead to computational or memory problem. 

 
4 Tf-idf stands for Term Frequency-Inverse Document Frequency and is a numerical statistic used for text 
mining and information retrieval to evaluate how important a word is to a document in a collection (or 
corpus). 
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Table 5: The tested (ML) algorithms 

Validation split by time 
Table 6 shows the accuracy scores of the ML algorithms on the validation sets of three months in 
2023: June, July, and August. The last column shows the averages and standard deviations over all 
three months. Similarly, Table 5 outlines the scores calculated for each supermarket’s subset of 
products. Intuitively, the score shows the ratio of correctly classified product descriptions in the 
validation set. For example, an accuracy score of 89,9 means that 89,9% of all product descriptions 
in June 2023 were classified the correct COICOP-label. 

In terms of raw accuracy score, Logistic Regression (Stochastic Gradient-descent variant) scored 
best, averaging 89,4% accuracy. With Random Forest and the Destatis’ Pipelines scoring similarly. 
Most algorithms, however, scored high, indicating that the validation sets are easy, owing to the 
large overlap of products across sets. 

All algorithms performed worse over the months. Although the rates of decline vary, they all range 
between 0,5% and 1%. The worst monthly performance drop, however, is seen in exact string-
matching with 1,5%. 

Compared to the pipeline by Destatis, the ML algorithms performed similarly. Meaning that there is 
no significant difference between string matching techniques and ML in terms of how quickly models 
degrade. 

Algorithms 

Logistic Regression* 

Logistic Regression SGD (Stochastic Gradient Descent) 

Naïve Bayes (Multinomial)* 

Random Forest Classifier * 

Multilayer Perceptron Classifier* 

Constant Predictor 

Exact String-matching Algorithm 

FastTextClassifier 

DeStatis String-Matching Pipeline 

DeStatis String-Matching Pipeline (w/o article-ID matching) 
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Table 6: Accuracy scores for the validation split by time 

Algorithm  Jun 2023 Jul 2023 Aug 2023 Mean tests 
Logistic Regression (SGD) 89,9 89,4 88,8 89,4 ± 0.5 

DeStatis Pipeline 89,9 88,8 88,2 89,0 ± 0,7 

Random Forest Classifier** 89,9 89,2 88,6 89,2 ± 0.7 

DeStatis Pipeline (w/o art. ID matching) 88,3 87,4 86,7 87,5 ± 0,7 

Exact String-Matching Algorithm 84,6 82,7 81,5 82,9 ± 1.5 

FastTextClassifier 82,2 82,1 80,4 81,6 ± 0.4  

Multilayer Perceptron Classifier* 81,4 81,7 80,8 81,3 ± 0.4 

Logistic Regression* 77,7 78,0 77,4 77,6 ± 0.5 

Naïve Bayes (Multinomial)* 77,4 77,6 76,8 77,3 ± 0.4 

Constant Predictor 9,9 10,5 9,9 10,1 ± 0.3 

 

Table 7: Accuracy scores for the validation split by time, calculated for each supermarket 

 AH  Lidl  Plus 

 Jun Jul Aug  Jun Jul Aug  Jun Jul Aug 

Logistic Regression (SGD) 88 87 87  91 91 89  91 90 90 

DeStatis Pipeline 93 92 92  93 92 89  88 87 87 

DeStatis Pipeline (w/o art. ID matching) 88 87 87  92 91 88  88 87 87 

Random Forest  87 87 86  91 90 89  91 90 89 

Exact String-Matching 88 87 86  88 84 79  83 81 80 

FastTextClassifier 69 70 71  79 82 80  81 84 82 

Multilayer Perceptron 70 69 69  78 77 76  86 86 86 

Logistic Regression 63 63 63  73 73 72  84 83 83 

Naïve Bayes (Multinomial) 66 66 66  75 75 74  82 81 81 

Constant Predictor 7 6 6  7 8 8  12 12 12 

 

Validation split by supermarket 
Table 8 shows the accuracy scores on the validation splits by supermarket. Again, the last column is 
per algorithm the average over all three splits. 

All algorithms performed poorly in these tests. Even the best performing algorithm had an average 
accuracy of only 48,1%, meaning that less than half of the product descriptions in the validation sets 
were correctly classified. This suggest that the tested algorithms classify poorly on unseen 
supermarkets. 
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In this test, however, ML algorithms outperform the string-matching algorithms. Although most ML 
algorithms tested ranged from 30% to 40% accuracy, DESTATIS’ string-matching pipeline scored on 
average only 13,3% accuracy. Therefore, when classifying unseen supermarkets, the ML approach is 
better than the string-matching approach. 

Table 8: Accuracy scores for the validation split by supermarket 

Algorithm Split 1: 
Test AH 

(n=26.198) 

Split 2: 
Test Lidl 

(n=25.719) 

Split 3:  
Test Plus 

(n=455.227)   

Mean tests 

Logistic Regression (SGD) 49,6 45,3 49,5 48,1 ± 2,0 

Multilayer Perceptron Classifier* 43,7 45,4 45,0 44,7 ± 0,7 

Random Forest Classifier** 46,7 44,9 41,8 44,5 ± 2,0 

Naïve Bayes (Multinomial)* 47,3 45,3 43,4 45,3 ± 1,6 

Logistic Regression* 42,0 45,1 44,7 43,9 ± 1,4 

FastTextClassifier 43,2 33,7 39,0 38,7 ± 3,9 

DeStatis pipeline 35,9 10,0 10,9 18,9 ± 12,0  

DeStatis pipeline (w/o art. ID matching) 21,6 10,0 8,2 13,3 ± 5,9 

Constant Predictor 6,4 6,9 13,1 8,8 ± 3,8 

Exact String-Matching 4,7 2,9 0,7 2,8 ± 1.6 

Summary 
On the classification of product descriptions of ML algorithms, we tested two aspects.  

We first tested the base performances of the ML algorithms on previously seen supermarkets and 
the change over time. The tests show that the best model scored on the first month 89,9% accuracy, 
with a monthly accuracy drop of 0,5%. Similar performances, however, were tested for Destatis 
string-matching pipeline, meaning that there is no significant difference between the ML approach 
and the string-matching approach. 

The second aspect tested is how well ML algorithms deal with supermarkets absent in the matching 
data. The results showed that all algorithms performed poorly, with the best ML model scoring on 
average only 48,1% accuracy. Although ML algorithms performed better than Destatis string-
matching pipelines (13,3%), they are still poor at classifying unseen supermarkets. 

In conclusion, ML models classify product descriptions well, but only for supermarkets on which they 
are trained. They classify poorly on supermarkets absent from the matching data set. All models 
perform worse over time due to changes of product catalogues. 

External validity tests – Destatis 

Test strategy 
Destatis collected 326 receipts originally intended for training of the OCR Microservice algorithms. 
These receipts were processed through an OCR extraction and document understanding algorithm, 
with resulting text elements manually annotated and existing OCR errors corrected. This allowed the 
data to also serve as test data for the COICOP Microservice. As part of this process, all product 
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descriptions were assigned to a COICOP category, resulting in 2,274 product descriptions matched 
with a corresponding COICOP code from five different supermarket chains. Of the 2,274 product 
descriptions, a subset of 725 was from supermarkets where the store could not be identified or was 
unknown.  

This test data consisted of the original OCR product description extraction, the manually corrected 
product description, a COICOP code, and a store name. This provided the opportunity to test the 
COICOP Microservice with both corrected and uncorrected OCR strings.  

This differentiation is crucial because OCR extractions often involve errors. These errors can result 
from wrinkles, poor image quality, or other external factors. However, even with perfect images, 
OCR is prone to mistakes, such as confusing similar characters like "O" and "0" or "I" (capital i) and 
"l" (lowercase L), due to uniform fonts and tight spacing. While the idea of developing an algorithm 
to correct common OCR errors was discussed several times during the project, it ultimately wasn't 
pursued due to time constraints. 

The conducted tests focused on evaluating COICOP classification accuracy and runtime performance. 
Two distinct test strategies were applied. First, the test data was processed sequentially through 
classification steps 1, step 2, as well as in combination of the two, mirroring the path-dependent 
workflow of production. This ensured that a product description advanced to the next step or sub-
step only if it had not already been matched to a COICOP category. These results are presented here. 
Second, benchmark tests were conducted by submitting the entire test dataset to each step and 
sub-step independently. These benchmark tests aimed to uncover runtime bottlenecks and accuracy 
outliers, though the results on sub-step level are not included in this report. NSIs are advised to test 
each step and sub-step with their own data.  

Corrected OCR product descriptions 
The tests presented here distinguish between three classes of results: correct classifications, 
incorrect classifications, and no match cases. Correct and incorrect classifications refer to instances 
where a processing step made a prediction that was either accurate or false. The no match class 
applies to cases where a COICOP code was not assigned due to high uncertainty. In the production 
pipeline, any no match case is passed on to the next step for further processing. 

Figure 18 illustrates the proportions of correct, incorrect, and unmatched product descriptions 
across different COICOP classification approaches. To allow a direct comparison, both the string-
matching and FastText methods were tested on the full set of 2,274 product descriptions. The string-
matching approach correctly classified 71% of the product descriptions, whereas the FastText model 
achieved 64% accuracy. However, the FastText model was configured with a conservative confidence 
threshold to minimize false positives (incorrect matches). As a result, while the proportion of 
incorrect classifications remained similar between the two approaches, FastText had a higher 
proportion of unclassified product descriptions. 

When evaluating the two approaches in sequence—where only the unmatched product descriptions 
from the string-matching step are passed to FastText—the combined results show an increase in 
correct classifications to 77%. This demonstrates that the two-step approach enhances the COICOP 
Microservice’s performance. The overall error rate remains 19%, while 5% of product descriptions 



 

67 
 

remain unclassified. This finding highlights the added value of the machine learning component, as it 
successfully captures cases that the string-matching approach alone could not classify. 

Figure 18: Accuracy by COICOP classification step 

 

Figure 19 breaks down the sequential string-matching sub-steps, showing how classification 
accuracy evolves at each stage. Within the string-matching pipeline, the proportion of correct 
classifications starts at 92% and gradually declines to 62% as product descriptions progress through 
the sub-steps until a COICOP code is assigned. This trend is expected, as more challenging product 
descriptions—those not classified in earlier steps—are passed on to subsequent sub-steps. 
Interestingly, the only increase in accuracy occurs when transitioning from the store-specific to the 
generic matching pipeline. This suggests that searching the full matching dataset is beneficial if 
store-specific matching fails. A possible explanation is that certain newly introduced products in a 
given supermarket may have already appeared in another retail chain, making them identifiable 
through a broader dataset. 
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Figure 19: Accuracy by COICOP classification sub-step 

 

Uncorrected OCR product descriptions 
OCR extractions often introduce errors, which can impact classification accuracy. To assess this 
effect, we conducted the same tests as before, this time using uncorrected raw product descriptions. 
Figure 20 compares accuracy across COICOP classification steps, differentiating between corrected 
and uncorrected OCR extractions. 

As expected, uncorrected OCR product descriptions resulted in a lower proportion of correct COICOP 
classifications compared to corrected inputs. Specifically, the accuracy of the full COICOP 
Microservice pipeline in sequence decreased from 77% to 72% with uncorrected data. Interestingly, 
this decline in correct classifications did not lead to an increase in incorrect classifications. Instead, it 
resulted in a higher number of product descriptions remaining unmatched to a COICOP code. It is 
unlikely that this result generalizes, but in this case it would result in increased manual efforts (in 
step 3 or step 4) rather than increased error rates. 
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Figure 20: Accuracy comparison by COICOP classification step and OCR quality 

 

Processing time 
Figure 21 illustrates the processing time for each string-matching sub-step in milliseconds (ms). As 
single data rows progress sequentially through these sub-steps until a COICOP code is assigned, the 
measured processing time is cumulative across the sub-steps. The boxplots display the median 
processing time. Store-specific sub-steps are highly efficient, with average processing times of less 
than 60 ms per product description. In contrast, the more generic sub-steps, which rely on the full 
matching dataset, significantly increase processing time, with median values ranging between 130 
and 380 ms. This is because these steps handle a larger dataset and process more challenging 
product descriptions that were not classified earlier. Additionally, later sub-steps that allow 
similarity-based rather than exact matches take longer to compute. If no match is found in the 
string-matching pipeline, the product description is passed to Step 2 (machine learning) after an 
average processing time of 390 ms. 

The code was implemented in R running on a large server. The current implementation is 
characterized by a research and development focus. Processing times could likely be improved by 
refining processing steps, using other R packages, or transitioning to a different programming 
language better suited for high-performance computing.  
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Figure 21: Processing time by string matching sub-step 

 

Summary 
The results show that chaining the various string-matching sub-steps with the machine learning 
approach adds predictive power, making sequential use highly recommended. Comparisons 
between uncorrected and corrected OCR product descriptions revealed differences, but these were 
less severe than initially anticipated in the project. Nonetheless, investing in algorithms to correct 
OCR-extracted product descriptions would be worthwhile. 

Calibrating thresholds at each sub-step seems critical, as error rates depend heavily on how 
conservatively each step is applied. These values have a large influence on the number of incorrect 
COICOP classifications in relation to those predictions where no assignment was made (no matching 
result). Depending on the resources of a given NSI for quality control and manual post-processing, 
the decision to set these thresholds more conservatively or not will vary. Since these thresholds will 
vary by country, universal recommendations cannot be provided. However, it is vital for NSIs to 
dedicate time and resources to this calibration process. The results above should be regarded as a 
proof of concept.  
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5. GeoService Microservice 

The GeoService Microservice is the second environment being developed in this project. The same 
principle was followed as with the Receipt Scanning Microservice. First the functional and non-
functional requirements (5.1) are described, followed by a description of its two main parts: the non-
domain specific part, and the domain specific part. The non-domain part holds two developments: 
the development of the algorithm to define stop-track clusters (5.2) and the development of the 
transport mode prediction model (5.3). The domain part describes how the HETUS classification can 
be matched with the stop clusters (5.4). For each part, the design, implementation, integration, and 
testing are discussed in detail. 

As a more general-purpose microservice, the GeoService Microservice is documented from a 
technical perspective. In contrast, the HETUS classification microservice is presented from a practical 
standpoint based on the work of ISTAT.  

The GeoService Microservice has been successfully integrated into the MOTUS platform. Testing has 
been performed through the MOTUS platform in collaboration with WP2. The microservice was not 
integrated in other platforms. 

5.1. Functional and non-functional requirements of the GeoService Microservice. 
Just like in chapter 4, chapter 5 has the focus on better involving and engaging households and 
citizens by defining and operationalizing a new/modified end-to-end data collection process. This 
time the focus is on making use of geolocation points to support the Time Use Survey.  

To collect these geolocation points the use of internal sensors of smart devices is needed. NSIs and 
linked organizations have worked on platforms to allow households to register their time spending 
in an online diary. The past few years a multitude of applications were developed to collect time use 
data, and those related to the ESS have developed these applications in light of the HETUS 
guidelines. In the SSI project the CBS, hbits, Insee and SSB represent this focus on official (time use) 
statistics. 

The general idea is to provide to the users/respondents a framework of places (stops) and travels 
(tracks) and the mode of transportation in order to support them in keeping their timeline up-to-
date. Within WP3 the GeoService Microservice is developed as middle part software that processes 
the sensory data in order to provide tentative input to the timeline of the diary. 

The main functionality is Stop-Track prediction, Transport Mode prediction, and the connection of 
tracks to transport motivations following the HETUS guidelines to gain TUS relevant information. 

5.1.1. Business requirements 
TUS gathers information on the daily activities’ household members perform. Typical to a TUS is that 
these activities are being collected with their temporal, spatial and social context. TUS is harmonized 
via the HETUS-guidelines with the first edition being published in 2000, and recently received its 
third update with the 2018-guidelines.  Member States have the option to collect TUS data. 
Currently the third data collection is running. Methodological variations between countries apply. In 
2030 TUS will enter the IESS agreement on an optional level.  
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Just like HBS, TUS is a household study. In TUS, all eligible household members are invited to keep a 
2-day diary, for the same two days to be able to study the intra-household allocation of time. 
Following the HETUS-guidelines, one diary day contains 24 hours running from 4 am until 4 am the 
next day. Each activity is reported verbatim, both for the main and (possible) parallel activity. The 
same counts for information on the location or the mode of transport. The use of an electronic 
device is answered with a tick-box (yes when checked). The social environment is also captured with 
through tick-boxes collecting information on whether the activity was done alone or together with 
someone known. A distinction is made between social partners within (partner, parent, child up to 
17 years old, other household member) and outside the household. A new episode starts when 
either an activity and/or one of the contexts change. Every diary day is ended with a small 
questionnaire asking about the level of satisfaction during the reported day. 

Under the wings of the process of modernization, and also under the auspices of EUROSTAT, TUS 
underwent a mode shift to an online data collection strategy making use of web and mobile 
supported applications to collect time use data. Initiatives were taken by various Member States and 
are inventoried on the EUROSTATS’ wiki page: 
https://webgate.ec.europa.eu/fpfis/wikis/display/ISTLCS/TUS+TOOLS+MENU. 

Taking all developments into account, one of the main thresholds for TUS comes from the detailed 
reporting of activities in a the time-space framework. An important indicator to picture this 
threshold is the time between the actual action and the reporting of the activity. Studies show that 
the quality of reporting remains good upon a reporting delay of at maximum 24 hours (see 
Yesterday reporting). It is however expected that the burden to reconstruct the day turns higher the 
longer the actual activity has been performed. Depending the detail of the activity (i.e. more 
activities on the detailed level) an extra impact expected. 

The goal of WP3 is to reduce these gaps by developing and implementing microservices that acquire, 
process and (can) combine data collected from smart devices and other applications, in the case of 
TUS through the development of a geolocation microservice that through sensor activation captures 
geolocation points to derive information on the trip, mode of transport and the stops. Related to the 
stops, extra context can be added through the connection of third-party databases, and a 
classification algorithm would be able to link a HETUS code activity (or list of activities) to the stop. 

A successful realization of the development and implementation will not entirely reduce the active 
participation of household members in the registration of their daily activities and context, but will 
provide support and guidance in their task to arrive to qualitative and comparable data for the ESS. 
It means that besides the development of the microservice also the implementation of the service to 
the platforms is important, as well as the UI/UX that presents the output of the microservice to the 
user, and the easiness in which the user can verify, adapt, or even delete the output. 

This project will focus on the smartphone as (1) the device to install the mobile application on, and 
used by the user as interface to partake to the study, as well as (2) being the motion tracker to 
collect the movements of the respondent/user, as a proxy of the person itself. 

The following objectives are essential in reaching this goal: 
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• Objective 1: To define an architecture of a microservice (that is also to be reused in the 
other development of WP3) 

• Objective 2: To develop a geolocation microservice to predict trips and stops  
• Objective 3: To implement classification solutions (machine learning, string matching, or 

search algorithm based) to classify stop to the HETUS-classification 
• Objective 4: To develop an API to connect to/from other environments  
• Objective 5: To deploy the microservice as a containerized application in the cloud 
• Objective 6: To implement/integrate specific microservice parts in the app (e.g. algorithm). 

This integration should be feasible, should have an added value for the platform and/or 
should improve the user experience. 
 

The stakeholders are the NSIs and their product owners, and the households (citizens). 

TUS study 
In this section TUS studies are being described as they provide the context in which the geolocation 
microservice operates. 

In TUS studies questionnaires and a time diary are completed by the households. At the moment 
household members arrive to the diary phase they, at the least, already have completed a 
questionnaire. If this member is the reference person, or the head of the household also a 
household questionnaire and a matrix to compose the household is part of the pre-diary tasks. All 
tasks are defined in a respondent journey or study flow that shows a sequence of tasks. Since the 
TUS diary setup requires an equal distribution of participation over the entire fieldwork period, and 
household members are requested to keep their diaries for the same period this study flow can be 
quite complex. 

Central to a TUS study is the registration of activities in a diary. All eligible household members keep 
a diary for the same 2 days, one weekday and one weekend day.  

TUS diary 
The diary collects at the minimum episode information, where an episode is defined by a beginning 
and ending time and a change of: 

• A main activity as defined in the HETUS Activity Classification List (ACL) 
• (If any) a secondary activity as defined in the HETUS Activity Classification List (ACL) 
• The place of the activity or a mode of transport when moving  
• The use of an electronic device, and 
• The social context  

The registration of the products and services is linked to the HETUS Activity Classification List (ACL), 
and is demanded to be delivered on 3 digits. NSIs often use more digits to aggregate to a higher 
level. The HETUS guidelines further describes the other contexts: place 2 digits, electronic device 1 
digit, and social context 1 digit. 

In addition, extra context questions can be added to the online diary, an example is asking about the 
motivation for performing an activity. 

Every diary day collects extra information through a small questionnaire, it relates to: 
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• When the diary was completed 
• What the most pleasant activity was 
• What the most unpleasant activity was 
• What the most stressful activity was 
• The overall appreciation of the day 
• Whether the day was ordinary or unusual 
• Whether a trip within the country or abroad was made, and how far the trip was 

5.1.2. Functional requirements 
Figure 22 gives an overview of the main functional requirements: 

• functionality related to user handling is indicated by the green boxes. The respondent must 
be able to switch on the sensors to track the movement of the smartphone. After processing 
by the microservices, the respondent can view/edit/manage her or his activities. 

• functionality related to the app is indicated by the yellow boxes. The app is responsible for 
GPS tracking, display of information and communication with the platform core. 

• functionality related to the microservices is indicated by the blue boxes. The function is to 
derive essential information on trips, mode of transport, stops, context of stops and activity 
classification.  The blue boxes are in scope of WP3. 
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Figure 22: Geotracking functional requirements – flow diagram 

 

User handling 

Respondent handling (green boxes) 

REQ R1 The respondent allows for GPS tracking by the mobile app 

 Technically, the mobile phone OS needs permission to enable GPS tracking for the 
mobile app. 

 Formally, user consent is required. 

REQ R2 The respondent manages her/his activity data 

 A possibility (~MOTUS) is to present the activity list to the respondent as tentative 
data. The respondent is then able to edit this list before it becomes final. 
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Microservice 

Microservice (blue boxes) 

REQ G1 Geotracker microservice collects geotracking points 

 Geotracker (regularly) receives (new) tracking points from the platform. 

 An internal database stores all tracking points 

REQ G2 Geotracker microservice derives motion/stop 

 An algorithm processes the tracking points in order to find a timeline of motions 
(transport) and stops. 

 The algorithm could use external sources such as openstreetmap in order to improve 
the results. 

 Support for user-specific locations (home, work etc.) is required as well. 

REQ G3 Geotracker microservice adds context to motion/stops 

 External sources can be consulted to add context. E.g. for stops, a list of nearby 
places/shops could be added. 

REQ A1 Activity microservice assigns scores to POIs 

 A score (POI-score) is assigned to each POI inside an adaptive radius around the stop 
centre location, based on the weighted median of the distances calculated between 
each POI and all GPS points of the stop, weighting by the accuracy of GPS points. 

 A short list of POIs is identified using the elbow criterion on the POI scores. 
Categories of place are assigned to each POI 

REQ A2 Activity microservice associates activities to categories of places 

 Through a Bayesian decomposition, for each POI of the short list, the conditional 
probability of HETUS activities are calculated starting from the distribution observed in 
TUS data. The variables considered (duration and time of the day, HETUS place 
category, occupational status, age classes) in the decomposition are linked with the 
corresponding variables observed in the stop and for the specific respondent. 

 A rank of the HETUS activities is assigned to the stop, based on a final score calculated 
aggregating the probabilities of the activity weighted by the POI-score associated with 
the activity for each POI in the shortlist. 
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5.1.3. Non-functional requirements 

Non-functional requirements 

REQ N1 A microservice should be independent from any specific  platform. 

 A microservice has no dependency to other environments, and has an independent 
operation. 

REQ N2 It must be possible to connect and communicate with a microservice from any 
platform. 

 A microservice receives input, and provides output making use of APIs. 

REQ N3 A microservice must have a design in which algorithms (computer vision, AI, ML) can 
be easily improved/updated. 

REQ N4 The service must be deployable at any institute/NSI (shareability). 

 Microservices are provided as software packages in containers, which can be easily 
shared and deployed. Docker is a software that can host containers. Kubernetes is 
often used as software to orchestrate various containers. 

REQ N5 The service must be scalable with the number of receipts it needs to handle. 

 Kubernetes is a software used to orchestrate containers. By this Kubernetes allows to 
horizontally scale the containerised microservice depending to the number of 
receipts received. 

REQ N6 Security by design 

 Using the container technology barriers are created between various components 
used in the study setup, which deliver better privacy, security and maintainability, 
scalability and high availability. 

Communication between the platforms runs through APIs and https communication. 

REQ N7 Privacy by design 

 Using the container technology barriers are created between various components 
used in the study setup, which deliver better privacy, security and maintainability, 
scalability and high availability. 

Communication between the platforms runs through APIs and via UUIDs to avoid 
transferring personal information. 
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REQ N8 Support for localization 

 Algorithms being applied by the microservice should be configurable or trainable (in 
case of ML) to support localization, which includes different languages, different 
currencies, date formats, dots vs commas etc. This is required to make the 
microservice shareable. 

REQ N9 Offline vs online support (app) 

 Parts of the microservice are/can be selected to be developed in a Library to run 
offline in an application. The library must take into account platform-dependency 
(Angular, ionic, Flutter …) to function. 

 

5.2. Geolocation microservice and stop-track clusters (GeoService Microservice – part 
1a) 
The GeoService Microservice is supported by two microservices: the Geolocation Microservice (part 
1) and the HETUS classification Microservice (part 2).  

The design of the Geolocation Microservice holds two important elements: the definition of the 
stop-track clusters by trajectory segmentation and the prediction of the travel mode upon the track 
clusters. These elements will be discussed in 2 sections but finally result in one microservice, the 
Geolocation Microservice. This section discusses the algorithm to derive the stop and track clusters. 

5.2.1. Design 
After the Geolocation Microservice gets the geolocation points, the stop-track part starts with the 
stop detection algorithm which takes into account 4 steps: 

• Filter GPS points based on accuracy, 
• Determine which GPS points are significant stop points 
• Cluster the stop points, and 
• Post-processing 

o reduce number of clusters (merging) 
o guarantee stops and tracks alternately 

The required input parameters are timestamp, longitude, latitude and accuracy. The list of 
geolocation points needs to be time-ordered. 

In an extra step, also, extra information can be attached to the stop clusters by connecting to a POI 
or places API: 

• Point-of-interest: find places inside or nearby stop clusters (e.g. OpenStreetMap, Google 
Places) 

The output of the algorithm is a list of alternating stop and track clusters. Stop clusters will have 
extra information regarding nearby places (e.g. shops). 
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Pre-processing 

Filter GPS points 
Filter GPS point which has good enough accuracy. Currently, the algorithm requires an accuracy of 
100m, but this value is configurable. 

Figure 23: Eliminating outliers by filtering GPS tracking points according to their accuracy 

 

Determine significant stops and clusters 

Private locations 
When a GPS point falls in a private location (home, work etc.) then it is always regarded as a stop. A 
private location is defined as a circle (lon, lat, radius). 

Figure 24: Private locations are considered as stops 

 

 

ATS to determine significant stops 
The algorithm for stop detection is implemented from the paper “Individual and collective stop-
based adaptive trajectory segmentation” from Agnese Bonavita, Riccardo Guidotti and Mirco Nanni, 
as published in Geoinformation (2022) 26:451-477. From this paper, only the individual stop-based 
adaptive trajectory segmentation (ATS) has been implemented. 

Essentially, the algorithm decides that a GPS point is a stop point when more than t seconds is spent 
between the current GPS point and the next GPS point that is more than x meters away. 

The algorithm can be tuned by changing the temporal and/or spatial parameters. By default, the 
implementation used 50m as spatial parameter (as advised in the paper) and 180s for the temporal 
parameter. 
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Note that deriving the temporal parameter from the GPS data by means of a Thompson tau statistic 
is also supported by the algorithm. The description can be found in the paper. 

Figure 25: Identification of stop points 

 

Cluster stop points 
Once the stop points have been determined, the next step is to cluster the stop point in order to get 
stop clusters. In order to achieve this, the project decided to use the well-known OPTICS algorithm 
(derived from DBSCAN), which applies a density-based technique on spatial data 
(https://en.wikipedia.org/wiki/OPTICS_algorithm). 

Because OPTICS does not take into account the time aspect of the data, the results are further 
processed to split the spatial clusters based on time as well. 

Figure 26: Clustering of stop points 

 

 

 

Post-processing 
Finally, in order to deliver a clean output, merging of stop clusters is done after which track clusters 
are added between the stops 

Point-Of-Interest (POI) 
The geolocation microservice produces a set of stops and tracks. To utilize this output as input for 
the TUS activity microservice, it's beneficial to add points of interest (POIs) to the stop clusters. 

Several services exist which map a coordinate and a set of properties to a list of POIs. Commercial 
online services include Google Places and Mapbox. A well-known non-commercial, self-hosted 
solution is Openstreetmap. 
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hbits decided to opt for a self-hosted Openstreetmap service which exposes the Overpass API 
(https://wiki.openstreetmap.org/wiki/Overpass_API). 

The MOTUS platform sends a request to the service with the following parameters: latitude, 
longitude, radius and a list of OSM tags. Latitude, longitude and radius correspond to the stop 
cluster centre location and radius. The OSM tags include aerialway=station, 
aeroway="aerodrome|heliport|terminal", amenity, leisure, shop, sport and tourism, but the list of 
requested tags is configurable. 

5.2.2. Implementation 
An R implementation with bindings to C++ is made and available in Github repository. Depending on 
the platform, the python runtime can be deployed as a (containerized) microservice in various ways. 
In the following section, the MOTUS data collection platform is used to show the integration of the 
development.  

5.2.3. MOTUS integration 
The integration of geo in MOTUS takes place by sequentially requesting data from the microservices, 
beginning with the geolocation microservice. This is followed by retrieving Points of Interest (POIs) 
from the OSM Overpass service and deriving the transport mode from the tracks. Finally, all the 
gathered information is compiled and - once the activity microservice integrated - sent to the TUS 
activity microservice. The final output of this process is a collection of stops and tracks. The stops 
have additional POIs information. If the activity microservice is present, MOTUS will create and 
propose tentative activities for the respondents based on geo information. 

Figure 27: Microservices integration in relation to MOTUS 

 

The MOTUS integration also includes visualization and handling in the back office and mobile app 
(front office will follow in the future). 

In the back office, a day-based view of tracking points and stops can be retrieved from diary in the 
respondent’s flow. An example is shown in the screenshot. The markers are tracking points while the 
circles indicate stops. 
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Figure 28: Visualisation of tracking point in the MOTUS back-office 

 

In the respondent’s mobile app, geo data is visualized as an itinerary of tentative data, alternating 
stops and tracks. This itinerary helps the respondent to recall his/her activities. 
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Figure 29: Tentative overview of stop and tracks in the MOTUS application 

 

A respondent can create a timelog in her/his diary based on the information available in an entry of 
the itinerary. Examples of pre-filled information could be start/end time and suggested activity. The 
intent of the pre-filled fields is to help the respondent fill in the timelog. Each field can be changed 
by the respondent. 



 

84 
 

Figure 30: Detailed information per tentative cluster the MOTUS application 

 

 

5.2.4. Test 
Via MOTUS the integration of the Geolocation microservice, and so the GeoService Microservice part 
1 was tested by WP2 in their small-scale tests in Belgium, Germany and Italy. 

5.3. Geolocation microservice and the mode of transport (GeoService Microservice – 
part 1b) 
The GeoService Microservice is supported by two microservices: the Geolocation Microservice (part 
1) and the HETUS classification Microservice (part 2).  

As being stated earlier, the design of the Geolocation Microservice holds two important elements: 
the definition of the stop-track clusters and the prediction of the travel mode upon the track 
clusters. This section has a focus on the detection of the mode of transport, which together with the 
stop-track model becomes part of one microservice. 

An integral component of smart time-use, travel, and mobility surveys is the ability to predict 
respondents’ modes of transportation, thereby minimizing the necessity for manual data labelling 
and reducing the response burden. This section documents the development of a transport mode 
prediction algorithm specifically designed for integration with smart surveys and discusses the 
detection of the mode of transport upon the track clusters. 
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5.3.1. Design 
After classifying the geolocations into stop and track clusters, the track clusters are plugged into the 
transport mode prediction algorithm. The algorithm is based on a decision tree, using smartphone 
GPS data and infrastructure information from OpenStreetMap (OSM).  

Before going into detail about the algorithm development, the underlying data is explained. There 
are two sets: the development data and the open geo-data. 

Development data 
The development of the algorithm is based on data collected by Statistics Netherlands (Schouten et 
al. 2024). Later on, the developed algorithm will be evaluated on open geo-data (test data) (see 
section “Open geo-data”).    

The development dataset is based on a Dutch general population sample collected from 2022 to 
2023. Data from 255 participants were used for the development. The dataset contains 4.298 tracks 
and a total of about 20 million observations. An observation consists of a timestamp and geo-
location (longitude and latitude).  We refer to Schouten et al. 2024 for general details about the 
dataset. 

Data processing 
For the specific development of the transport mode classification algorithm, the following data 
processing steps were applied: 

§ tracks exceeding 10 hours were excluded, 
§ tracks containing fewer than ten GPS observations were removed,  
§ labels for similar transport modes were grouped: ‘car (driver)’ and ‘car (passenger)’ were 

merged into a single transport mode `car’. The categories ‘bike’ and ‘e-bike’ were also 
merged into one transport mode `bike’.  

After preprocessing, the average number of GPS observations per track was 843, although the 
median was notably lower at 402, indicating a skewed distribution. Similarly, the average track 
duration was 53 minutes, but the median was 12 minutes, reflecting the skewness. Regarding track 
length, the mean was 15 km, while the median was considerably shorter at 2.8 km, again indicating a 
skewed distribution in the data. 

Transport modes 
The target variable of the classification task is the transport mode used during a track.  The 
distribution of track labels across transport modes in the entire dataset is presented in Table 9. The 
developed algorithm will only classify a single mode. Multi-modal tracks cannot be classified. The 
target variable also contains the label ‘Other’.  

Train and test splits 
The dataset was partitioned at the user level, ensuring that each user was assigned exclusively to the 
training or testing set.  

The number of users in the dataset is limited, and some users contribute disproportionately with a 
large number of tracks.  As a result, fully random training-test splits may become imbalanced across 
labels, potentially affecting the robustness and generalizability of the algorithm. Therefore, it was 
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decided to split the dataset by partitioning users into separate subsets for training (70%) and testing 
(30%), ensuring that no user appeared in both sets. Stratification was applied based on each user’s 
dominant mode of transport to maintain a balanced representation of transport modes.  

The public transport modes bus, metro, and tram were grouped for the train and test splits (they 
were used as individual classes for the remainder of the development). This practical solution 
prevented the case that tram was once only the most prominent mode, and therefore, no split could 
have been applied because the stratification would require at least two occurrences of a transport 
mode. This approach preserved the variation and distribution of transport modes across both 
subsets, ensuring that the test set accurately reflected the training set’s characteristics while 
preventing user overlap between the two sets. Table 10 and Table 11 show the training and test 
splits. 

Table 9: Distribution of transport modes in development data. Rows ordered by count. 

Mode Count Percentage 
Car 1.892 44,02 
Walk 1.002 23,31 
Bike 946 22,01 
Train 161 3,75 
Other 111 2,58 
Bus 96 2,23 
Metro 58 1,35 
Tram 32 0,74 
Total 4.298 100 

 

Open geo-data 
This dataset was reserved exclusively for testing the developed algorithm, with no portion used 
during the development or training phases, ensuring an unbiased evaluation of the algorithm’s 
generalization capabilities.  

The dataset was collected in the summer of 2024 to obtain data with high-quality labels without 
errors for the transport mode. This data was collected by a small group of CBS staff and staff from 
the University of Utrecht. 

Table 10: Trained set. Rows order by count.              Table 11: Test set. Rows ordered by count. 

Mode Count Percentage  Mode Count Percentage 
Car 1.333 44,43  Car 559 43,07 
Walk 684 22,80  Walk 318 24,50 
Bike 643 21,43  Bike 303 23,34 
Other 103 3,43  Train 62 4,78 
Train 99 3,30  Bus 21 1,62 
Bus 75 2,50  Tram 14 1,08 
Metro 45 1,50  Metro 13 1,00 
Tram 18 0,60  Other 8 0,62 
Total 3.000 100  Total 1.298 100 
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Furthermore, the data contains tracks within the Netherlands and Germany. Accordingly, this test 
set will inform how well the algorithm generalizes to a different app version, which compared to the 
app used to collect the development data has a revised sensor configuration, and data collected in a 
different country.  Data from 5 users with 137 tracks are available. The transport mode distribution 
is shown in Table 12. 

Table 12: Transport modes in open geo-data. Rows ordered by count. 

Mode Count Percentage 
Walk 78 56,93 
Tram 27 19,71 
Bike 10 7,30 
Train 9 6,57 
Bus 5 3,65 
Metro 5 3,65 
Ferry 3 2,19 
Total 137 100 

 

Note that the decision tree was not trained on data containing the ‘ferry’ label. Thus, the algorithm 
will fail to predict this label. However, it was collected to evaluate the algorithm’s decision for this 
label. Lastly, the most prominent mode in the development data, ‘car’, is not included in the open 
geo-data.  This dataset is publicly available in the SSI Git repository (https://github.com/essnet-
ssi/geoservice-ssi). 

Methods 
In what follows different steps are described which are related to the construction of GPS features, 
the construction of OSM feature, and the pre-processing of GPS and OSM features. 

Later on, the development of the decision tree, and the transport mode prediction algorithm is 
handled. 

Feature construction GPS 
Several GPS features were tested during the development of the decision tree:  

• speed (speed, acceleration, jerk, snap),  
• GPS (accuracy, frequency),  
• direction (bearing, altitude),   
• trip (length, duration), and  
• time (weekday, weekend indicator).   

For most features, several variants were created based on different statistics. A list of all evaluated 
features is given in the Annex 2 of this report.  

Feature construction OSM 
The features are based on publicly available OpenStreetMap (OSM) data obtained from the official 
Geofabrik download portal (https://download.geofabrik.de/). A documentation of all OSM 
infrastructure contained in the database can be found at:  https://wiki.openstreetmap.org/wiki/ 
Map_features.  
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OSM data complements the GPS features by providing details on infrastructure such as road 
networks, transit routes, and stations. Integrating this data improves usually the quality of the 
transport mode classifications. Fourie (2025) found that OSM did not help:  

§ to improve the classification quality for the transport modes, walk, bike, and car, and  
§ as OSM provides a variety of data on transportation and travel infrastructure that does not 

improve classification performance (roundabouts, traffic junctions, stop signs, speed 
cameras, and streetlamps) 

Accordingly, in the development of the algorithm, only OSM features about bus, metro, train, and 
tram stops and routes were created. The required Python code can be found in the accompanying 
script osm features.py on Github. 

Track buffering 
Buffering a GPS track when calculating features using OSM data is beneficial because it helps include 
relevant spatial context around the track, improving feature extraction and accuracy.  

This step is helpful because:  

§ First, it accounts for GPS inaccuracies and noise.  
§ Second, it captures nearby infrastructure and context.  
§ Third, it enables more robust feature engineering. 

The buffering process takes the GPS coordinates representing the track and generates a buffer zone 
around it.  This buffer is defined by a specified radius or distance, which determines how far the area 
extends from the track’s centreline. For instance, a buffer with a radius of 25 meters would create a 
region 25 meters wide on either side of the track. This is the radius so that the diameter will be 50m. 
An example of this procedure is shown Figure 31. 

Figure 31: Simplified example of track buffering:  a single track (black solid line), a buffered track (black solid line with 
surrounding orange dashed line), and a buffered track with mapped OSM infrastructure 
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Once the buffer is constructed, spatial operations are performed to identify which OSM coordinates 
or features lie within the buffered area. This is achieved using spatial indexing and intersection 
techniques, which compare the locations of OSM features to the buffer’s boundaries. For the OSM 
count features, the total buffer was also used to normalize features for a fair comparison between 
shorter and longer tracks. A buffer of 25 meters is used but has no difference compared to different 
buffer sizes (10, 20, 50, 75, and 100 meters). 

Pre-processing of GPS and OSM features 
Some GPS calculations did not result in reasonable numeric values.  

§ If the calculation of a feature resulted in an infinite value, the infinite value was replaced 
with twice the maximum value (inf →  2 * max).  

§ A negative infinity value was set to zero (-inf→  0).  
§ Missing values remained unchanged since a decision tree can handle missing data.   
§ String variables were factorized for the decision tree.   

For the OSM features, some count variables contained missing values. This occurs when there is no 
OSM infrastructure in the buffer of a track.  Here, the missing data was replaced with a zero count, 
reflecting this feature’s actual absence. 

Decision tree development 
A decision tree is a supervised learning algorithm used for classification and regression tasks. It is a 
tree-like model where each internal node represents a decision based on a feature, each branch 
represents an outcome of that decision, and each leaf node represents a final prediction. The 
process of dividing a node into two or more sub-nodes is based on feature conditions. 

Grid search was done which is a hyperparameter tuning technique used to find the best combination 
of parameters that optimize the model’s performance. It systematically searches through a 
predefined set of hyperparameters by testing all possible combinations and selecting the best one 
based on a scoring metric.  The hyperparameter search was conducted using the following space: 

 

 

Although the hyperparameter space should have limited the number of features, the final decision 
tree contains 39 features. This is, because the hyperparameters are not strictly enforced. 

5.3.2. Implementation 
The algorithm is currently implemented in Python. The Git repository (https://github.com/essnet-
ssi/geo-transportmode-prediction-ssi) contains the following Python scripts that contain the code 
required to implement the transport mode prediction algorithm. 

§ transport mode main.py 
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o The main script for transport mode prediction that will load and run the other 
scripts. 

§ options.py 
o This script contains all options regarding file paths, data preprocessing and model 

training required in the other scripts. 
§ functions general.py 

o This script contains general functions required for the transport mode prediction 
process. 

§ gps features.py 
o Contains functions for gps-based feature creation for events and locations data. 

These features are added to the events dataframe. 
§ osm features.py 

o Contains functions for osm-based feature creation for events and locations data. 
These features are added to the events dataframe. 

§ train decision tree.py 
o This script runs a grid search over a hyperparameter set to train the best decision 

tree model for the given data.  The current best result is 20250424 decision tree 
ssi.pickle. 

§ decision tree ssi.pickle 
o The best decision tree model for the available development data resulting from the 

combination of options, feature creation and model training. 

5.3.3. Integration 
In MOTUS, transport mode prediction is integrated as an independent microservice as illustrated in 
Figure 32: 

Figure 32: Microservices integration in relation to MOTUS 

 

Transport prediction on the tracks is performed in step 3. of the geo pipeline. 

5.3.4. Test 
Tests are done via the development data, and the open geo-data. 
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The algorithm’s performance will be assessed using precision, recall, F1-score, accuracy, and 
balanced accuracy, metrics commonly used in transport mode classification. Precision evaluates the 
model’s ability to minimize false positives, while recall measures its ability to capture true positives.  
The F1-score combines both metrics to provide a balanced evaluation, particularly useful for 
imbalanced datasets. Accuracy represents the overall correctness of predictions but can be 
misleading in imbalanced data, where balanced accuracy offers an evaluation by averaging recall 
across all classes. Key definitions include true positive (TP), when the model correctly predicts the 
actual class (e.g., predicting ‘walking’ when correct), false positive (FP), where an incorrect class is 
predicted (e.g., predicting ‘car’ instead of ‘bike’), false negative (FN), when the correct class is 
missed, and true negative (TN), when incorrect classes are correctly excluded. The formulas for each 
metric are: 

 

Evaluation on development set 
The results from the confusion matrix in Table 13 and classification report in Table 14 for the training 
data indicate the following key findings: The confusion matrix reveals that the model performs well 
in predicting car and walking but struggles with categories like bus and tram, where most instances 
are misclassified. Bike also shows a strong prediction rate, though some misclassifications occur with 
cars and walking. The `Other' category is highly misclassified, with many instances incorrectly 
labelled as car or bike, indicating potential difficulties distinguishing less common transport modes. 

Table 13: Classification report for training data 

 

 

 

 

Observed\Predicted Other Car Bus Bike Metro Tram Train Walking 
Other 0 64 0 25 0 0 5 9 
Car 0 1161 2 106 5 0 20 39 
Bus 0 46 3 15 6 0 3 2 
Bike 0 31 0 554 2 0 4 52 
Metro 0 4 0 1 27 0 8 5 
Tram 0 7 0 7 3 0 1 0 
Train 0 10 0 5 1 0 82 1 
Walking 0 29 0 48 0 0 2 595 
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The classification report reveals that the model performs well for high-frequency classes like car and 
walking, achieving precision, recall, and F1-scores around 0.85-0.87, indicating strong and balanced 
performance for these categories. Bike and train also show relatively high F1 scores (0.79 and 0.73, 
respectively), with the train having a high recall (0.83) despite moderate precision. However, the 
model struggles with underrepresented classes. Other and tram have 0.00 F1-scores, as the model 
fails to classify these instances correctly. Buses have low performance, with an F1 score of 0.07, 
mainly due to extremely low recall, meaning most buses are misclassified as other categories 
(especially cars). Metro performs better, with precision and recall around 0.60--0.61, but still shows 
room for improvement. 

Table 14: Classification report for training data 

Class Precision Recall F1-Score Support 
Bike 0,73 0,86 0,79 643 
Bus 0,60 0,04 0,07 75 
Car 0,85 0,87 0,86 1.333 
Metro 0,61 0,60 0,61 45 
Train 0,66 0,83 0,73 99 
Tram 0,00 0,00 0,00 18 
Walk 0,85 0,87 0,86 684 
Other 0,00 0,00 0,00 103 
Accuracy   0,81 3.000 
Macro avg. 0,54 0,51 0,49 3.000 
Weighted avg. 0,77 0,81 0,78 3.000 
 

Although the overall accuracy is relatively high at 81%, the macro average F1-score of 0.49 and 
balanced accuracy of 0.51 indicate poor performance in less common classes. The weighted average 
F1-score of 0.78 is boosted by the well-classified dominant classes, masking the severe 
misclassification of minority classes. This suggests the model may be biased towards common 
classes, struggling to capture the nuances of less common transport modes. 

The results from the confusion matrix in Table 15 and classification report in Table 16 for the test 
data indicate the following key findings:  The model performs well for high-frequency classes like car, 
bike, train, and walking, with relatively high precision, recall, and F1-scores. For instance, car has an 
F1-score of 0.85, and walking achieves 0.84, reflecting consistent performance compared to the 
training set, where these classes also had high scores. Train maintains strong recall (0.87) and a high 
F1-score (0.82), showing that the model reliably identifies most train instances. Similarly, bike 
achieves an F1-score of 0.76, demonstrating the model's ability to generalize reasonably well to this 
class. 
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Table 15: Confusion matrix of test data 

Observed\Predicted Other Car Bus Bike Metro Tram Train Walking 
Other 0 3 0 1 0 0 0 4 
Car 4 459 0 67 6 0 9 18 
Bus 0 15 0 4 1 0 0 1 
Bike 0 12 0 249 6 0 1 35 
Metro 0 2 0 1 4 0 5 1 
Tram 0 3 0 3 7 0 0 1 
Train 0 5 0 2 0 0 54 1 
Walking 0 18 0 24 2 0 0 274 
 

However, the confusion matrix shows various misclassifications, especially for underrepresented 
classes. For example, `Other' is never classified correctly, with instances being mistaken for car, bike, 
or walking -- mirroring the training set where `Other' had an F1-score of 0.00. Bus also performs 
poorly, with all instances misclassified, mostly as car or bike, leading to a 0.00 F1-score, just like in 
training data. This suggests the model struggles to learn meaningful patterns for rare classes, likely 
because of class imbalance and overlapping features. 

The metro and tram classes continue to be problematic. Metro shows a slight improvement over the 
training set, with a 0.21 F1-score on the test set, but remains low, with many instances misclassified 
as train. Tram remains entirely misclassified, with an F1-score of 0.00, indicating the model failed to 
generalize this class from the training set to the test set. These results indicate that minority classes 
are poorly represented in the decision boundaries, possibly because the model is biased toward 
more common classes like car and walking. 

Table 16: Classification report for test data 

Class Precision Recall F1-Score Support 
Bike 0,71 0,82 0,76 303 
Bus 0,00 0,00 0,00 21 
Car 0,89 0,82 0,85 559 
Metro 0,15 0,31 0,21 13 
Train 0,78 0,87 0,82 62 
Tram 0,00 0,00 0,00 14 
Walk 0,82 0,86 0,84 318 
Other 0,00 0,00 0,00 8 
Accuracy   0,80 1.298 
Macro avg. 0,42 0,46 0,44 1.298 
Weighted avg. 0,79 0,80 0,79 1.298 
 

Despite an overall accuracy of 80%, a macro average F1-score of 0.44 and a balanced accuracy of 
0.46 reveal that performance varies widely across classes, with the model performing well on 
frequent categories but failing on rare ones. The weighted average F1-score of 0.79 is heavily 
influenced by the well-classified majority classes, masking the poor recognition of smaller classes. 
The test results confirm the patterns observed in training: the model captures dominant class 
features well but struggles with minority classes, leading to repeated misclassification patterns 
across both datasets. 
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Evaluation on open geo-data 
The results from the confusion matrix in Table 17 and classification report in Table 18 for the test on 
the open geo-data show the following key findings:  

The confusion matrix reveals considerable misclassification patterns, particularly among specific 
transport modes. Walking is the most accurately predicted class, with 52 correct classifications, 
though it is still confused with bike (16) and car (9). Tram shows the highest misclassification rate, 
frequently being predicted as car (14), bike (7), or metro (5). Bus is rarely identified correctly and is 
often confused with car, bike, metro, and train. Similarly, the ferry is misclassified as the bike. The 
label “ferry” did not appear in the observed labels in the development data. However, this label was 
kept to study what prediction would result for this label. This is especially interesting, because GPS 
signals usually get noisy when the smartphone is close to or on the water. Train and metro show 
moderate accuracy, but car and other categories are never correctly predicted. These results 
highlight challenges in distinguishing between modes with similar speed profiles and infrastructure 
characteristics.  

Table 17: Confusion matrix of open geo-data 

Observed\  
Predicted  

Other  Car  Bus  Ferry  Bike  Metro  Tram  Train  Walking    

Other  0  0  0  0  0  0  0  0  0    
Car  0  0  0  0  0  0  0  0  0    
Bus  0  2  0  0  1  1  0  1  0    
Ferry  0  0  0  0  3  0  0  0  0    
Bike  0  2  0  0  7  1  0  0  0    
Metro  0  3  0  0  0  1  0  0  0    
Tram  0  14  0  0  7  5  0  0  1    
Train  0  3  0  0  0  0  0  6  1    
Walking  0  9  0  0  16  1  0  0  52    
                      
  
The classification report highlights performance variations across transport modes. Walking and the 
train achieve the highest F1 scores (0.79 and 0.75, respectively), indicating relatively good 
performance. The bike also shows moderate recall (0.70) but low precision (0.21), leading to a 
modest F1-score of 0.32. In contrast, bus, ferry, tram, car, and other categories are never correctly 
identified, resulting in F1-scores of 0.00. Metro has a low F1-score (0.14) due to poor precision and 
recall. The overall accuracy is 0.48, the balanced accuracy is 0.32, and the macro F1-score of 0.22 
reflects substantial class imbalances and misclassification issues, particularly for underrepresented 
classes.  
 

Table 18: Classification report for open geo-data 

Class  Precision  Recall  F1-Score  Support  
Other  
Car  
Bus  

0.00  
0.00  
0.00  

0.00  
0.00  
0.00  

0.00  
0.00  
0.00  

0  
0  
5  

Ferry  0.00  0.00  0.00  3  
Bike  0.21  0.70  0.32  10  



 

95 
 

Metro  0.11  0.20  0.14  5  
Tram  0.00  0.00  0.00  27  
Train  0.86  0.67  0.75  9  
Walking  0.96  0.67  0.79  78  
Accuracy      0.48  137  
Macro avg.  0.24  0.25  0.22  137  
Weighted avg.  0.62  0.48  0.53  137  
  
Feature importance 
Table 19 shows the feature importance of the top 20 selected features. In total, 39 were selected. 
The feature importance results reveal that the model relies heavily on a few key features, with `bus 
route mean distance' as the most influential feature, contributing 22.3% to the decision-making 
process. This suggests that distance patterns along bus routes play a critical role in distinguishing 
transport modes. Speed-related features also dominate the model’s decisions, with metrics like 
`speed IQR' (17.7%), `speed percentile 10' (5.1%), and `speed standard deviation' (3.1%) collectively 
contributing a large share of the importance. This heavy reliance on speed variation could explain 
the model’s struggles with modes with overlapping speed ranges (e.g., bus vs. car or metro vs. train). 
Interestingly, railway station count (10.4%) is another essential feature, likely helping the model 
identify train and metro trips. Proportion-based speed features (e.g., proportion 45–80 km/h, 7.9%) 
also influence predictions, possibly helping differentiate slower modes like walking from faster ones 
like cycling or driving. Lower-ranked features, like jerk percentile 85 (0.9%) and tram route standard 
distance (0.75%), contribute minimally. Overall, the model leans heavily on speed and distance 
metrics, explaining its success with frequent modes like cars and bikes and its failures with 
underrepresented classes. Strengthening the model with more contextual features (see discussion) 
or refining route-based features for specific transport modes could help improve classification 
performance, especially for minority classes. 
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Table 19: Top 10 decision tree feature importance 

Feature Importance 
Bus route mean distance  0.223053 
Speed iqr value 0.176813 
Railway station normcount 0.103649 
Proportion 45 80 0.079107 
Speed percentile 10 0.051288 
Proportion 5 15 0.039756 
Speed stddev 0.030690 
Speed average 0.030036 
Speed percentile 90 0.027969 
Speed percentile 80 0.024554 
Bus route std distance 0.021325 
Bus route max distance 0.021116 
Proportion 15 30 0.019196 
Speed percentile 85 0.016795 
Acc kurt 0.015727 
Accuracy percentile 85 0.012062 
Jerk percentile 85 0.009044 
Proportion 80 120 0.008715 
Tram route std distance 0.007534 
Speed median value 0.007435 
  
 

5.4. HETUS classification microservice (GeoService Microservice – part 2) 
The GeoService Microservice is supported by two microservices: the Geolocation Microservice (part 
1) and the HETUS classification Microservice (part 2). 

The second part of the GeoService aims to provide a prediction about the most likely activities carried 
out by the user during a stop. For the activity taxonomy, we refer to HETUS, "Harmonised European 
Time Use Survey".  

To predict the activity performed by the user during a stop, several data are exploited: the 
spatiotemporal characteristics of the stop, the types of points of interest near the stop; the socio-
demographic characteristics of the user (age groups and employment status). 

This important information is the input of the algorithm and must be provided in the request to the 
service, specifically the spatiotemporal characteristics and the list of points of interest (POI) in the 
stop, provided by the GeoService Microservice part 1 as described in section 5.2. 

The algorithm underlying this microservice exploits mainly the data collected by the TUS surveys of 
the NSI and the contextual data through a probabilistic model, as a labelled dataset associating a set 
of input variables with the activity carried out needed to train a machine learning algorithm was not 
available.  

5.4.1. Design 
The steps of the pipeline of the algorithm for the Activity prediction are the following:  
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• Pre-processing of input data 
• Assignment of Categories of place to each POI of the stop  
• Assignment of a score (POI-score) to each POI  
• Identification of a shortlist of POIs, applying the elbow criterion to the POI scores 
• Application of a statistical model to predict stop activity with respect to each POI  
• Assignment of a rank to the HETUS activities of the stop based on a final aggregated score. 

Input structure description 

For each stop identified by the ATS_OPTICS algorithm, the input of the algorithm consists of: 

- For each GPS point of the stop: 
o GPS Longitude 
o GPS Latitude 
o GPS Accuracy 
o GPS Timestamp  
o GPS Speed 

- For the stop: 
o Centroid Longitude 
o Centroid Latitude 
o Time Start 
o Time End 
o Duration 
o Radius 

- For each Point of Interest (POI) inside the radius of the stop: 
o POI Longitude 
o POI Latitude 
o Tag (textual description provided by MapService) 

Other data coming from the platform concerns the profile of the user: 
o Age class 
o Condition (employed, student, other) 

Pre-processing 
Data cleaning operations are performed by filtering out low-quality GPS points, specifically those 
with low accuracy or excessively high speed. These parameters can be configured through an 
algorithm parameter configuration file. 

Additionally, each stop is assigned a time slot based on the classification provided in Table 20. The 
assignment of the time slot depends on the stop's start and end times. If the stop interval overlaps 
with two or more time slots, the one with the greatest temporal overlap is selected. 

Table 20: List of time slots 
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Assignment of Categories of place to each POI of the stop 
The textual description depends on the map service used. In Google Maps, the name and type of the 
POI can be used. In Open Street Maps, the name of the place and the values of tags such as Amenity, 
Shop, Office, Leisure, etc., are used.  

Figure 33: Example of stop, POIs and sample of GPS points 

 

In Figure 33, some information about the input to the microservice is shown. The blue points are the 
POIs in the stop, the green points are a sample of the GPS points belonging to the stop, and the pink 
point is the centroid of the stop. For one of the POIs, the tag provided by the OSM map service is 
displayed.  

Each point of interest is classified according to the Italian Time Use Survey classification of the places 
(TUS place) where the user's activity takes place. The TUS place classification is a specific classification 
of locations used internally at the statistical institute that provides TUS data. In particular, in the 
developed prototype, the algorithm has been developed based on data from the Italian TUS survey 
(Table 21). 
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Table 21: List of Italian TUS places 

TUS_PLACE TUS_PLACE Description 
3 Other people's home 
4 Hotel and similar 
5 Workplace 
6 School, university 
7 Library 
8 Study center 
9 Restaurant, pizzeria, brewery, ice cream bar 

10 Shopping center 
11 Market 
12 Shops 
13 Public offices 
14 Hospital, clinic 
15 Sports venues 
16 Entertainment venues 
17 Discotheque 
18 Museum, exhibitions 
19 Theme park, game room 
20 Places of worship, oratory 
21 Equipped public green spaces (park, garden, villa) 
22 Green area (countryside, mountain, meadow, forest) 
23 Sea, beach 
24 River, lake 
25 Road, other places 

The link between the tag and the TUS place is made through keyword searches and regular 
expressions. 

Table 22: Example of association between the tag and the TUS place 

 

Table 22 shows, for each POI, the textual description, provided by the map service (tag), the TUS PLACE 
associated through regular expressions, and the POI score assigned based on the time slot and the 
position of the GPS points and POIs. 

Assignment of a score to each POI and shortlist of POIs 
For each point of interest (POI) in the stop, a score is calculated based on the median distance 
between the POI and the GPS points associated with the stop, weighted by their accuracy. This score 
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is further weighted by the probability of carrying out any activity in the TUS place associated with 
the POI and within the specific time slot assigned to the stop. The formula is the following:

 

The probabilities in the formula are estimated by the TUS data. 

Next, a shortlist of POIs with the highest POI scores is defined. The selection is made by identifying 
where the slope of the POI Score curve changes significantly, using the elbow criterion. 

Figure 34: Example of shortlist of POIs based on the Elbow criterion 

 

Statistical model to predict stop activity with respect to a POI 
For each POI in the shortlist, the probability of performing an activity according to the HETUS 
classification concerning a POI is calculated. This probability is decomposed using a Bayesian approach, 
as outlined in the following formula:  

 

where 𝐴!  is the HETUS activity, x is the tuple (user's condition, user's age class, TUS PLACE of the POI) 
and t is the duration of the stop, while 𝜇",$!  and 𝜎",$!  are respectively the mean and standard deviation 
associated with an activity for a user's condition, user's age class, and TUS PLACE of the POI. 

In accordance with the chosen approach, the model parameters 𝜇",$!  and 𝜎",$!  and the probabilities 
𝑃(𝑥|𝐴!) and 𝑃(𝐴!) are estimated using aggregated counts from the TUS survey data. 

For clarification, an example is presented showing the aggregated TUS counts. The example shows 
that in the TUS survey, the HETUS activity 3.6.1 'Shopping (including online/ e -shopping)' performed 
by employed respondents (condition=1), aged 25-44 years (age class=2), carried out at a shop  (TUS 
place=12), was recorded 2151 times with an average duration of 39 minutes and a standard deviation 
of 35 minutes. 
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Assignment of a rank to the HETUS activities 

Finally a rank (ActivityScore) of the HETUS activities is assigned to the stop, based on a final score 
calculated aggregating the probabilities of the activity weighted by the POI-score associated with the 
activity for each POI in the shortlist. 

 
Figure 35: Example of final ranking of predicted activities 

 
Figure 35 describes an example of how the algorithm returns to the platform a score associated with 
the most likely HETUS activities given the spatiotemporal characteristics of the stop, the user's 
characteristics, and the type of POIs around the stop. 

5.4.2. Implementation 
An implementation in Python has been created and is available on Github at link  
https://github.com/essnet-ssi/HETUS-classification-microservice. Modifications to the model are 
planned with the addition of input features useful for identifying the activity, such as the start time 
of the stop or the day of the week. This implies a modification to the formula for calculating the 
model based on the aggregated TUS data. 

5.4.3. Integration 
In MOTUS, the HETUS classification microservice is integrated as an independent microservice as 
illustrated in Figure 36: 
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Figure 36: Microservices integration in relation to MOTUS 

 

The classification is performed in step 4. of the geo pipeline. 

5.4.3. Test 
The HETUS Classification algorithm was initially tested in its complete configuration, utilizing all 
available input data and features. The algorithm's performance - accuracy and reliability - was 
thoroughly evaluated under these conditions. The validation process was conducted using the 
available annotated data. 

Subsequently, to identify the relevance of the considered features for predicting HETUS activities, the 
algorithm's performance was further assessed by varying the input data settings. This involved testing 
different combinations of features to assess their impact on prediction accuracy and overall model 
performance. This was designed to simulate situations in which NISs do not have available or do not 
want to use data from a time-use survey, or there are constraints on the use of personal data in the 
microservice. 

The test was conducted on the HETUS Classification algorithm after the implementation of the 
previous microservice (Geolocation microservice for determining stop clusters and adding context to 
stops - external sources consulted to add a list of nearby places/shops). 

Pipeline 
The pipeline for the test is the following: 

1. Data collection: GPS data collected using the app CBS-Odin (made available by CBS for 
downloading from Google Store), for 4 respondents over 4 days 

2. Stop identification: from GPS traces data are segmented using the algorithm ATS-OPTICS 

3. POI identification: selection of the points of interest inside the stop by REST query to Map 
Service (Google Place) 

4. Labelling: For the stops identified the users labelled the place and the activities carried out 

5. Work and home identification: stops related to place of work and home are excluded from 
the analysis 
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6. HETUS activity prediction: For each stop the algorithm returns the most likely activity 
prediction and the place type 

7. Prediction evaluation: calculate metrics for:  

o HETUS activity three-digit  

o Number of Match Top 1: Number of stops where the activity with the highest 
prediction score is correctly predicted by the algorithm; 

o Number of Match Top 2:  Number of stops where one of the two highest-scoring 
activities is correctly predicted by the algorithm; 

o Number of Match Top 3:  Number of stops where one of the three activities with the 
highest scores is correctly predicted by the algorithm. 

Results of algorithm validation 
Table 23 summarises the results obtained by analysing the total number of identified stops and their 
matches with the Google Places map. First, the stops that are useful for HETUS activity prediction 
(containing some POIs) were identified. The table highlights, among the stops with identified POIs, 
those where the predicted activity matches the assigned label. The analysis considers the rank 
assigned to the HETUS activities for each stop, which is determined by a final score combining the 
activity probabilities weighted by the POIs score in the shortlist. 

Table 23: Stops detection and matching with HETUS activities on the basis of assigned rank 

 STOPS /Google Places 
Stop segmented by ATS/OPTICS 111 
Stop with duration > 5 minutes 83 
Stop with POIs useful for activity prediction 71 
Stops with identified POIs 
(not labelled home/work ) 

21 

  

Stops with identified POIs (not labelled home/work) 

MATCH TOP 1 11 
NO MATCH TOP 1 10 
  
MATCH TOP 2 12 
NO MATCH TOP 2 9 
  
MATCH TOP 3 13 
NO MATCH TOP 3 8 

 

The evaluation of activity prediction accuracy reveals several cases, both correct and incorrect 
prediction, depending on the context of the stop. 

Below is a detailed breakdown of these cases: 
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§ Cases of Correct Activity Prediction 

1. Correct POI and Activity: 
The correct POI is identified in the stop and the first activity listed in the shortlist matches 
the actual activity. This represents an ideal scenario where both the location and activity are 
accurately predicted. 

2. Incorrect POI but Correct Activity: 
Although the identified POI is incorrect, the activity is still correctly assigned. This occurs 
when multiple similar POIs are present around the stop, and the algorithm assigns the 
correct activity despite the POI mismatch. 

§ Cases of Incorrect Activity Prediction 

3. Private Residence with Nearby POIs: 
The stop corresponds to a private house (e.g., a friend’s home) that is not the respondent’s 
residence. While some POIs may be present nearby, the activity prediction is incorrect due 
to the identification of an irrelevant POI. In such cases, the respondent is expected to correct 
the place during validation. 

4. Correct POI but Atypical Activity: 
The correct POI is identified, but the predicted activity is atypical for that location (e.g., a 
concert in a public park). This results in an incorrect activity assignment due to the unusual 
nature of the event. 

5. Ambiguous POIs with Multiple Activities: 
The map provides several POIs in the stop, each associated with different activities. The 
algorithm selects an incorrect activity due to the ambiguity in the available choices. 

6. POI Without Tags: 
In cases where the POI lacks sufficient tags or metadata, classification becomes impossible, 
leading to an inability to predict the activity accurately. 

In the following figures some examples of cases 1, 4 and 5 are shown. 

Figure 37: Correct POI and Activity: the respondent was in a restaurant, the activity was 0.2.1 eating, and the predicted 
activity is 0.2.1 eating 
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Figure 38: Correct POI but atypical activity: the respondent was in a school, the activity was 6.1.0 Other or unspecified 
sports or outdoor activities but the predicted activity is 2.1.1 Classes and lectures 

 

 

Figure 39: Ambiguous POIs with multiple activities: the respondent was in the park, the activity was 6.1.9 Other or 
unspecified sports or outdoor activities but 0.2.1 eating associated with the wrong place restaurant 

 

 

Quality assessment 

To evaluate the performance and quality of the algorithm, various configurations of the input data 
and features were examined. These configurations included: 

• Different map services: Utilizing alternative map services (e.g., OSM and GP) as input data 
sources. 

• Varied use of TUS data: Exploring different ways of incorporating information from the Time 
Use Survey (TUS) data to assess its impact on the algorithm's performance. 
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Depending on the research and privacy rules, it may not be possible to use the respondent's 
information (age class, condition) in the microservice. In this case, the prediction will be carried out 
with the other available information. The impact of this lack of information on the quality of the HETUS 
activity prevision was measured in this assessment phase. 

Table 24 shows the performance of the algorithm when using OSM as context information. From the 
results (matches pass from 11 to 7) it can be seen that OSM is a lower-quality auxiliary source than GP 
for the activity prediction objective. In fact, it contains fewer POIs, i.e. it is much less complete than 
GP. Besides, from a direct personal knowledge of places (in Rome), OSM also is much less updated 
than GP. This fact would deserve an in-depth study, which is difficult to carry out in every country. 

Table 24: Stops detection and matching with HETUS activities on the basis of assigned rank 

 STOPS /Open Street Map 
Stop segmented by ATS/OPTICS 111 
Stop with duration > 5 minutes 83 
Stop with POIs useful for activity prediction 56 
Stops with identified POIs 
(not labeled home/work ) 

24 

  
Stops with identified POIs (not labelled home/work ) 

MATCH TOP 1 7 
NO MATCH TOP 1 17 
  
MATCH TOP 2 8 
NO MATCH TOP 2 16 
  
MATCH TOP 3 8 
NO MATCH TOP 3 16 
 

Table 25 shows the performance of the algorithm when using different algorithm settings for Google 
Places map service:  

• Rule based: the algorithm does not use the probabilities based on TUS data but only the 
context information linked directly to activities, using a table linking places to HETUS 
activities. 

• Probabilistic, no personal data: the algorithm uses the probabilities based on TUS data (only 
time slot and places) but not the personal user data (age group and employment status). 

• Probabilistic, no time slot: the algorithm uses the probabilities based on TUS data with the 
personal user data but without time slot (distributions that also include frequencies for time 
slots may not be very meaningful as based on few data). 

Table 25: Performance of the algorithm when using different algorithm settings 

 Top 1 Top 2 Top 3 

Algorithm setting MATCH NO MATCH MATCH NO MATCH MATCH NO MATCH 
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Rule based 10 10 11 9 11 7 

Probabilistic, no personal data 11 9 13 7 13 7 

Probabilistic, no time slot 6 14 11 9 13 7 

Probabilistic, full setting 11 9 13 7 13 7 

 

Table 25mainly shows that the use of data referring to the respondent (age group and employment 
status) does not seem to improve the quality of the prediction, although the analysis is based on a few 
data. Exploiting the time slot seems instead very relevant: excluding it, in fact, produces the worst 
results, even if using it requires, in general, the availability of the TUS survey data. 

Summary 
A prototypal algorithm for predicting HETUS activities to be provided as tentative data has been 
developed by exploiting stop location information, context information, TUS data and personal data. 

From the testing phase, it emerged that a necessary condition for the algorithm to work well is that 
there is good-quality auxiliary information. In fact, if the stop identified by the segmentation does not 
contain useful POIs, the prediction is not obtainable. Furthermore, the use of Google Place as an 
auxiliary source improves the prediction compared to the use of Open Street Map. Therefore, in fact, 
the possibility of predicting the activity is based on the accuracy and completeness of the map service. 

The accuracy of the algorithm is a function of the quantity and quality of the GPS points of the stop 
and the quality of the stop segmentation has an impact on the quality of the prediction. 

The assessment phase also evaluated different scenarios that concern both the availability of TUS 
survey data and aspects related to privacy, i.e. the use of the respondent's personal data within the 
microservice. 

We can conclude that the most relevant features for the quality of the prediction are the place type 
and the time slot, while the personal data do not particularly improve the prediction, although the 
limited set of data used for the evaluation does not allow us to draw unequivocal conclusions on this 
matter. This indicates that the time slot and the duration of the stop provide in any case a significant 
contribution to the prediction and its accuracy. Finally, the probabilistic approach seems to perform 
slightly better than the rule-based approach. 
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6. Energy Microservice 

The Energy Microservice is the last environment being considered within the SSI-project. While also 
for this microservice the journey starts with outlining both the functional and non-functional 
requirements (6.1.), the development remains at the PoC level (6.2.). 

6.1. Functional and non-functional requirements of the Energy Microservice 
Historically, collecting precise data on a homeowner’s energy usage has been challenging due to 
several factors, the most significant being respondent reluctance to participate. This hesitation is 
primarily driven by privacy concerns related to data collection methods, fears of user habit profiling, 
and apprehensions regarding data security. As a result, any solution designed to gather insights into 
energy usage must carefully address these concerns. Additionally, the process of effective data 
collection is complex and requires a certain level of technical expertise from participants. With these 
considerations in mind, Statistics Netherlands has initiated a small-scale exploratory in-house Proof 
of Concept (PoC) to evaluate these challenges. 
 
We decided to start with a PoC because there are currently too many unknowns to already create a 
full smart service. First more information is needed on the technical possibilities of smart meters and 
smart plugs, what data is measured and what can be detected using this data. As the ideal smart 
service we think about collecting real-time data on energy, gas and water, determining the 
appliances used and what the respondents are doing using AI/ML models, and involve the 
respondents in filling in the gaps. However, as said, there are too many unknowns. As a result we 
decided to start with existing commercial solutions on the market and see what can be measured 
and detected using these. The rest of this document describes the business and functional 
requirements and setup of the PoC.  
 
The PoC requires participants to receive and install a smart plug, following a step-by-step in-app 
guide to successfully connect the device to their home Wi-Fi network. The smart plug will commence 
real-time monitoring of energy consumption, gas usage, and, where applicable, the energy returned 
to the grid from solar panel systems. Simultaneously, participants are asked to maintain a manual 
diary for eight consecutive days, recording the number of people present in the household at 
different times, as well as the usage of power-intensive appliances, including their start time, end 
time, and duration. Additionally, participants are requested to document any factors that could 
affect the accuracy of insights, such as the presence of house guests. For the PoC, this will be 
documented in a separate document. 

6.1.1. Business requirements 
1. The system should gather real-time energy usage data from participants to support the daily 

energy consumptions, analysis of consumption patterns and help identify home appliances, 
including high-power appliances, like electric vehicles or energy storage, by correlating the 
data with user-reported inputs. 

2. The collected data must undergo comprehensive analysis to evaluate the viability of 
employing smart plugs for energy monitoring, identify potential challenges, and provide 
insights to support future large-scale implementations. 
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3. The Proof of Concept (PoC) must establish standardized guidelines for participants to 
accurately document their energy usage, ensuring consistency in data collection and 
enhancing the reliability and validity of the findings. 

4. The solution must implement stringent data protection measures to ensure that all collected 
information is anonymized, securely stored, and safeguarded against unauthorized access, 
thereby addressing participant privacy concerns. 

5. The system should ideally incorporate a robust, secure, and well-documented API to 
facilitate seamless integration with third-party applications, research platforms, and 
analytical tools, thereby enhancing data interoperability and enabling extended analysis. 

6.1.2. Functional requirements 
With regards to data collection; 

• The system must collect real-time energy consumption data from smart meters using a 
smart plug and/or API’s that can be configured to collect data at specific intervals (e.g. every 
15 mins, hourly) 

• The manual data collection process is designed to ensure a highly qualitative and consistent 
method for recording logbook entries. 

 
With regards to data processing, analytics and reporting; 

• The system must aggregate, normalize, and store energy usage data. 
• Energy consumption needs to be reported regularly (collected real-time, transferring data 

needs to be determined) 
• The system provides an interactive dashboard displaying real-time energy usage. Ideally the 

system should provide a method to download periodic usage summaries. 
 
With regards to third-party microservices and/or API 

• REST/GraphQL APIs must be exposed for integration with external platforms. 
• The API should give external parties (e.g. Statistics Netherlands) access to aggregated, 

anonymized data while ensuring secure authentication and authorization (OAuth 2.0). 
• The microservice solution must be deployable at any given institute (for example through 

the use of containerization) 
• The microservice solution is designed to be scalable according to the anticipated traffic 

levels, ensuring that performance is not significantly impacted. 
 



 

110 
 

Figure 40: Energy Microservice feasibility setup functional requirements – flow diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The diagram gives an overview of the main 
functional requirements for the PoC: 

• functionality related to user handling 
is indicated by the green boxes.  

• functionality related to the app is 
indicated by the orange boxes.  

• functionality related to the CBS is 
indicated by the blue boxes.  
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User handling 

Respondent handling (green boxes) 

1a R needs to install smart plug 

 Based on a ‘plug-and-play’ principle compatible with ‘smart meters’ which are already 
installed in the respondents’ homes. The smart plug will connect with the WiFi-
network. 

1b R downloads and installs mobile app 

 This step includes creating an account and pay for the plus-service (subscription)  

2 R fills ins questionnaire 

 The questionnaire will contain a day-to-day overview of the usage of electronic devices 

 The questionnaire will also contain some more general questions about the household 

 Within this PoC the questionnaire will also contain some review question about the 
usage of the app and the process 

3 R downloads data from app 

 Because of the subscription, R will be not only be able to see the real-time usage but 
also  to download an overview (.csv file) of the usage.  

 After downloading the file, R will submit this data to CBS. In this PoC the file will be 
provided via e-mail 

 

6.1.3. Non-functional requirements 
• Performance 

The app shall respond to user interactions within an acceptable speed 
 

• Security 
All user credentials are provided by the organization and stored securely using encryption 
Authentication must use secure token-based methods (e.g. OAuth2), with automatic session 
expiration after a defined inactivity period. 
All network communications shall use HTTPS with up-to-date TLS protocols. 
Sensitive data (such as usage patterns or location) must not be stored unencrypted on the 
device. 
The microservice solution is built on the principles of security by design. 
End-to-end encryption must be implemented for all (anonymized) data transmissions. 
The solution must comply with GDPR and ISO 27001 regulations. 
 

• Usability 
The app must have a clean, intuitive user interface, designed according to mobile UX best 
practices. 
Users shall be able to view daily, weekly, and monthly energy usage in no more than 3 taps. 
The app must support dark mode and adapt to the device’s accessibility settings (e.g. large 
fonts, voiceover). 
 

• Reliability 
The app shall maintain an average crash rate of less than 1 crash per 10,000 sessions. 
In case of connectivity issues, the app shall cache the most recent data locally for offline 
viewing. 
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Automatic background syncing shall resume when network connectivity is restored. 
 

• Compatibility 
The app shall support the latest 3 major versions of iOS and Android. 
It must display correctly across different device sizes, including phones and small tablets 
(4.7” and up). 
 

• Maintainability 
The app codebase shall follow modular design principles and include proper inline 
documentation. 
The system shall include monitoring tools for performance and error tracking. 
 

• Scalability 
Data load (e.g. charts, usage summaries) must be efficiently handled for both individual and 
aggregated usage metrics. 

 
6.2. PoC Energy Microservice 
At this moment we only conducted a PoC by using an external service. As a result, we have no 
integration into an app or our systems. However, with the knowledge and architecture already in 
place from the development of previous apps, it is possible to incorporate this service within the 
existing structure/architecture. Connections such as logging in and delivering data back into our 
(Phoenix) channel have already been delivered (securely). In addition, we can use the styling and 
design of existing apps as shown in the diagram below. 
 
For the user, this will mean more ease of use. In fact, steps 1b and 3, as presented in the previous 
chapter, will be changed drastically. 
 

• No account needs to be created 
• No need to pay for a subscription  
• No need to download the data 
• No need to upload the data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The diagram gives an overview of the main 
functional requirements for the PoC: 

• functionality related to user handling 
is indicated by the green boxes.  

• functionality related to the app is 
indicated by the orange boxes.  

• functionality related to the CBS is 
indicated by the blue boxes.  
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Figure 41: Microservices integration in relation to CBS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With regards to security and compliance 

• The microservice solution is built on the principles of security by design. 
• End-to-end encryption must be implemented for all (anonymized) data transmissions. 

The solution must comply with GDPR and ISO 27001 regulations 
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7. MOTUS platform 

This chapter describes the MOTUS architecture, the deployment options and the pentest that has 
been carried out in relation to the MOTUS platform. 

7.1. MOTUS architecture 
The figure shows the platform architecture of MOTUS. The MOTUS data collection platform consists 
of a front office as well as a back office. 

The front office relates to the collection tool or application, with which the users can interact via a 
user interface (UI) and which delivers, through its functionalities, a user experience (UX). The 
MOTUS application is available as a web version for browsers (https://app.motusresearch.io) and in 
iOS and Android mobile versions for smartphones and tablets. The purpose of the application is to 
make it easier for the respondent to carry out all tasks of a (time use or other) survey. 

The back office serves to build a study, to facilitate data collection and monitoring, and to process 
the data. To this end, the back office, which is accessible via a web environment, contains several 
MOTUS-builders with specific functionalities for e.g. survey, diary and communication. 

Both the front office and back office connect to the MOTUS core (“the core”) through Application 
Programming Interfaces (APIs). The core holds the database with all information required to build a 
study and collect data. A separate analysis server (can) hold(s) a replica of the database from the 
core and facilitates the processing of information in the back office. The back-up server ensures the 
gathered data cannot get lost. Adapter APIs serve to adapt external information so that it can be 
processed in the core, thereby allowing the ingestion of, for example, passive data gathered via 
integrated sensors or connected devices, administrative/secondary data available via external data 
sources, or other processed data. For reasons of optimization, data security and privacy, these data 
are handled and organised in an anonymized way in stand-alone microservices. All input provided by 
the user is sent encrypted via https communication to the server and is immediately available to all 
devices of the user via the respondent API. As a result, the MOTUS web and mobile applications can 
be used interchangeably. 
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Figure 42: MOTUS architecture 

 

7.2. MOTUS deployment strategies 
In designing deployment strategies for MOTUS, various models are considered based on hosting, 
infrastructure, security, and client control. These strategies fall under two main categories: hosting 
solutions under control of hbits (hardware is at Hetzner – Nuremberg and is ISO27001 certified) and 
hosting solutions where the hosting is external to the control of hbits (the adopting institution, 
organisation or Client). For each category two options are available, which brings the number of 
options to four in total.  

Each model offers distinct advantages based on the level of control, scalability, and privacy required 
by the client. By offering a range of deployment models, organizations, institutions and clients can 
select the strategy that best aligns with their infrastructure, security, and operational needs. 

The models are discussed below, while Figure 43 provides visual support. More tailored version 
based on these four models are possible. 
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Figure 43: MOTUS deployment strategies 

 

7.2.1. MOTUS Domain - #SaaS 
MOTUS domain operates under the Software as a Service (SaaS) model, meaning that all 
infrastructure, hosting, and updates are managed by hbits. This approach ensures seamless 
integration with the full MOTUS infrastructure while minimizing client-side responsibilities.  
Additionally, MOTUS provides automatic security updates, ensuring a high level of protection against 
vulnerabilities. 

Access to the back-office is defined on the user level and is initiated by the platform administrator 
upon invitation to create an account and to activate the 2FA-login procedure. A non-admin user can 
only be part of one group at the time. Per group different studies can be developed. Per study back-
office users can be given a role. With access restricted to groups and studies, security and role 
management are streamlined to maintain controlled access.  

The MOTUS applications are available via the hbits domain or via the hbits application store, 
simplifying deployment and access. Furthermore, all connected services are managed directly by 
hbits, leading to a highly efficient and cohesive ecosystem. One of the biggest advantages of the 
MOTUS domain model is its short and expedited development cycle, making it ideal for 
organizations that require rapid iterations and continuous improvements without the complexities 
of self-managed infrastructure. 

7.2.2. Namespace - #NaaS 
Namespace follows the Namespace as a Service (NaaS) model, providing a structured approach 
where hosting and infrastructure are managed by hbits, but with logical and database isolation for 
each organization, institution or client. This approach ensures that different users have their own 
separate environments while still benefiting from the shared infrastructure managed by hbits. 

One of the key differences from the MOTUS domain is that the back-office environment is separated 
from other back-offices (copies) and is managed by a Namespace administrator giving organizations, 
institutions and clients more control over their data while still receiving security updates and system 



 

117 
 

maintenance from hbits. Another added value is the strict separation of the database(s). Only role 
limited and technical access by hbits to the database remains.  

The namespace applications can become available via the namespace domain or via the namespace 
application store while it remains an option to let hbits provide support and so to facilitate to a 
controlled yet flexible ecosystem. Additionally, connected services are configured by the 
organization, institution or client, allowing greater customization and integration with their 
workflows. Namespace deployment is well-suited for organizations, institutions or clients that 
require more administrative control and are in need of an own database while still leveraging cloud-
based infrastructure. 

7.2.3. Containers - #CaaS 
Containers is seen as a Containers as a Service (CaaS) model and is designed for organizations, 
institutions and clients who want full control over their infrastructure while still leveraging 
containerized environments for scalability and manageability. Under this model, hosting and 
infrastructure are entirely managed by the client, allowing for complete autonomy over hardware 
and software configurations. 

One of the primary advantages of this approach is containerized management (orchestration), which 
facilitates easier scaling, deployment, and resource allocation. Clients are responsible for the 
installation and maintenance of their core and back-office systems, giving them greater flexibility but 
also increasing their operational responsibilities.  

Applications are stored and managed within the organization’s, institutions or client’s domain or 
store, ensuring independence from third-party hosting services. Connected services are also fully 
controlled by the client, making this model an excellent choice for organizations that prioritize 
customization, data sovereignty, and independent issue management. 

7.2.4. Native platform - #PaaS 
Native platform is seen as a typical Platform as a Service (PaaS) model that represents another 
deployment strategy, where organizations, institutions and clients manage their hosting and 
infrastructure entirely. Unlike the previous container-based solution, a native platform runs the 
MOTUS software directly on the operating system of dedicated hardware. 

With a native platform clients operate within their own ecosystem and can receive software 
packages for updating their environment, creating a tailored environment that aligns with their 
specific requirements. Core and back-office installation is handled exclusively by the organisation, 
institution or client, offering complete control but requiring more internal IT resources. Applications 
are handled via an own domain and or an own store, and connected services are fully managed in-
house. One defining characteristic of native platform is its periodic version release cycle. 

7.2.5. Advise from hbits 
A key aspect of deployment strategy is balancing updates and support with control over privacy and 
security. The choice between the different options depends on the level of autonomy and security 
requirements of the organization, institution and client. 
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In general, there are several critical attributes to be taken into account. These attributes guide the 
selection of deployment models to meet organizational needs while ensuring stability and 
performance, and are: 

• Scalability: The ability to handle growing workloads and increasing demand efficiently. 
• High Availability: Ensuring minimal downtime and continuous service operation. 
• Maintainability: Simplified system updates and ease of managing infrastructure. 
• Security: Robust protection mechanisms to safeguard data and applications against threats. 

Although MOTUS can be deployed in various ways, the advice to NSIs is to follow a cloud-based 
deployment strategy in which all MOTUS components (core, back-office...) and microservices as well 
run in their own container. The benefits of a containerized environment are better scalability, 
improved application monitoring and decoupling from the underlying infrastructure. Several 
container management and container orchestration applications exist from commercial to open-
source solutions, from simple to complex orchestration platforms. Examples are: docker compose, 
kubernetes, rancher, redhat openshift. 

7.3. MOTUS platform pentest(s) 
The MOTUS platform has undergone various pentests since the platform is in use for different 
studies by hbits and by the VUB (as hbits is a spin-off). The most recent pentests were conducted 
together with Destatis carried out by external consultants in the area of cyber and application 
security like T-Systems, Atos and SEC Consult. In total 3 pentests were conducted with each time 
some retests after the findings were resolved. These pentests were done on a native installation of 
MOTUS on the premisses of IT.NRW, as being the host to install MOTUS with their own eco system.  

The first part will discuss the approach and findings of the native installation with the focus on the 
last pentest, and with MOTUS running on Laravel 10. The second part has a focus on MOTUS being 
deployed as a containerised solution, and with MOTUS running on Laravel 11. A third part will 
address the Load and Performance (LaP) test and is carried out via the open-source tool K6. The 
findings are independent from the deployment strategy. 

7.3.1. Pentest native installation MOTUS 
The last pentest on the (still running) native installation of MOTUS with IT.NRW as host was carried 
out by SEC Consult. The pentest was conducted during the period Q4 2023 – Q1 2024 and 
mitigations were finalised Q2 2024. The previous pentests were conducted between 2020 and 2023. 
First an short overview is given about these tests before continuing to the most recent test. 

Short summary of the 2020-2023 pentests 
The pentests that were conducted over the years 2020-2023 by T-Systems and Atos resulted in many 
findings being classified as Critical, High, Medium and Low. The underlying platform for the web 
applications was Kosever, for the mobile application Ionic and Angular. The pentest was also 
accompanied with a Source Code Analysis of MOTUS. At that point in time MOTUS was used solely 
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for TUS. A broad overview of findings is provided in the CRŒSS report5 (B5460-2020-INNOVTOOLS-
HBS-TUS).  

The short summary is as follows - For the web application, critical vulnerabilities such as command 
injection were found and subsequently resolved. Several high-severity stored and reflected cross-
site scripting (XSS) issues were also identified and closed. Cross-site request forgery (CSRF), weak 
password policies, and session fixation were marked as approved after mitigation. Medium and low-
severity issues like cacheable responses, outdated libraries, and denial of service risks were either 
resolved or approved after review. 

For the mobile application, most identified vulnerabilities, including missing certificate pinning, XSS 
in survey answers, and information disclosure in HTTP responses, were remediated. However, 
the missing root/jailbreak detection remained unresolved with a medium rating, as it was deemed a 
low-priority issue due to its limited impact on security compared to user participation concerns. 

The static source code analysis for MOTUS, conducted using Fortify Static Code Analyzer, identified 
1,992 security findings across (at that time) 245,131 lines of code. After reviewing false positives, 
121 actual security issues remained. These included critical vulnerabilities like Cross-Site Scripting 
(XSS), Open Redirects, and Hardcoded Passwords, along with high and low-severity issues.  

Following a mitigation period and consultation, all issues were either resolved, deemed irrelevant, or 
fixed, with the final status approved by Destatis. 

Setup of the 2023-2024 pentest 
The pentest was carried out by SEC Consult, with Laravel 10 used for the web applications and 
(besides version upgrades unchanged) Ionic and Angular as underlying platforms. Of importance is 
that MOTUS grow from a TUS to a cross-domain platform also including HBS. 

The security assessment of MOTUS aimed to identify (new) vulnerabilities that could impact 
confidentiality, integrity, and availability. The previous pentest results were taken into balance. The 
assessment covered the Android and iOS mobile applications, the Front Office Web App and API, and 
the Back Office Web App and API. 

The penetration test was carried out in accordance with the OWASP Web Security Testing Guide 
(WSTG) and the OWASP Mobile Security Testing Guide (MASTG) to ensure thorough coverage. 
Vulnerability severity was evaluated using the CVSS framework (https://www.first.org/cvss/). 
Additionally, each identified vulnerability includes a subjective assessment from the tester ("tester 
rating"), reflecting their expertise and experience. The following test categories were included: 

For the web application testing having included the back-office and front-office web applications: 

• Evaluated authentication, authorization, and session management mechanisms. 
• Verified data encryption during transport and checked certificate validity. 
• Tested for unauthorized access to restricted areas and inadequate authorization controls. 

 
5 B5460-2020-INNOVTOOLS-HBS-TUS. Minnen, J., Olsen, J., & Sabbe, K. (2022). CRŒSS: Establishing 
a Cross-domain data collection platform for the ESS (European Statistical System). Statistics Belgium, 
Destatis, hbits CV and Vrije Universiteit Brussel. 
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• Analyzed platform configuration, backup files, outdated software, and HTTP security 
headers. 

• Examined user input handling to detect injection vulnerabilities and denial-of-service risks. 
• Checked for weaknesses in business logic and process flows. 
• Conducted client-side testing, including cross-origin sharing and error handling for 

information leaks. 

For the web application testing having included the front-office mobile Applications (iOS & Android): 

• Assessed data storage security and interactions with third-party services. 
• Verified cryptographic mechanisms, ensuring proper key management and avoiding 

deprecated algorithms. 
• Tested authentication mechanisms, including two-factor authentication and stateless 

authentication. 
• Examined session management for improper rights assignment and session takeover risks. 
• Evaluated network communication security, testing against MITM attacks and TLS settings. 
• Reviewed code quality, debugging configurations, and reverse engineering protections. 

Findings of the 2023-2024 pentest 
A total of six vulnerabilities were identified, categorized based on their severity. The overall system 
risk was assessed as Medium, primarily due to insecure programming practices. 

The key vulnerabilities and risks are according to the OWASP classification (https://owasp.org): 

• Broken Access Control (F-3.1) 
o Users could access and modify other users’ data by manipulating API requests. 
o This flaw affects both web and mobile applications. 

Risk: Unauthorized access to sensitive user data, leading to potential data breaches. 
• Logout Does Not Terminate User Session (F-3.2) 

o User sessions remain active even after logging out. 
o Attackers with access to session IDs can hijack accounts. 

Risk: Persistent unauthorized access even after user-initiated logout. 
• User Credentials Saved After Application Is Closed (F-2.1, iOS App) 

o Credentials persist in the login mask upon app closure, enabling potential theft. 
Risk: Account takeover if an attacker gains access to the device. 

• User Enumeration in Password Reset (F-3.3, F-4.1) 
o The application’s error messages reveal whether a user account exists. 

Risk: Attackers can compile valid usernames for brute-force attacks. 
• Weak Password Policy (F-4.2) 

o Only an 8-character minimum length is enforced. 
o No checks for commonly used weak passwords. 

Risk: Increased likelihood of successful password-guessing attacks. 

All vulnerabilities were solved besides the User Enumeration finding where Destatis deemed it too 
burdensome to the respondents in case the listed issue would have been solved. Eg. in case a 
respondent would like to reset his/her password the respondent has to provide a username. In case 
the username is known by MOTUS a password reset request is send to the linked email address. In 
case a username does not exist, no email can be sent. The fact that there is no email send could 
inform attackers that a certain username does not exist. 
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7.3.2. Pentest containerized installation MOTUS 
Over the past year, hbits has transitioned to a fully containerized environment. Scalability, high 
availability, maintainability, and security were key considerations in shaping the deployment 
strategy. 

In June 2025 Destatis will be shifted from a native installation to a containerized solution. This 
transition is driven by the same factors but also aims to better accommodate Smart Data.   

Smart Data is collected and processed externally from MOTUS through microservices. These 
microservices generate outputs that are integrated into the MOTUS platform via Adaptor APIs. From 
there, information flows to front-office applications through internal APIs, with potential 
bidirectional communication. These microservices leverage the generic architecture developed 
within SSI and are deployed in a containerized environment. By this the end-to-end flow now 
incorporates Smart data. The first aim for Destatis is to include the Receipt Scanning Microservice 
(OCR and COICOP classification). 

Below the testing plan is being described. Results are expected in May 2025. 

Objectives 
The goal of this penetration test is to identify and mitigate security vulnerabilities introduced by: 

• The transition to a containerized environment. 
• The upgrade from Laravel 10 to Laravel 11. 

This penetration testing plan aims to ensure that the MOTUS platform remains secure after its 
transition to containerization and Laravel 11. Testing will be conducted periodically and upon major 
updates to maintain security compliance. 

Scope 
During the pentest different layers/components are tested 

• Application Layer: Laravel-based MOTUS application. 
• Containerization Layer: Docker, Kubernetes, or any container orchestration setup. 
• Network Layer: API communication, internal and external network configurations. 
• Infrastructure & Deployment: CI/CD pipelines, environment security, logging, and 

monitoring. 

Methodology 
The penetration test will follow the OWASP Testing Guide and the MITRE ATT&CK framework. 

Reconnaissance 

• Enumerate exposed services, endpoints, and technologies used. 
• Identify third-party dependencies and integrations. 
• Review Laravel 11’s breaking changes for potential vulnerabilities. 

Threat Modeling 

• Map attack vectors related to containerization (e.g., container escape, misconfigurations). 
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• Identify risks associated with Laravel framework changes, and most importantly new or 
modified libraries. 

• Assess security of API authentication and authorization mechanisms. 

Testing Areas 

Application Security (Laravel 11-Specific) 

• Authentication & Authorization: Verify role-based access controls, API tokens, OAuth 
configurations. 

• Validation & Input Handling: Test for SQL injection, XSS, CSRF vulnerabilities. 
• Session Management: Ensure proper handling of user sessions and cookies. 
• Error Handling & Logging: Check for exposure of sensitive error messages. 

Container Security 

• Image Vulnerabilities: Scan container images for CVEs (using Trivy, Clair, etc.). 
• Misconfigurations: Ensure minimal permissions, non-root user execution, and proper file 

system restrictions. 
• Secrets Management: Verify that environment variables and secrets are stored securely. 
• Networking & Isolation: Ensure proper segmentation between containers and prevent 

lateral movement. 

API & Network Security 

• API Security: Test for broken authentication, improper authorization, and data exposure. 
• Rate Limiting & DoS Protection: Assess rate limiting measures. 
• Man-in-the-Middle (MITM) Attacks: Ensure HTTPS enforcement and certificate pinning 

where applicable. 
• Internal API Calls: Test inter-container API communications for security risks. 

Infrastructure & CI/CD Security 

• CI/CD Pipeline Security: Review for exposed credentials, security misconfigurations. 
• Deployment Security: Ensure secure use of environment variables and secrets management. 
• Logging & Monitoring: Verify that security-relevant logs are being captured and monitored. 

Tools & Techniques 

Category Tools Used 

Reconnaissance Nmap, Nikto, Sublist3r 

Web/App Security OWASP ZAP, Burp Suite, sqlmap 

API Security Postman, JWT.io, Insomnia 

Container Security Trivy, Clair, kube-hunter 

Infrastructure OpenSCAP, Lynis, Falco 
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7.4. MOTUS Load and Performance test 
Load and performance testing plays a crucial role in ensuring that a system functions efficiently 
under different conditions. These tests help identify bottlenecks, stability issues, and scalability 
limits, allowing developers to optimize their applications before deployment.   

Load testing evaluates how MOTUS and the hosting behaves under both normal and peak usage 
conditions. By simulating multiple users accessing the system simultaneously, it helps measure 
critical performance metrics such as response time, throughput, and resource utilization. By this 
performance testing focuses on measuring the speed, responsiveness, and stability of a system. It 
assesses factors such as page load times, server response times, and error rates to ensure the 
application delivers a seamless user experience. 

7.4.1. Scope in view of the SSI project 
Two sorts of LaP tests are conducted. The first leans toward the participation journey of a 
respondent within a ‘typical’ TUS or HBS study with multiple task a respondent have to undertake. 
The second is linked to the Adaptor API that serves as the integrator of output data from the 
microservice to the core component (/container) of the MOTUS data collection platform. 

Login phase 

In a TUS or HBS study multiple phases are apparent in the participation journey of a respondent. The 
most ‘stressfull’ phase is however the login phase, certainly if thousands of respondents receive an 
invitation email (or letter) at the same moment/day. It should be expected that MOTUS and the 
hosting can handle at least 500 concurrent user logins without experiencing slowdowns or failures.  

Adaptor API process request 

In this test is the ‘integration’ process of passing output data from the microservice to the MOTUS 
environment important. The Adaptor API is therefore tested under different traffic loads to 
determine how quickly it can process requests and return responses.   

This integration testing is accompanied by a scalability testing to assesses whether the microservice 
can efficiently handle increased workloads by adding more resources, such as additional container 
instances. This type of testing is essential to see eg. how many tickets or geo points the microservice 
can handle before it starts to fail.   

Methodology 
For this test the K6 tool was used. K6 is an open-source performance testing tool designed for load 
testing web applications, APIs, and microservices. It enables developers and testers to create scripts 
in JavaScript and execute them to evaluate system performance under various conditions. On top,  
K6 offers real-time insights while it is easy to integrate into CI/CD pipelines. 

Load and Performance test results 
The document is based on configurations and optimizations performed to the MOTUS system. Key 
configurations and settings that led to the final test setup include: 
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- Initial Setup & Baseline Tests 
• Pre-forking was tested to diagnose potential PHP-FPM issues. 
• Performance was compared using simple PHP files versus the full MOTUS system. 
• Tests were conducted with K6 and an inhouse tool of the company ZOTT, simulating 

different user loads. 
• HAProxy was used but later deactivated to check its impact. 

- Server Configurations & Adjustments 
• Apache settings were tuned, increasing maxrequestworkers from 200 to 2,500. 
• Redis caching was tested and adjusted for better performance. 
• Load balancer configurations were changed and reverted based on impact. 

- PHP-FPM & Database Adjustments 
• max_children settings were increased to handle more concurrent users. 
• Database load was analyzed to rule out bottlenecks. 

Below an output table is provided. 

Table 26: Performance results per type of phase for 500 and 1000 simultaneous users using MOTUS 

 Numbers Time after 
configuration(s) 

Numbers Time after 
configuration(s) 

Visit start page 500 419 ms 1.000 652 ms 

Login 500 6.727 ms 1.000 15.166 ms 

Open questionnaire 500 151 ms 1.000 216 ms 

Send 20 questions 500 421 ms 1.000 530 ms 

Open HBS diary 500 680 ms 1.000 802 ms 

Make 30 expenses 15.000 449 ms 30.000 456 ms 

Send HBS diary 500 190 ms 1.000 189 ms 

Logout 500 341 ms 1.000 342 ms 

Send 20 questions 500 29 ms 1.000 37 ms 

 

The results are: 

- Final System Capability 
• The system stabilized at handling 2,500 requests and 200 concurrent logins without 

performance issues. 
• Higher loads did not cause system failure but required further optimizations. 

Overall, the setup involved multiple iterations of configuration tuning and performance testing to 
optimize response times and handle increasing user loads efficiently. 
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8. CBS platform 

This chapter outlines the architecture of the CBS data collection platform, designed to support 
scalable, shareable, and reusable services within a secure and robust environment. Leveraging a 
modular microservices approach, the platform enables independent scaling, dynamic resource 
allocation, and seamless integration across mobile and web applications. The architecture ensures 
secure data handling, efficient processing pipelines, and flexible deployment strategies while 
supporting end-to-end workflows for data ingestion, OCR-based processing, and classification. 

8.1. CBS architecture 
The following architecture ensures scalability, shareability, and reusability while providing a robust 
and secure platform for data collection, processing, and classification.  

- Scalability is inherent to a microservices architecture since each microservice can be scaled 
independently when required. Furthermore, these microservices are deployed in a 
distributed environment (K8s) which allows for dynamic allocation of resources. This also 
helps in ensuring robustness of the solution: if one service goes down, it does not necessarily 
affect other services. 

- Shareability is another big advantages of using loosely coupled microservices. Each 
microservice contains fully independent code, logic and data thus making it far more 
shareable than application with for example a centralized database on which multiple 
services rely. When we talk about microservices we actually mean a collection of API’s (not 
tied to any specific frameworks, programming languages or databases) which are designed 
to communicate to different API’s. This independence makes for shareable code. 

- Reusability: the total solution is broken up into small loosely coupled modules that provide 
specific functionality. E.g. the OCR service is a separate API module, the COICOP service 
likewise, each functionality within the app is a specific API. Etc. All these modules or API’s 
can be deployed at will, independent of each other. 

In the architecture process picture below, you can see that the OCR and classification service (SSI 
services) are only shown on the sideline (The end to end architecture shows part of the platform 
that the solution integrates with (Phoenix). The integral solution/platform has not been specifically 
named however. These will be developed, further trained and and seperately implemented later. 
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Figure 44: CBS data collection platform architecture 

 

8.1.1. Frontend Applications 
Data is collected through both an app as well as a web application. Both are similar in functionality 
but provide a totally different user experience while the backend synchronizes so household will be 
able to use the webapp and the mobile app simultaneously.  

Mobile App (HBS App) 
- Manual Data Input: Users can manually enter data (e.g., expenses, categories) through a 

daily diary. 
- Receipt Scanning: Users can scan receipts using the device camera. The scanned images are 

temporarily stored locally and then uploaded to the backend (this makes it possible to use 
the app offline and synchronize when a network connection is reestablished). 

- Authentication: Respondents log in via OAuth2 or JWT to ensure secure access to the 
backend. The credentials provided can come from an external identity provider or from the 
mobile backend.  

Website App 
- Data Input: Users can manually input data through web forms, similar to the mobile app. 
- Authentication: Uses the same authentication mechanism as the mobile app for consistency. 
- Shared Backend: Connects to the same backend services as the mobile app to ensure data 

consistency and reusability. 
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8.1.2. Backend Services 
API Gateway 

- Entry Point: Acts as a single-entry point for all requests from both the mobile app and the 
website app. 

- Routing: Routes requests to the appropriate microservices (e.g., data ingestion, OCR service, 
classifier service).  
Route: app à back-end à microservice à back-end à app 

- Authentication & Authorization: Validates JWT tokens or OAuth2 credentials to ensure 
secure access. 

Data Ingestion Service 
- Receipt Upload: Accepts receipt images from the mobile & web app and stores them in a 

temporary on-premises storage). Since the data could contain sensitive information, we 
have opted to store this data in-house (also taking into account GDPR). However, switching 
to a cloud solution for receipt-storage would be fairly low-effort. 

- Manual Data Input: Accepts structured data from both the mobile app and website app, 
validates it, and stores it in the database. 

- Validating in this context means that (frontend) data presented does not violate the logical 
model at database level. E.g. a string cannot be mapped onto an integer etc. Sidenote: 
datamodels in the front end and the backend are identical so an unhappy flow (whereby 
validating goes wrong during ingestion) could only be the case if the data is manually 
manipulated. If this happens, the data is flagged and logged as error. 

- Event Publishing: Publishes events (e.g., receipt_uploaded, manual_data_received) to a 
message broker (RabbitMQ) for asynchronous processing. 

8.1.3. Machine Learning Services 
OCR Service (ML-Based) 

- Image Processing: Receives receipt images from the temporary storage via a message broker 
or direct API call. 

- Text Extraction: Uses a pre-trained ML model to extract text from the receipts. 
- Output Formatting: Converts the extracted text into a structured JSON format and publishes 

an event (receipt_processed) to the message broker. 
- More information regarding the OCR microservice can be found in chapter 5. 

COICOP Classifier Service 
- Data Classification: Receives structured data from the OCR service (or manual input via the 

message broker). 
- COICOP Classification: Uses a machine learning model or rule-based system to classify the 

data into COICOP categories. This is an ongoing process, and we still have some ways to go 
before the resulting output is satisfactory. 

- Output Storage: Stores the classified data in the database and publishes an event 
(data_classified) for downstream services. 

8.1.4. Data Storage 
Relational Database (Microsoft SQL) 

- Structured Data: Stores manually input data, OCR-processed data, and classified data. 
- Relationships: Maintains relationships between users, receipts, and classified data for 

querying and reporting. The data model is based on the relation between users, devices, 
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receipts, products and images. The data is organized according to an Entity Relationship 
Diagram (ERD), which is managed by both the frontend and the backend (see previous 
comment on this topic). This relational model links users, devices, receipts, and products 
through primary and foreign keys. 

8.1.5. Message Broker (RabbitMQ) 
- Event-Driven Architecture: Facilitates asynchronous communication between services. 
- Events: 

o receipt_uploaded: Triggered when a receipt is uploaded. 
o receipt_processed: Triggered when the OCR service completes processing. 
o data_classified: Triggered when the classifier service completes classification. 

- Decoupling: Ensures services are decoupled and can scale independently. 

8.1.6. Shared Services 
- User Management Service 
- Centralized Authentication: Manages user authentication and authorization for both the 

mobile app and website app. We also have the option to use an external Identity broker that 
is closely related to the process of data collection which is our implemented option for the 
time being. 

8.1.7. Deployment & Infrastructure 
Cloud Provider (Azure Devops) 

- Scalability: Uses auto-scaling groups and load balancers to handle varying loads. 
- Serverless Components: Uses serverless functions  

Containerization (Kubernetes) 
- Microservices: Each service (e.g., OCR Service, COICOP Classifier Service) is containerized for 

easy deployment and scaling. 
- Orchestration: Kubernetes manages the deployment, scaling, and networking of containers. 

8.1.8. Shareability & Reusability 
Shared Libraries 

- Common Utilities: Shared libraries for logging, authentication, and data validation are used 
across services. 

- API Contracts: Well-defined API contracts ensure consistency between the mobile app, 
website app, and backend services. 

Modular Design 
- Microservices: Each service is designed to be independent and reusable (e.g., OCR Service 

can be reused in other projects). 
- Event-Driven Architecture: Enables easy integration of new services or replacement of 

existing ones without disrupting the system. 

API Documentation 
Swagger/OpenAPI: Comprehensive API documentation ensures developers can easily integrate with 
the backend services. 
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8.1.9. Security 
Data Encryption 

- In Transit: Uses HTTPS/TLS for secure communication between clients and the backend. 
- At Rest: Encrypts sensitive data (MSSQL databases to store data which provide built-in 

encryption features. We specifically use Column level encryption through the use of AES) 
stored in databases and storage systems. 

Access Control 
- Role-Based Access Control (RBAC): Ensures users and services have access only to the data 

and functions they need. 

8.2. CBS deployment strategies 
Deployment Strategy (Work in Progress). We are in the process of refining our deployment strategy 
to ensure a structured and automated approach for rolling out new features and updates while 
maintaining stability and reliability. Our goal is to implement a robust CI/CD pipeline that supports 
efficient testing, controlled rollouts, and seamless updates. 

8.2.1. Code Commit & Versioning 
- Developers push changes to a feature branch, following GitFlow principles. 
- We are working on standardizing our code review process and integrating static code 

analysis. 
- Once approved, changes are merged into the develop branch and prepared for testing. 

8.2.2. Testing & Build 
- Our CI pipeline triggers automated tests (unit, integration, and E2E), but we are exploring 

ways to enhance test coverage. 
- If tests pass, the application is built and (if applicable) containerized for deployment. 
- We are reviewing our build optimization strategy to speed up this process. 

8.2.3. Staging Deployment 
- Updates are deployed to a staging environment for further validation. 
- We are refining our QA process to improve functional, regression, and performance testing. 
- User Acceptance Testing (UAT) is being incorporated where necessary. 

8.2.4. Approval & Release Candidate 
- If staging tests pass, a release candidate is created and reviewed. 
- We are working on improving our release approval process and defining clear release 

criteria. 

8.2.5. Gradual Rollout & Monitoring 
- Our goal is to implement a canary deployment strategy to roll out updates to a subset of 

users first. 
- We are enhancing our monitoring capabilities to track performance and potential issues in 

real-time. 

8.2.6. Full Deployment & App Store Release 
- Once validated, the update is published to the app store. 
- Users will have the flexibility to install the update at their convenience. 
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- Post-deployment monitoring is an area where we aim to improve incident response and 
rollback mechanisms. 

8.3. CBS platform pentest 
On March 31 and April 1, 2025, Secura conducted a security assessment of the mobile CBS 
Expenditure Application at the request of Statistics Netherlands (hereinafter referred to as CBS). The 
CBS Expenditure Application is crucial for CBS because users voluntarily input their expenditures 
through this app for the CBS Expenditure Survey. This survey helps determine how much more 
expensive life in the Netherlands becomes annually. Consequently, any compromise or disruption 
could lead to reputational damage for CBS. 

The security assessment was carried out as a gray-box review of the mobile application, examining 
both the Android and iOS versions along with their associated infrastructure. 

8.3.1. Summary of the results 
The study aimed to address the main question posed by CBS: "Is user data sufficiently protected?" 
Throughout the investigation, Secura identified effective security measures but also areas for 
improvement. 

One example of an effective measure observed during the review is that administrative 
functionalities, such as administrator registration, are disabled in the production environment. 

At the same time, several points of concern were noted. Specifically, additional defense-in-depth 
measures are lacking. In terms of authentication, there was a lack of controls to prevent one user 
from impersonating another. A user with knowledge of another user's valid ID-code could 
immediately assume that identity and potentially undermine the reliability of the survey by 
submitting false data. While these IDs are not easily guessable, this remains a concern for further 
security enhancement. 

Additionally, the investigation revealed opportunities to enhance input validation within the 
application. Special characters were used in store names and product descriptions, which, while not 
posing direct vulnerabilities within the app itself, could lead to issues in later processing phases 
where such data is handled. 

Improvements were also identified regarding system interaction. The application stores data 
unencrypted, posing a risk to sensitive information confidentiality. Moreover, it was discovered that 
logging features inadvertently provide access to authentication materials, increasing the risk of 
unauthorized access. 

Secura notes that both the mobile app and backend/web application are still actively under 
development. For instance, some functionality shown in the mobile app—such as receipt scanning 
via OCR technology—is yet to be implemented. If further functionalities or modifications are made 
before the expenditure survey commences, it may warrant an additional test on these. 

8.3.2. Risk Management Findings 
Secura has classified each finding according to the risk profile that emerges for CBS. The following 
chart displays the number of findings per risk category: 
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Figure 45: Risk Management Findings per category (in Dutch) 

 

8.4. CBS platform Load and Performance test 
No Load and Performance tests were conducted by the CBS. 
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Annex 1: COICOP Classification 

See .pdf Annex_WP3 SSI_COICOP. 
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1. Introduction 

The objective of Work Package 3 in Smart Survey Implementation (SSI-WP3) was to explore two 
approaches for the automatic classification of product descriptions from receipts to product 
categories. The first is by using Machine Learning (ML) and the second is by using (a 
combination of) string-matching techniques. The focus of this annex is on the former: we 
explore the capabilities and limitation of the ML approach. 
 
The problem is to classify textual product descriptions on receipts to their appropriate product 
category. We are specifically concerned about the classification according to the COICOP 
standard 2018 (Classification of Individual Consumption According to Purpose). An example 
here is the text “milk” that should be assigned the 5-digit code “011410” indicating category 
“Raw and whole Milk”. We emphasize that the unit of classification is the individual product 
texts and not whole receipts which may contain multiple products. For ease of reading, we will 
use the term “receipt text” to specifically refer to the products descriptions on receipts in the 
remainder of the text. The need for such classification can be seen in statistics like the 
household expenditure, where spending is analyzed by product category. While the COICOP 
standard contains categories for a wide variety of consumer products, we focus our problem to 
the classification of receipt texts from supermarkets exclusively. The receipt texts primarily 
consist of food products. 
 
ML offers several advantages over traditional string-matching techniques. Compared to these, 
ML does not require word-by-word matching and can achieve similar performance while being 
more computationally efficient. It can further explore patterns in the data allowing 
interpolation between similar texts whereas string matching primarily relies on matching 
through (approximate) character-level matching. In addition, some ML techniques can be 
trained to classify through semantic meanings which makes them more robust for synonyms 
and abbreviations. ML also allows us to use transfer learning, the act of further training a model 
that was previously trained on other data. This theoretically allows models to improve 
classification performances as it has access to information otherwise not available from 
training. ML can further utilize other types of features such as characteristics of the consumer 
(e.g. gender, age, household composition) for prediction. 
 
When assessing ML in the context of classifying receipt texts, we are primarily interested in two 
criteria. The first criterion is that its performance should remain stable over time, meaning that 
its overall ability to classify should not deteriorate as new products or receipt texts are 
introduced. The second criterion is the ability to classify on receipt texts from unseen 
supermarkets. Since we are not able to get our hands on the data of all supermarkets in the 
country, it is important to assess the scope and limitations of the classifiers. 
 
To simulate the relevant conditions and assumptions for testing these criteria, we evaluate ML 
by various train-test splits of the data. The first way of splitting the data is by time, where we 
train an ML model on data up to some date and then test it on periods after this date. The 
second way is to split the data by supermarket, where we simulate the scenario in which an ML 
model encounters supermarkets absent in the training set. 
 
Before we can start evaluating various ML algorithms, however, we first evaluate the feature 
extractors. A feature extractor is a preprocessing component that converts textual data into a 
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numerical representation. Such component is necessary because ML algorithms are typically 
designed to operate on numerical input data only. Not all feature extractors are equal however, 
as some are better at preserving and representing the original data than others. This therefore 
highlights the need to first find the most suited feature extractor for representing receipt data, 
of which the best performing one will be used in the benchmark for the ML algorithms. All 
feature extractors will also be assessed on the two types of train-test splits mentioned above. 
 
The research questions that drive the experiments are as follows: 

1. What feature extraction technique is most suited for receipt texts? 
2. How well can ML models classify receipt texts into COICOP product categories? 

a. How well can a ML classifier maintain a stable performance over time? 
b. How well can a ML classifier classify receipt texts from unseen stores? 

 
The data set that will used in the experiments consists of receipt texts of three major 
supermarket chains in the Netherlands: Albert Heijn (AH), Lidl, and Plus. All data were provided 
by the supermarkets themselves except for the COICOP-labels necessary for training, these 
were sourced from an internal department at Statistics Netherlands. 
 
This project is related to the Household Budget Research at Statistics Netherlands, in which a 
new smart survey application is developed to accommodate a new ways of data collection for 
the Household Budget Survey. Its development ran in parallel with the SSI WP3-project and had 
overlapping themes and objectives. 
 
The remainder of this annex is structured as follows. First are the Methods in Section 2, where 
we first describe the data set in detail, the ML components featured in the benchmarks, the 
train-test splits, and finally the procedure in which we assess the benchmarks. Next, we present 
the results of the benchmarks in Section 3, and then the conclusion and discussion in Section 4. 
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2. Methods 

Two benchmarks will be evaluated as mentioned in the introduction: one for the feature 
extractors, the other for ML algorithms. Both benchmarks will be performed using the same 
data set, which is described in Section 2.1. Section 2.2 outlines the list of feature extractors and 
ML algorithms included in the benchmarks. More detail on the train-test splits for 
benchmarking will be performed are described in Section 2.3. Finally, we will describe the 
assessment procedure in Section 2.4.  

2.1 Data 

2.1.1 Raw data 
The data used for the benchmarks consists of the product inventories from three supermarkets 
in the Netherlands: LIDL, Plus, and AH (Albert Heijn). The data is organized by week, showing all 
the products offered by the supermarkets each week. This structure enables us to track which 
products were introduced or discontinued over time.  
 
The data set has been supplemented with COICOP 1999 label data, obtained from the 
department for CPI (Customer Price Index) at Statistics Netherlands. This is indeed an older 
standard than the intended classification standard of COICOP 2018. Consequently, all 
evaluations were done with the COICOP 1999. 
 
The two relevant features for the ML evaluations are the receipt texts and the COICOP-labels. A 
description and an example of the features are shown in Table 1. A COICOP code consists of six 
numbers, with each digit corresponding to a hierarchical level (also called COICOP-level). The 
first level is an exception of this rule by consisting of two digits. As an example, the product 
labeled with code 011410 indicates that it belongs to category “01: food and non-alcoholic 
drinks” in COICOP level 1, and in “011: food” looking at the proceeding digit.  
 
Table 2 gives a full overview of the number of records, unique products and receipts of the raw 
data. The data consists mainly of food and non-alcoholic drink products (65% of the data), 
followed by the label “CPI Internal Label” (15%). These were marked by the CPI-group indicating 
either that they still needed labeling or that they were irrelevant for their own research. We 
emphasize that although CPI marks them irrelevant, they might be relevant for another 
research. All other categories form just 20% of the remaining products. In the same table, we 
see that the number of receipt texts is considerably lower than the number of unique products. 
This means that there are many products sharing the same receipt text.  
 
Table 3 shows the number of records in the data set as by COICOP category. Being a 
disproportionally large category, “01: Food and non-alcoholic drinks” also consists of many 
more subcategories, with as many as 58 subcategories in COICOP level 5 compared to others. 
While the table shows the COICOP distribution for the whole data set, we also note that the 
distribution differs significantly among the three stores. 
 
In comparison with the receipt data set used by DeStatis, similarities include that both data sets 
are limited to products from domestic supermarkets, which excludes foreign supermarkets and 
other types of stores such as DIY or clothing stores. Differences include the fact that DeStatis 
has an additional set of real receipts for testing aside from the CPI-data. These were scanned 
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using OCR (Optical Character Recognition) and were then manually labeled with the COICOP-
category. Having a set of real receipts allows better testing against OCR errors and other real-
world issues. 
 

Feature Name Description Example 
Receipt Text Used as input feature / 

independent variable. The 
maximum number of 
characters of a receipt texts 
differs per supermarket. 

Milk 

COICOP Label Used as classification label / 
dependent variable. 
According to the COICOP 
1999 categorization 
standard.  

011410 

Table 1: The features used in the ML benchmarks. 

 
Store Name Number of 

records 
Number of unique 

products 
Number of unique 

receipt texts 
Plus 7.119.674 342.340 204.840 
Albert Heijn (AH) 1.214.392 66.578 13.559 
Albert Heijn 
Franchise 

1.866.896 62.715 12.737 

Lidl 413.280 31.748 31.748 
Total 10.792.125 445.047 248.279 

Table 2: Number of records, product and receipt texts in the data set, broken down by 
supermarket. 

 
COICOP Level 1 Category Number of 

records 
Proportion of 

whole (rounded) 
Number of 

COICOP Level 5 
categories 

01: Food and Non-Alcohol 
Beverages 

7.044.019 65% 58 

99: CPI Internal label 1.638.121 15% 1 
09: Recreation and Culture 703.551 7% 16 
02: Alcoholic Beverages, Tobacco, 
and Narcotics 

552.531 5% 12 

05: Furnishings Household 
Equipment and Routine Household 
Maintenance 

352.381 3% 12 

12: Personal Care 247.260 2% 4 
03: Clothing and Footwear 92.355 1% 8 
06: Health 88.214 1% 3 
11: Restaurant and 
accommodation services 

67.754 1% 1 

08: Communication 5.939 <1% 2 
Total 10.792.125 100% 117 
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Table 3: Number of records per category in COICOP Level 1. 

2.1.2 Preprocessing steps 
The raw data described in the previous section were subject to the following preprocessing 
steps: 
 

1. Remove instances if their receipt text entry is missing. 
2. Remove instances where the receipt text consists of only one character. 
3. Remove instances with COICOP label 999999. (indicates that the product is irrelevant 

for the internal department at Statistics Netherlands). 
4. The records belonging to “AH Franchise” were merged into “AH”. AH Franchise 

includes the smaller, convenient store branding of the chain, such as AH To-Go.  
5. Drop duplicates instances by receipt texts and COICOP-labels. This means that one 

instance with the exact same combination of receipt texts and COICOP-labels is kept, 
but instances may share the same receipt text as long as the COICOP-labels differ. 

 
These steps are performed separately on the training and test sets after the train-test splits.  
This combined with Preprocessing Step 5, therefore means that some products in the training 
set may also occur in the test sets. This is particularly true if we split the data by some date, as 
the product inventory of a store before the period is likely to overlap with the inventory after it. 
Whereas overlap between training and test sets is normally avoided in ML, this was deliberately 
done for reasons which will be described in the sections about the train-test splits in Section 
2.3.  
 
Instances with label 99999 “CPI Internal Label” were also removed. The naïve reasoning behind 
this was that we believed that these products were “irrelevant”. Further, we misjudged that 
they could easily be filtered out beforehand. But this neglects new receipt texts with this label, 
which cannot be filtered out since they are unknown. Neglecting these receipts could heavily 
influence the evaluation results. In hindsight, the right way of testing was to include these 
instances at least in the test sets. 

2.2 ML Components in the Benchmarks 

2.2.1 Feature Extractor Benchmark 
Table 4 lists all feature extractors considered in this benchmark. The feature extractors included 
can be categorized into two types. The first type of extractors is based on token frequencies, 
which means that they convert a receipt text consisting of tokens (words, or clusters of 
characters) into a numerical vector representing their occurrences. Tokenization on character-
level is particularly relevant for receipt texts, as they typically contain few words and 
abbreviations. Each receipt text is tokenized into character n-grams, where the n in n-gram 
refers to the number of characters in each token. For example, the tokenization of the word 
“cheese” by character 4-grams would yield the following tokens: “chee”, “hees”, “eese”. N-
gram tokenization can also be done on word-level, which means that the tokens consist of 
combinations of words, e.g. a word 2-gram tokenization of the text “hamburger cheese 
cheddar” yields the following tokens: “hamburger cheese”, “cheese cheddar”. Feature 
extractors with tokenizers on both word-level as well as character-level are included in the 
benchmark. 
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The second type of extractors are based on pretrained word-embeddings. Word-embeddings 
involve the clustering of a set of tokens in a high-dimensional space, where semantically similar 
tokens are clustered together, and dissimilar ones are placed further from each other. For 
example, consider the word-tokens cheese, milk, and lettuce. Since cheese and milk are dairy 
products, they will be closer to each other in the high-dimensional space than with lettuce. They 
are therefore semantically more similar to each other. When used for receipt texts, the feature 
extractors convert the texts into high-dimensional vectors, where similar products should be 
mapped close to each other.  
 
Since it takes a considerable amount of data and processing power to train word-embeddings 
from scratch, we have only included pre-trained embeddings downloaded available online. 
Although it is possible to further fine-tune the embeddings by “re-training” or calibrating them 
on our data set, we were unfortunately not able to do so due to a lack of computational 
resources. 
 
Since the performances of the feature extractors cannot be evaluated in isolation, i.e. without 
an ML algorithm, each feature extractor will be evaluated using the same classifier: the SGD-
variant of the Logistic Regressor (SGDClassifier in Scikit-Learn). We use this algorithm because it 
handles the full data set in batches, therefore bypassing the issues above. The best performing 
feature extractor in this benchmark will be used on all candidates in the ML algorithm 
benchmark. These are shown in Appendix A. 
 

Feature Extractor Description 
Count Vectorizer (Word) Based on token frequency. 
Count Vectorizer (Character n-grams) 
Hashing Vectorizer (Word) Based on token frequency. Approximation of 

the count vectorizer using the hashing. It 
provides similar performance but has faster 
fit and transformation time. 

Hashing Vectorizer (Character n-grams) 

Tfidf Vectorizer (Word) Based on token frequency. Fundamentally 
the same as the count vectorizer, but with 
normalization of the tokens by relative 
occurrence on the whole data set. 

Tfidf Vectorizer (Character n-grams) 

Spacy Model (BeRT) Based on word-embeddings. We used the 
pretrained nl_core_news Spacy models in 
sizes small, medium, and large1. These are 
only evaluated by out-of-box performance. 
They are therefore not finetuned on the 
data. 

Table 4: The feature extractors included in the feature extractor benchmark. 

2.2.2 ML Algorithm Benchmark 
Table 5 lists the candidates for the ML algorithms benchmark. We have tried to include a wide 
variety of ML algorithms ranging from simple regression models to decision tree-based ones. 
Some non-ML algorithms were included in the list for comparison: the exact string-matching 
algorithm, the constant-predictor and the string-matching pipeline developed by DeStatis. The 
pipeline by DeStatis is a string-matching pipeline involving a combination of exact and fuzzy 

 
1 https://spacy.io/models/nl 
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string-matching techniques. We have included two variants of this pipeline: one including the 
procedure that matches products based on article IDs and one without. The procedure was 
included in the original implementation, but provides an unfair advantage over other algorithms 
by using the article ID as an auxiliary variable.  
 
Not all candidates in Table 5 are trained on the same amount of data. These algorithms are 
marked with an asterisk and are trained on a random sample of 100.000 instances from the 
training data rather than the full data set. This due to computational constraints of the Scikit-
Learn library, where most algorithms were designed to handle around 100.000 instances during 
training.i Although it seems unfair to compare models trained on differing amounts of data, it 
does show the inherent strengths and limitations of the various ML algorithms. We have further 
fixed the randomization seeds to ensure similar random samples across algorithms.  
 
The only ML-algorithm in the list trained on the full data set is the SGD-variant (Stochastic 
Gradient Descent) of Logistic Regression (SGDClassifier in Scikit-Learn). Since it fits models in 
batches of a data set as opposed to the entire set at once, it bypasses the memory-related 
issues.  
 
Like in the feature extractor benchmark, all ML algorithms here will be evaluated with the same 
feature extractor. The feature extractor used here is determined by results of the feature 
extraction benchmarks. 
 

ML Algorithms Description 
Logistic Regression* Fit on only 100.000 instances. 
Logistic Regression SGD (Stochastic 
Gradient Descent) 

Can handle the full data set. 

Naïve Bayes (Multinomial)* Fit on only 100.000 instances. Classifies entries 
based on the prior distribution in the training 
data. 

Random Forest Classifier * Builds an ensemble of decision trees, where 
each is fitted on a random sample of a max. 
100.000 instances. 

Multilayer Perceptron Classifier* Fit on only 100.000 instances. 
Constant Predictor Fits the prior of a class given an instance. Fit on 

only 100.000 instances. 
Exact String-matching Algorithm Can handle the full data set. Involves a simple 

look-up procedure in the training set: if there is 
a one-on-one match with a receipt text in the 
training set, the same COICOP-class will be 
assigned as the matching entry. Otherwise, the 
string-matching algorithm assigns a dummy 
class. 

DeStatis String-Matching Pipeline Uses the full data set as corpus. Features a 
combination of exact and fuzzy string-matching 
techniques, but also a procedure for matching 
products by article ID. 

DeStatis String-Matching Pipeline (w/o 
article-ID matching) 

Same as above, but skips the matching 
procedure by article ID. 
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Table 5: The list of algorithms considered in the benchmarks of ML algorithms. Some non-ML 
algorithms are also included. 

2.3 Train-test Splits for Benchmark Assessment 
The benchmarks will be assessed on two train-test splits: the split by time and a split by 
supermarket. The former tests ML on the degree of performance stability over time; and the 
latter on the ability to deal with receipt texts from previously unseen supermarkets. 

2.3.1 Train-test split by Date: performance stability over time 
Supermarkets perpetually introduce new products. Consequently, new receipt texts are also 
continuously being created. One important criterion that a ML model must possess is therefore 
robustness against this changing environment. We can simulate this scenario by splitting the 
data on some period t, where all receipt texts occurring before period t will be used for training, 
and the receipt texts after this period will be used for testing. The subsequent periods t+1, t+2 
… will be tested on individually to track the performance over time. If a model performs well on 
all periods, it can be said that the model shows stable performance. If this is not the case, then 
we conclude that the model performance is not robust over time. 
 
The period we have chosen for the split was June 1st, 2023 – all receipt texts before this date 
formed the training set and the data from periods June, July, and August 2023 each form 
independent test sets. The split was chosen in such a way that all supermarkets are reasonably 
represented in all training and test sets. Table 6 shows the number of instances in the data sets 
after this split and the preprocessing procedure as described in Section 2.1.2. The table shows 
that the distribution by supermarket differs significantly in the sets, with AH occupying a larger 
share in the test sets. The sets contain more instances than the number of the unique receipts 
as they may contain duplicate records with matching receipt texts but different COICOP-label. 
 
With this assessment procedure, we hold the following assumptions:  

• Firstly, we test only on receipt texts from known supermarkets (AH, Lidl, Plus), i.e. the 
test sets do not include supermarkets not found in the training set. The results 
therefore indicate the performance stability for these supermarkets only – and not on 
supermarkets not encountered by the model. 

• We allow an overlap of receipt texts between the training and test sets, meaning that 
some receipt texts may occur in both sets. This was a deliberate assumption despite 
going against ML convention – as we expect a reasonable number of products, like 
eggs or milk, to remain on the shelves all the time, therefore better reflecting the real-
world scenario. 

 
The degree of overlap between the test sets and training sets heavily determines the difficulty 
of the tests – the greater the overlap, the easier the test set. This is because an ML model would 
have already seen the instances in the training set, and a simple string-matching algorithm 
would also have sufficed. To investigate the difficulty of the test sets, we have listed this degree 
of overlap in Table 7. It shows that more than 80% of the receipt texts in the text sets are also 
found in the training set, indicating that the test sets are relatively easy. However, this overlap 
does decrease rapidly over time: from 86% in June to 81% in August. This means that as time 
passes, the difficulty also increases since more and more new unseen products are introduced. 
There are also differences across supermarkets, with Plus having a lower rate of overlap (< 80%) 
than AH and Lidl (both >90%), meaning that Plus is harder to classify than the others. 
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Supermarket Training set  
(< June 2023) 

 Test set  
June 2023 

 Test set  
July 2023 

 Test set  
Aug. 2023 

n %  n %  n %  n % 
Plus 399.315 89  49.119  67  64.179 72  49.620 67 
AH 21.189 5  19.632  27  20.177 23  20.265 27 
Lidl 24.964 6  4.362 6  4.385 5  4.361 6 
Total 445.468 100  73.113 100  88.741 100  74.248 100 

Table 6: The number of unique receipt texts in the training and test sets and the breakdown 
per supermarket after preprocessing. 

 Instances in Test set Instances overlapping with training set 
n n % 

Test set Jun 2023    
Plus 49.119  43.429 79 
AH 19.632  19.306 97 
Lidl 4.362 4.125 95 
Total 73.113 66.860 86 
    
Test set Jul 2023    
Plus 64.179 55.747 95 
AH 20.177 19.508 90 
Lidl 4.385 3.961 77 
Total 88.741 79.216 83 
    
Test set Jul 2023    
Plus 49.620 42.370 94 
AH 20.265 19.449 85 
Lidl 4.361 3.698 76 
Total 74.248 65.518 81 

Table 7: The number and percentage of receipt texts in each test sets overlapping with the 
training set, i.e. the receipt texts that are also found in the training set. 

2.3.2 Train-test split by supermarket: performance on unseen supermarkets 
Testing how well ML can classify receipt texts from previously unseen supermarkets is very 
important with regards to the real-world usage. Especially since the nature of the receipt texts 
can differ significantly across supermarkets in terms of character length, and the types of 
products that are sold (de Jong, Lam, & Puts, 2024). If a ML model performs well on 
supermarkets not encountered during training, then it means that it can be used on a wide 
range of supermarket, therefore defining the scope on which it can be used.  
 
To simulate the conditions in which an ML model is faced with receipt texts from previously 
unseen stores, we perform multiple train-test splits where repeatedly one supermarket is left 
out for testing and the remaining ones are used for training. Table 8 shows all three 
combinations of splits by supermarket. The ratio between the training and test sets can differ 
significantly by size differ per split due to Plus having an unproportionally large number of 
instances. Theoretically, this means that split 3 is the hardest since there is much less data to 
train from. 
 

 Training set Test set 
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Split nr. Supermarkets n Supermarket n 
1 Lidl, Plus 476.946 AH 26.198 
2 AH, Plus 477.425 Lidl 25.719 
3 AH, Lidl 51.917 Plus 451.227 

Table 8: All combinations of train and test sets after splitting by supermarket. The numbers 
shown are the results after preprocessing. 

2.4 Assessment Procedure 
All training and test sets in the splits above are preprocessed individually with the procedure 
described in Section 2.1.2.  
 
We perform a grid search to find the best hyperparameters for the training set, where one 
month of receipt texts for the split by time. Similarly for the split by supermarket, one 
supermarket in the training set is held out as validation set. The log-loss score was used as 
optimization criterion.Once the best performing hyperparameter is found for each ML 
component, they are fitted on the full training set and then evaluated on the test sets by 
accuracy, recall, and precision, balanced accuracy, f1-score, and log-loss. All training and testing 
are done in COICOP level 5. Analyses on higher COICOP levels are done by aggregating the labels 
from level 5. 

Quantification 
Aside from analyzing the individual classifications, the quantifications are often more important 
with regards to the statistical purposes. Quantification refers to estimating the class 
distributions of an unlabeled test set (Forman, 2005). In practice, it entails classifying an 
unlabeled data set using an ML model, and then counting the number instances that was 
assigned to each class. Quantification is especially relevant if the main purpose is the statistical 
analysis on an aggregate level, which is the case for our current problem. 
 
The COICOP classification scheme is hierarchical, meaning that analysis on various levels of 
aggregation is possible. With this purpose in mind, the first question is whether the 
quantifications done by ML are good enough. At which level does over- and underestimation 
start to become problematic? To determine this, we examine the quantifications made by the 
best ML algorithm in our benchmark on various COICOP levels. In our evaluations, we aggregate 
labels by first letting the best ML model classify a test set as usual on COICOP level 5 and then 
truncating the category codes to the desired level, e.g. aggregating from level 5 to levels 1 and 3 
for code 012340 will result in codes 01 and 0123. 
 
The levels of aggregation that we assess are level 1, level 3 (only the subcategories under 01: 
Food), and lastly the worst over- and underestimated in COICOP level 4. The test sets on which 
this analysis will be performed, will be the most challenging test sets for the two types of train-
test splits described above. The August 2023 test set will be selected for the train-test split by 
time due to it being the “newest” of the test sets, and the Plus test set will be used for the train-
test split by supermarket because of its comparatively large size. 
 
We assess quantifications by comparing the estimated number for the classes with the actual 
number according to the ground truth. The further apart the numbers are, the worse the 
quantifications. To assist the analysis for this comparison, we introduce the comparability ratio 
(CR) metric  (Harteloh, 2020). Translated to our COICOP classification problem, a CR is defined 
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as: the estimated number of a COICOP category (x) by the ML model divided by the number of 
the same COICOP category (x) according to the ground truth of the same test set: 
 

𝐶𝑅(𝑥) =
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑥	𝑏𝑦	𝑀𝐿	𝑚𝑜𝑑𝑒𝑙

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑥	𝑖𝑛	𝑔𝑟𝑜𝑢𝑛𝑑	𝑡𝑟𝑢𝑡ℎ  

 
The CR is a measure of misestimations by the ML model relative to the ground truth. A CR close 
to 1.00 means that the estimated number is close to the ground truth. The greater or lower the 
number, the sever the overestimation or underestimation by the ML model, respectively. 
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3. Results 

In this section we first report the results of the benchmark for the Feature Extractors in 
Subsection 3.1 and then for the ML algorithms in Subsection 3.2. The best performing feature 
extractor in the former section will then be used in all evaluations of the benchmark in the 
latter section. The benchmark is first assessed on the performance stability over time and then 
on the performance on receipt texts from previously unseen stores. Both benchmarks will be 
evaluated on two types of train-test splits: first the splits by time and then by supermarket. 

3.1 Feature Extractor Benchmark 

3.1.1 Train-test split by time: Performance Stability over Time 
Table 9 shows the accuracy scores from benchmarking the feature extraction techniques on test 
sets from three consecutive months. Being the accuracy scores on the whole test sets, the 
scores reflect the proportion of all receipt texts that were correctly classified. All feature 
extractors were trained and evaluated using the same classifier: the Stochastic Gradient 
Descent variant of Logistic Regression (SGDClassifier). Additional scores, such as the precision, 
can be found in Appendix B. 
 
The frequency based-extractors (i.e. Tfidf, Count, and Hashing Vectorizers) perform best, of 
which the character n-grams ones perform better than the word-based ones. Overall, the scores 
do not differ much over the different test sets, suggesting that all feature extractors yield stable 
performances over the months even though the overlap between test sets is less than 50%. The 
best scoring feature extractor in this evaluation is the Tfidf vectorizer with character n-grams. 
The Spacy Model performs worst. This is, however, because it had not been finetuned on the 
data, making it an unfair comparison. Other metrics characterizing the results are included in 
Appendix . 
 
Since the test sets has more receipt texts from some stores than the others (on average: Plus 
70%, AH 25%, Lidl 5% as presented earlier) we further show the accuracy scores of each test set 
with respect to each store in Table 10. Here, we observe that receipt texts from AH are on 
average more difficult to classify. Character n-grams extractors seem to consistently (85% - 
88%) yield better results for this supermarket than when word tokenizers are used (82% - 83%). 
This falls in line with the observation that AH has shorter receipt texts than the others (de Jong, 
Lam, & Puts, 2024), where the longest text for AH consists of 12 characters, while Lidl and Plus 
respectively have 35- and 20-character limits. Feature extractors using character n-grams can 
therefore significantly improve the scores on shorter receipt texts. 
 

Feature Extractor Jun 2023 Jul 2023 Aug 2023 Mean tests 

Tfidf Vectorizer (Char. n-grams) 89,9 89,4 88,8 89,4 ± 0,6 

Count Vectorizer (Char. n-grams) 88,7 88,2 87,6 88,2 ± 0,6 

Hashing Vectorizer (Char. n-grams) 88,8 88,3 87,7 88,3 ± 0,6 

Hashing Vectorizer (Word) 86,4 86,0 85,3 85,9 ± 0,6 

Tfidf Vectorizer (Word) 86,7 86,1 85,5 86,1 ± 0,6 

Count Vectorizer (Word) 86,2 85,7 85,1 85,7 ± 0,6 

Spacy Model (BeRT) 37,6 37,0 37,3 37,3 ± 0.3 
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Table 9: The accuracy scores of the feature extractors on the train-test split by time. The test 
sets shown are June, July and August 2023. The column Mean tests show the mean and 
standard deviations (prefixed with the ± symbol) of one candidate over all three tests. 

 
Supermarket AH  Lidl  Plus 

Test sets (2023) Jun Jul Aug  Jun Jul Aug  Jun Jul Aug 

Tfidf Vectorizer (Char. n-grams) 88 87 87  91 91 89  91 90 90 

Count Vectorizer (Char. n-grams) 86 85 85  90 89 88  90 89 89 

Hashing Vectorizer (Char. n-grams) 86 85 85  90 89 88  90 89 89 

Hashing Vectorizer (Word) 83 82 82  87 86 84  88 87 87 

Tfidf Vectorizer (Word) 83 83 82  87 86 85  88 87 87 

Count Vectorizer (Word) 82 82 82  87 86 85  88 87 86 

Spacy Model (BeRT) 34 34 34  46 46 45  38 37 38 

Table 10: : The accuracy scores of the feature extractors per supermarket on the test sets 
June, July and August 2023. 

3.1.2 Train-test split by supermarket: Performance on Unseen Supermarkets 
Table 11 shows the accuracy scores of the feature extractors when tested according to the 
train-test splits by supermarket. Again, other metrics of the same tests can be found in 
Appendix B. Like in the previous subsection, all feature extractors were trained and evaluated 
with the same classifier: the Stochastic Gradient Descent variant of Logistic Regression 
(SGDClassifier). We first notice that the scores overall are low, with none of the feature 
extractors scoring over 50%. But the ones based on character n-gram tokens perform better 
than the ones based on word tokens: both in raw accuracy scores (46% - 48% for character n-
grams tokens compared to 43% - 44% for word tokens) and the standard deviation over the 
various supermarkets (2% versus 4%). The winner in this assessment is also the Tfidf-vectorizer 
with character n-grams. 
 
Generally, the results show that Plus was harder to classify than the other supermarkets. This is 
not surprising considering the great imbalance in size of the training and test data sets. The 
feature extractors had substantially less data to train on and more data that had to be classified, 
making the evaluation of Plus a difficult task. Meanwhile, the evaluations on the other 
supermarkets allowed models to train on the large data set of Plus while having a relatively 
small (and therefore easier) test set. 
 

Feature Extractor  Split 1: 
AH 

(n=26.198) 

Split 2: 
Lidl 

(n=25.719) 

Split 3: 
Plus 

(n=455.227) 

Mean tests 

Tfidf Vectorizer (Character n-grams) 50,0 49,7 45,5 48,4 ± 2,5 

Hashing Vectorizer (Character n-grams) 48,4 49,3 45,0 47,6 ± 2,2 

Count Vectorizer (Character n-grams) 46,7 46,5 43,6 45,6 ± 1,7 

Tfidf Vectorizer (Word) 47,7 44,8 39,2 43,2 ± 4,0 

Count Vectorizer (Word) 46,4 45,0 39,0 43,9 ± 4,3 

Hashing Vectorizer (Word) 47,0 43,6 39,1 43,5 ± 3,9 

Spacy Model (BeRT) 13,6 14,0 17,5 15,0 ± 2,1 
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Table 11: The accuracy scores of the feature extractor benchmark on the train-test split by 
supermarket 

3.1.3 Best Feature Extractor for Receipt Texts 
From the evaluations of the two train-test splits in the previous subsections, we can conclude 
that the Tfidf-vectorizer with character n-gram tokens is best suited for handling receipt texts. 
The use of character n-grams appears to be the key. We suspect that this is due to the nature of 
the receipt texts, where the texts are short, typically consisting of only a handful of words and 
abbreviated words. This is particularly evident in the performance differences among 
supermarkets. Character n-gram ones may provide up to a 5% increase in accuracy compared to 
word-based ones on AH, where its receipt texts are distinctively shorter than the other 
supermarkets.  

3.2 Benchmark ML Algorithms 
In this section we benchmark the ML algorithms against each other. All ML algorithms are 
evaluated with the character n-gram Tfidf vectorizer, the winner of the feature extractor 
benchmark in the previous section. Similar to what was done there, we first evaluate the ML 
algorithms on the train-test split by time in Section 3.2.1, and then on the train-test split by 
supermarket Section 3.2.2. 

3.2.1 Assessment Train-test split by time: Performance Stability over Time 
Table 12 shows the accuracy scores of the ML algorithms over all the three test sets. Table 13 
shows the same results by supermarket in the test sets. All algorithms were evaluated with the 
same feature extractor: the Tfidf-vectorizer fit on character n-gram tokens. We remind the 
reader that some ML algorithms were trained on a random sample of 100.000 receipt texts 
rather than the full data set as described earlier in Section 2.2. More scores can be found in 
Appendix B. 
 
We first notice that a simple exact string-matching algorithm can already achieve reasonable 
performance (> 80% on all three tests), indicating that the tests are not too difficult due to the 
considerable overlap between training and test sets. However, the same algorithm does show a 
performance degradation of 1% - 2% per month caused by the introduction of new products.  
 
While a similar trend is observed for the ML algorithms, the decline is less rapid, with an overall 
performance decrease of around 0,5% per month. But aside from being able more stable, the 
best ML-algorithm also performs better than string-matching (mean accuracy of 89% compared 
to 83%). The most significant improvement can be seen on the set of Lidl receipts in Table 13. 
The pipeline by DeStatis scored quite similarly to the best ML algorithm, even outperforming 
them on some store-specific evaluations in Table 13. But once the article ID matching is 
removed, the pipeline scored similarly to Random Forest. 
 
However, among the ML-algorithms, we do notice that the models trained on a random sample 
(Regular Logistic Regression, Multilayer Perceptron, and Naïve Bayes) performed worse than 
the ones trained on the full data. This is especially evident for receipt texts from AH or Lidl as 
shown in Table 13. We suspect that this is because these stores form a small part of the training 
data, which means that their probability from being sampled in the random sample is even 
smaller. 
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Table 14 and Table 15 show the quantifications of the SGD-variant of Logistic Regression on the 
August 2023 test set in COICOP levels 1 and 3 (Food and non-alcoholic drinks only), respectively. 
The tables show the estimated and actual number in each category. Here we see that the 
estimations in the higher COICOP levels are well within 5% from the actual numbers, barring 
some minority categories. However, as soon as we zoom in to COICOP level 4 as shown in Table 
16, we observe some worst cases of over- and underestimations. This suggests that the 
information on receipt texts seems to be insufficient for the required preciseness of some 
categories in COICOP level 4. 
 
Upon manual inspection of the misclassifications, we have found the following cases: 

• Ambiguity in receipt text 
o Receipt text consists of only a brand name, where brands may produce 

various types of products. 
o Receipt text contains insufficient information for the required preciseness of 

the target category. Some examples: 
§ “AH Garnalen” (AH Shrimps) to fresh or chilled seafood or fresh or 

chilled seafood; 
§ “AH zalmfilet” (AH Salmon filet) to Frozen Fish or Fresh or chilled fish; 
§ “Boek” (Book) to category fiction or non-fiction; 
§ “AH pasta” to pasta products and couscous or ready-made meals. 

• Receipt texts with incorrect labels (ground truth) 
o “Proteinbar wit choc” labeled as Magazines and periodicals. 

• Ambiguity due to miscellaneous subcategories: 
o “Olijfolie” (Olive oil) were sometimes labeled as Other food products while 

classified Olive Oil. 
 

ML Algorithm Jun 2023 Jul 2023 Aug 2023 Mean tests 
Logistic Regression (SGD) 89,9 89,4 88,8 89,4 ± 0.5 
DeStatis Pipeline 89,9 88,8 88,2 89,0 ± 0,7 
Random Forest Classifier** 89,9 89,2 88,6 89,2 ± 0.7 
DeStatis Pipeline (w/o art. ID matching) 88,3 87,4 86,7 87,5 ± 0,7 
Exact String-Matching Algorithm 84,6 82,7 81,5 82,9 ± 1.5 
FastTextClassifier 82,2 82,1 80,4 81,6 ± 0.4  
Multilayer Perceptron Classifier* 81,4 81,7 80,8 81,3 ± 0.4 
Logistic Regression* 77,7 78,0 77,4 77,6 ± 0.5 
Naïve Bayes (Multinomial)* 77,4 77,6 76,8 77,3 ± 0.4 
Constant Predictor 9,9 10,5 9,9 10,1 ± 0.3 

Table 12: The accuracy scores in % of the ML-algorithms on the three test sets: June, July and 
August 2023. The column “Mean tests” show the mean and standard deviations (prefixed 
with the ± symbol) over all three tests. 
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 AH  Lidl  Plus 

 Jun Jul Aug  Jun Jul Aug  Jun Jul Aug 

Logistic Regression (SGD) 88 87 87  91 91 89  91 90 90 

DeStatis Pipeline 93 92 92  93 92 89  88 87 87 

DeStatis Pipeline (w/o art. ID matching) 88 87 87  92 91 88  88 87 87 

Random Forest  87 87 86  91 90 89  91 90 89 

Exact String-Matching 88 87 86  88 84 79  83 81 80 

FastTextClassifier 69 70 71  79 82 80  81 84 82 

Multilayer Perceptron 70 69 69  78 77 76  86 86 86 

Logistic Regression 63 63 63  73 73 72  84 83 83 

Naïve Bayes (Multinomial) 66 66 66  75 75 74  82 81 81 

Constant Predictor 7 6 6  7 8 8  12 12 12 

Table 13: The accuracy scores of the ML algorithms per supermarket on the test sets June, July 
and August 2023. 

 
COICOP Level 1 Actual Aug (n) Est. Aug (n) CR 
1: Food and Non-Alcohol Beverages 60.078 60.084 1,00 
2: Alcoholic Beverages, Tobacco, and Narcotics 6.120 6.202 1,01 
3: Clothing and Footwear 415 415 1,00 
5: Furnishings Household Equipment 2.463 2.481 1,01 
6: Health 207 230 1,11 
8: Communication 15 14 0,93 
9: Recreation and Culture 3.444 3.388 0,98 
12: Personal Care 1.506 1.434 0,95 

Table 14: The number of estimated and actual number of receipt texts COICOP categories, 
aggregated by COICOP-level 1. 

 
COICOP Level 3 (01: Food & Non-alcoholic drinks only) Actual Aug (n) Est. Aug (n) CR 
0111: Bread and cereals 12.599 12.710 1,01 
0112: Meat 10.715 10.785 1,01 
0113: Fish and seafood 1.059 1.096 1,03 
0114: Milk 7.164 7.252 1,01 
0115: Oils and fats 366 368 1,01 
0116: Fruit 2.218 2.252 1,02 
0117: Vegetables 6.642 6.580 0,99 
0118: Sugar, jam, honey, chocolate, and confectionary 3.505 3.688 1,05 
0119: Food products 12.153 11.669 0,96 
0121: Coffee, tea, and cocoa 1.123 1.149 1,02 
0122: Mineral waters, soft drinks, fruit and vegetable juices 2.534 2.535 1,00 
Total 60.078 60.084  

Table 15: The number of receipt texts classified to the COICOP categories belonging under 
category 01: Food & Non-alcoholic drinks. 
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COICOP Level 4 Actual Aug (n) Est. Aug (n) CR 

01153: Olive oil 38 54 1,42 
09311: Pre-recorded diskettes and CD-ROMs … 3 4 1,33 
09521: Newspapers 93 121 1,30 
09549: Toner and ink-cartridges 253 328 1,30 
12329: Other personal effects (miscellaneous) 22 27 1,23 
… … … … 
09530: Miscellaneous printed matter 165 68 0,41 
09511: Fiction books 182 63 0,35 
01134: Frozen seafood 9 3 0,33 
01132: Frozen fish 12 3 0,25 
09513: Other non-fiction books 36 3 0,08 

Table 16: The worst instances of over- and underestimated categories in COICOP Level 4. 

3.2.2 Assessment Train test split by supermarket: Performance on Unseen Supermarkets 
In this subsection, we benchmark the ML algorithms against each other to test their 
performances on receipt text from unseen supermarkets. Table 17 shows the accuracy scores of 
the algorithms. Again, all algorithms were evaluated along with the same feature extractor: the 
Tfidf Vectorizer on character n-gram tokens. The algorithms that were fit on a random sample 
of a maximum of 100.000 instances are marked with an asterisk. More scores can be found in 
Appendix B. 
 
Overall, we see that none of the algorithms could score higher than 50%. The highest average 
accuracy over all three splits is 48,1% by SGD Logistic Regression. However, all ML algorithms 
performed the the string-matching algorithms by a large margin, including the string-matching 
pipeline by DeStatis. This therefore indicates that, string-matching is not very effective on 
unseen supermarkets due to the large differences in receipt texts across supermarkets. 
 
When comparing the various supermarkets, we again observe that the results in Plus are 
generally lower than the other supermarkets. But as explained in the previous section, this is 
likely due to the differences in sizes of the test sets. 
 
Table 18 and Table 19 show the estimated and actual number instances by counting 
classifications and aggregating them to COICOP levels 1 and 3. These tables show that 
substantial over- and underestimations may occur on level 1, especially for non-food products. 
However, zooming in on only food-products in COICOP level 3, we see that most categories are 
estimated to be within 20% from the ground truth. In the worst over- and underestimations of 
COICOP level 4 in Table 20, however, we see that some categories in the finer grained levels 
may still be severely over- or underestimated. Therefore, again supporting the argument that 
receipt texts are not sufficient for disambiguating between the finer grained categories in 
COICOP level 4 and lower. 
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ML Algorithm Split 1: 

Test AH 
(n=26.198) 

Split 2: 
Test Lidl 

(n=25.719) 

Split 3:  
Test Plus 

(n=455.227)   

Mean tests 

Logistic Regression (SGD) 49,6 45,3 49,5 48,1 ± 2,0 

Multilayer Perceptron Classifier* 43,7 45,4 45,0 44,7 ± 0,7 

Random Forest Classifier** 46,7 44,9 41,8 44,5 ± 2,0 

Naïve Bayes (Multinomial)* 47,3 45,3 43,4 45,3 ± 1,6 

Logistic Regression* 42,0 45,1 44,7 43,9 ± 1,4 

FastTextClassifier 43,2 33,7 39,0 38,7 ± 3,9 

DeStatis pipeline 35,9 10,0 10,9 18,9 ± 12,0  

DeStatis pipeline (w/o article matching) 21,6 10,0 8,2 13,3 ± 5,9 

Constant Predictor 6,4 6,9 13,1 8,8 ± 3,8 

Exact String-Matching 4,7 2,9 0,7 2,8 ± 1.6 

Table 17: The accuracy scores of the ML algorithms on the train-test splits by supermarket.  

COICOP Level 1 Actual Plus (n) Est. Plus (n) CR 

01: Food and Non-Alcohol Beverages 374.870 360.399 0,96 
02: Alcoholic Beverages, Tobacco, and Narcotics 37.931 40.834 1,08 
03: Clothing and Footwear 2.960 2.097 0,71 
05: Furnishings Household Equipment 8.560 12.230 1,43 
06: Health 3.406 2.100 0,62 
08: Communication 14 3 0,21 
09: Recreation and Culture 18.333 25.163 1,37 
12: Personal Care 3.932 7.181 1,83 
Total 450.007 450.007  

Table 18: The number of estimated and actual number of receipt texts COICOP categories, 
aggregated by COICOP-level 1. 

 
COICOP Level 3 (01: Food & Non-alcoholic drinks) Actual Plus (n) Est. Plus (n) CR 
0111: Bread and cereals 99.387 99.899 1,01 
0112: Meat 70.687 68.461 0,97 
0113: Fish and seafood 4.756 5.671 1,19 
0114: Milk 36.664 32.265 0,88 
0115: Oils and fats 1.212 1.397 1,15 
0116: Fruit 13.870 14.473 1,04 
0117: Vegetables 31.533 41.157 1,31 
0118: Sugar, jam, honey, chocolate, and confectionary 19.696 22.292 1,13 
0119: Food products (miscellaneous) 81.244 57.647 0,71 
0121: Coffee, tea, and cocoa 3.757 3.535 0,94 
0122: Mineral waters, soft drinks, fruit and veg. juices 12.064 13.602 1,13 
Total 374.870 360.399  

Table 19: The number of receipt texts classified to the COICOP categories belonging under 
category 01: Food & Non-alcoholic drinks. 

 
COICOP Level 4 Actual Plus (n) Est. Plus (n) CR 

01143: Other milk and cream 127 1.069 8,42 
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01116: Pasta products and couscous 548 3.422 6,24 
01123: Meat, dried, salted, in brine or smoked 29 178 6,14 
01111: Cereals 313 1.162 3,71 
01136: Other seafood preparations 1.253 3.771 3,01 
… … … … 
01133: Bread and bakery products 488 111 0,23 
01193: Salt, condiments and sauces 1023 152 0,15 
01125: Meat, offal, blood and other parts of … animals 3254 285 0,09 
01142: Skimmed milk 1911 143 0,07 
01135: Other seafood, dried, salted, in brine or smoked 714 11 0,04 

Table 20: The worst instances of over- and underestimated categories in COICOP Level 4. 
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4. Conclusions and Discussion 

In the first benchmark we tested various feature extractors against each other. We concluded 
that a Tfidf vectorizer on character n-grams is best suited for handling on receipt texts. Which is 
sensible given that receipt texts are typically short and are filled with abbreviations. 
 
In the second benchmark we first tested ML algorithms on the train-test splits by time for 
testing the performance stability over time. When ML models only have to classify receipt texts 
from known supermarkets (i.e. supermarkets are also found in training set), we observe that ML 
models can provide better and more stable performances than regular string-matching. The 
best performing ML model, the SGD-variant of the Logistic Regression, scored 90% accuracy on 
the first month with a performance drop of 0.5% per month. This means that 90% of all receipt 
texts in the tests were classified into the right COICOP Level 5 class. The regular string-matching 
algorithm, for comparison, scored 85% on the same month and dropped 1,5% in accuracy per 
month.  
 
However, when the algorithms are expected to classify receipt texts from previously unseen 
supermarkets (i.e. not included in training set), we observed that none could score higher than 
50% accuracy on any of the supermarkets. This means that fewer than half of the receipt texts 
in the tests were correctly classified. While the results showed that ML algorithms perform 
significantly better than the string-matching alternatives, it suggests that the ML does not 
classify receipt texts from unseen supermarkets well. 
 
From examining the quantifications of various COICOP levels, we further observed that receipt 
texts were insufficient for distinguishing some of the finer-grained categories in COICOP level 4. 
In some cases, it led to substantial over- and underestimations of some specific categories. In 
comparison, COICOP levels 1 to 3 generally showed less misestimation. 
 
In conclusion, ML models can classify receipts well (90% accuracy) with a relatively stable 
performance (0,5% drop per month), but only on receipt texts from known supermarkets, i.e. 
supermarkets that are included in our training set. When this is not the case, then the expected 
performance drops to 50% accuracy. 
 
There are various reasons as to why ML models perform poorly on unseen supermarkets. The 
first is that the products can vary significantly across supermarkets. This is not only true for the 
types of products offered, e.g. Lidl regular sells non-food products such as laptops, but also for 
the brands that are featured in the stores. The second reason is due to the nature of the receipt 
texts. The maximum number of characters in receipt texts varies per supermarket, from 12 
characters for AH, to 35 characters for Lidl. Moreover, supermarkets tend to adopt different 
naming and abbreviation conventions when coming up with receipt texts. 
 
Although our results indicate that the performance degradation rate is 0,5% per month, we are 
aware that this conclusion has been drawn from only three months’ worth of test data. Two 
questions arise from this. The first is whether this rate is constant over a longer period, and the 
second is whether the performance will keep degrading to 0% or if there is some lower bound 
to which it will never drop under. While the first question remains unanswered for now, we 
may deduce an estimate for the lower bound using the current results. If we assume that the 
product inventory of a supermarket at some point diverges to such an extent that it essentially 
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becomes a different supermarket, i.e. becoming an unseen supermarket, then we may use the 
results from the other evaluations to deduce a lower bound accuracy of 50%.  
 
Some other limitations of this study include the fact that the tests on performance stability only 
featured three consecutive summer months. Results may therefore hold limited external 
validity. Preferably, we would have enough data to test on a whole year to properly evaluate 
the rate of decline and the effect of seasonality. Further, the experiments could be improved by 
adding auxiliary features of the respondent, e.g. gender, age, that may help the classification 
task.  
 
We plan on examining the following points in the future: 

• testing the robustness against OCR artefacts. Since the ML models are expected to be 
used on digitized receipt texts from OCR scans, typos are therefore bound to occur in 
the receipt texts. The current results are only valid under the assumption that receipt 
texts are perfectly scanned; 

• re-evaluating the tests by incorporating instances labeled with 999999; 
• evaluating the effect of stratification strategies during training, e.g. stratification by 

supermarket or COICOP-class on the classification performance; 
• examining correction methods to account for bias introduced by stratification 

strategies (Puts & Gootzen, 2024). 
• weighing instances during training based on their product occurrences. 
• adding features such as price, quantity, or respondent characteristics. 
• testing other ML techniques based on word-embedding, e.g. FastText and GenSim. 

especially with regards retraining pretrained models. 
• Testing the effect of seasonality. This can be done on Lidl and Plus as more data is 

available for these supermarkets. 
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6. Appendix A: Best Hyperparameters 

6.1 Feature extractors 
 

Feature Extractor Hyperparameter setting Best Hyperparameter value 
Tfidf Vectorizer (Char. n-grams) ngram_range (2, 4) 

lowercase True 
analyzer char 
binary True 

Count Vectorizer (Char. n-grams) ngram_range (2, 4) 
Lowercase True 
analyzer Char_wb 
binary True 

Hashing Vectorizer (Char. n-grams) ngram_range (2, 4) 
Lowercase True 
analyzer Char_wb 
binary True 

Hashing Vectorizer (Word) lowercase True 
analyzer word 
binary True 

Tfidf Vectorizer (Word) lowercase True 
analyzer word 
binary True 

Count Vectorizer (Word) lowercase True 
analyzer word 
binary True 

Spacy Model (BeRT) model_name “nl_core_news_md” 

Table 21: The best hyperparameters for the feature extractors from grid search 
hyperparameter optimization. 
 

6.2 ML Algorithms 
Algorithm Hyperparameter Name Hyperparameter value 
FastTextClassifier Epoch 20 

Lr 0.5 
Loss Softmax 
bucket 4.000.000 

Logistic Regression (SGD) Loss function Log loss 
Alpha 1e-6 

Logistic Regression C 10 
Solver saga 

Random Forest Classifier Max features Log2 
Max samples 100.000 

Multilayer Perceptron Alpha 0.01 

Multinomial Naïve bayes alpha 0.0001 

Constant Predictor 
(DummyClassifier) 

Strategy prior 

Table 22: The best hyperparameters for the from grid search hyperparameter optimization. 
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7. Appendix B: More in-depth results 

Algorithm Jun 2023 Jul 2023 Aug 2023 
Metric ACC PREC REC ACC PREC REC ACC PREC REC 
Logistic Regression (SGD) 89,9 86,5 83,2 89,4 85,3 84,3 88,8 86,4 83,1 

DeStatis Pipeline 89,9 85,4 88,1 88,8 85,9 87,5 88,2 87,3 86,3 

Random Forest Classifier** 89,9 87,5 81,4 89,2 87,7 81,7 88,6 88,6 79,8 

DeStatis Pipeline (w/o art. ID 
matching) 

88,3 83,2 83,8 87,4 83,9 83,4 86,7 86,0 82,1 

FastTextClassifier 82,2 73,6 73,9 82,1 74,9 75,8 80,4 75,1 74,9 

Exact String-Matching Algorithm 84,6 87,5 80,3 82,7 86,3 80,1 81,5 88,0 77,9 

Multilayer Perceptron Classifier* 81,4 80,9 57,9 81,7 81,3 58,2 80,8 81,4 57,5 

Logistic Regression* 77,7 76,3 53,1 78,0 75,6 53,6 77,4 75,8 53,1 

Naïve Bayes (Multinomial)* 77,4 75,5 60,2 77,6 72,8 62,1 76,8 74,7 61,5 

Constant Predictor 9,9 99,1 1,0 10,5 99,1 1,0 9,9 99,1 1,0 

Table 23: Additional accuracy, precision and recall scores of the algorithms on the train-test 
split by time 
 
 

Algorithm Split 1: Test AH  Split 2: Test Lidl  Split 3: Test Plus  

Metric ACC PREC REC ACC PREC REC ACC PREC REC 
Logistic Regression (SGD) 49,6 61,9 44,8 45,3 54,9 48,1 49,5 31,9 54,7 

Multilayer Perceptron Classifier* 43,7 58,5 38,6 45,4 53,5 45,4 45,0 32,5 53,0 

Random Forest Classifier** 46,7 55,9 44,2 44,9 45,6 51,5 41,8 27,2 52,6 

Naïve Bayes (Multinomial)* 47,3 53,2 45,2 45,3 44,0 51,7 43,4 31,2 53,2 

Logistic Regression 42,0 54,9 39,6 45,1 53,0 45,7 44,7 32,8 53,3 

FastTextClassifer 43,2 44,3 43,3 33,7 25,8 52,7 39,0 24,9 50,8 

DeStatis pipeline 35,9 61,7 36,0 10,0 48,5 26,0 10,9 39,0 34,7 

DeStatis pipeline (w/o article 
matching) 

21,6 53,0 25,4 10,0 49,9 24,5 8,2 34,9 30,4 

Constant Predictor 6,4 98,9 1,2 6,9 98,7 1,4 13,1 98,9 1,3 

Exact String-Matching 4,7 70,1 6,14 2,9 61,4 9,8 0,7 43,3 24,9 

Table 24: Additional accuracy, precision and recall scores of the algorithms on the train-test 
splits by supermarket 
 

 
i Scikit-learn chart: https://scikit-learn.org/stable/machine_learning_map.html 
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Annex 2: Mode of transport 

See .pdf Annex_WP3 SSI_GEO-TRANSPORTMODE. 
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1 Introduction
An integral component of smart time-use, travel, and mobility surveys is the ability
to predict respondents’ modes of transportation, thereby minimizing the necessity
for manual data labeling and reducing the response burden. This report documents
the development of a transport mode prediction algorithm specifically designed for
integration with smart surveys. The algorithm is based on a decision tree, using smart-
phone GPS data and infrastructure information from OpenStreetMap (OSM). The
development of the algorithm was based on data collected by Statistics Netherlands
(Schouten et al. 2024). The algorithm was also evaluated on open geo-data that is pub-
licly available in the SSI Git-repository (https://github.com/essnet-ssi/geoservice-ssi)
and was collected within the scope of the SSI project. This document provides a
comprehensive overview of the algorithm’s development, describing the development
procedures, the datasets utilized, the underlying methodology, and the resulting out-
comes.

2 Background
Transport mode prediction currently lacks a universally established algorithm. Exist-
ing methods predominantly rely on manual rule-based approaches, decision trees, or
machine-learning techniques. Within this project’s scope, an extensive review of ex-
isting methodologies and algorithms was conducted by Fourie (2025). For developing
a transport mode classification algorithm within the SSI project, it was decided to
base it on a decision tree due to its simplicity and interpretability. We briefly discuss
their advantages and disadvantages and compare manual rule-based approaches, deci-
sion trees, and machine-learning models. Some of the benefits of decision-tree models
are listed below:

1. Interpretability: Decision trees provide a transparent, easy-to-understand decision-
making process, making them ideal for explaining predictions.

2. Non-linearity: They can model complex relationships between input features
without requiring linear assumptions.

3. Feature importance: Decision trees naturally rank features based on their im-
portance, helping understand key factors affecting transport mode choices.

4. Categorical & numerical data: They can process different data types (e.g., nu-
meric, timestamps, categorical travel modes) without complex preprocessing.

5. Computational efficiency: Training and prediction are relatively fast, making
them suitable for real-time transport mode prediction in smart surveys.

6. Missing data: Decision trees can handle missing values better than some ma-
chine learning models using surrogate splits.

3
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Some of the disadvantages of decision-tree models are listed below:

1. Overfitting: Decision trees can overfit the training data, leading to poor gener-
alization unless pruning techniques are applied.

2. Sensitivity to noisy data: Small variations in input data can lead to different
splits, making the model unstable.

3. Limited expressiveness: Decision trees can handle complex patterns but may
struggle with highly complex relationships between features compared to deep
learning models.

4. Bias in splitting criteria: Splitting criteria like the Gini index or Information
Gain tend to favor features with more levels, which might lead to biased pre-
dictions.

We also give a brief comparison of decision trees with rule-based approaches and with
machine-learning approaches. Decision trees are more flexible and scalable than rule-
based approaches but may overfit the data. Rule-based methods are static and rely
heavily on expert knowledge, which may not generalize well. Decision trees can be
trained automatically while rule-based approaches are handcrafted. This comparison
is summarized in Table 1.

Theme Decision Trees Manual Rule-based Approaches
Flexibility Adapts to patterns in data automatically Requires manually defined rules
Interpretability Easy to understand Easy to understand
Scalability Scales well with data size Becomes complex with increasing rules
Handling New Data Can retrain to adjust Needs manual updates
Accuracy Higher with enough data Limited by predefined rules

Table 1: Comparison of decision trees and rule-based approaches

While decision trees offer simplicity and interpretability, they may not be as accurate
as ensemble methods (like Random Forests) or deep learning models. Table 2 gives a
brief summary:

Theme Decision Trees Random Forest Neural Networks
Interpretability High Medium (ensemble of trees) Low (black box model)
Accuracy Moderate High Very High
Computational Cost Low Medium High
Handling Overfitting Pruning needed Less prone (ensemble effect) Requires regularization
Training Speed Fast Slower than single tree Slowest

Table 2: Comparison of decision trees with machine learning models

Alongside this project, and as an integral component of its development, a rule-based
algorithm for transport mode classification was also developed by Fourie (2025). The
results obtained during the development of this algorithm contributed to the advance-
ment of this project. The algorithm with results is included in the Appendix D. The
findings derived from the work by Fourie (2025) are expected to be published soon by
Fourie et al. (expected 2025). This simple rule-based algorithm performed reasonably
well but had the drawback of resulting in multiple classifications. The developed rule-
based approach is a non-nested system that evaluates conditions independently and
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selects the best match without a strict hierarchy. This fact can lead to overlapping
or conflicting conditions requiring priority handling. No priority handling is needed
using a decision tree because each track will be assigned one predicted transport
mode.

3 Data
Two datasets were used to develop and evaluate the transport mode prediction algo-
rithm. First, data from a large-scale field study conducted by Statistics Netherlands
was used to develop and test the algorithm’s internal validity. This dataset is not
publicly available. Second, data was collected within the SSI project to create an
open, publicly available geo-dataset with error-free labels. This dataset was used to
evaluate the generalizability of the algorithm and establish its external validity.

3.1 Development data
The dataset is based on a Dutch general population sample collected from 2022 to
2023. Data from 255 participants were used for the development. The dataset contains
4,298 tracks and a total of about 20 million observations. An observation consists of
a timestamp and geo-location (longitude and latitude). We refer to Schouten et al.
2024 for general details about the dataset.

3.1.1 Data processing

The dataset underwent preprocessing steps to ensure quality and consistency. Gootzen
et al. expected 2025 describes the initial and general data cleaning procedures and
informs on the data quality. For the specific development of the transport mode
classification algorithm, tracks exceeding 10 hours were excluded. Second, tracks
containing fewer than ten GPS observations were removed. Third, labels for similar
transport modes were grouped: ‘car (driver)’ and ‘car (passenger)’ were merged into
a single transport mode. The categories ‘bike’ and ‘e-bike’ were also merged into one
transport mode. After preprocessing, the average number of GPS observations per
track was 843, although the median was notably lower at 402, indicating a skewed
distribution. Similarly, the average track duration was 53 minutes, but the median
was 12 minutes, reflecting the skewness. Regarding track length, the mean was 15
km, while the median was considerably shorter at 2.8 km, again indicating a skewed
distribution in the data.

3.1.2 Transport modes

The target variable of the classification task is the transport mode used during a
track. The distribution of track labels across transport modes in the entire dataset
is presented in Table 3. The labels indicate that the developed algorithm will only
classify a single mode. Multi-modal tracks cannot be classified. This fact is not a
shortcoming caused by the algorithm, but the labels to develop/train the algorithm do
not contain multi-modal tracks. The target variable also contains the label ‘Other’.
This label is expected to reduce the overall quality of the algorithm as it is not a
defined mode of transport and can contain a wide variation of transport modes. This
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label was excluded to only classify well-defined transport modes in the study by Fourie
(2025).

Mode Count Percentage
Car 1,892 44.02
Walk 1,002 23.31
Bike 946 22.01
Train 161 3.75
Other 111 2.58
Bus 96 2.23
Metro 58 1.35
Tram 32 0.74
Total 4,298 100

Table 3: Distribution of transport modes in development data. Rows ordered by
count.

3.1.3 Train and test splits

The dataset was partitioned at the user level, ensuring that each user was assigned
exclusively to the training or testing set, but not both. This approach was chosen to
evaluate the model’s ability to generalize to entirely unseen users, providing a strict
and realistic assessment of generalization in scenarios where new users are encoun-
tered in future surveys. By separating users in this manner, the risk of overfitting
is mitigated, as the model is prevented from learning user-specific patterns from the
training set that could influence predictions in the test set. However, this approach
introduces specific challenges. The number of users in the dataset is limited, and some
users contribute disproportionately, with a large number of tracks attributed to a sin-
gle individual. As a result, the train-test splits may become imbalanced across labels,
potentially affecting the robustness and generalizability of the algorithm. Therefore, it
was decided to split the dataset by partitioning users into separate subsets for training
(70%) and testing (30%), ensuring that no user appeared in both sets. Stratification
was applied based on each user’s dominant mode of transport to maintain a balanced
representation of transport modes. The public transport modes bus, metro, and tram
were grouped for the train and test splits (they were used as individual classes for
the remainder of the development). This practical solution prevented the case that
tram was once only the most prominent mode, and therefore, no split could have
been applied because the stratification would require at least two occurrences of a
transport mode. This approach preserved the variation and distribution of transport
modes across both subsets, ensuring that the test set accurately reflected the training
data’s characteristics while preventing user overlap between the two sets. Tables 4
and 5 show the train and test splits.

3.2 Open geo-data
This dataset was reserved exclusively for testing the developed algorithm, with no
portion used during the development or training phases, ensuring an unbiased evalu-
ation of the algorithm’s generalization capabilities. The dataset was collected in the
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Mode Count Percentage
Car 1,333 44.43
Walk 684 22.80
Bike 643 21.43
Other 103 3.43
Train 99 3.30
Bus 75 2.50
Metro 45 1.50
Tram 18 0.60
Total 3,000 100

Table 4: Train set. Rows ordered by count.

Mode Count Percentage
Car 559 43.07
Walk 318 24.50
Bike 303 23.34
Train 62 4.78
Bus 21 1.62
Tram 14 1.08
Metro 13 1.00
Other 8 0.62
Total 1,298 100

Table 5: Test set. Rows ordered by count.

summer of 2024 using the most recent version of the CBS smartphone app available
at that time. This app version employed a revised sensor configuration compared to
the app used to collect the development data. The updated configuration reduced
the number of sensors used in the smartphone to collect GPS but prioritized collect-
ing more detailed data from a single sensor type. The data was collected to obtain
data with high-quality labels without errors for the transport mode. This data was
collected by a small group of CBS staff and staff from the University of Utrecht.
Furthermore, the data contains tracks within the Netherlands and Germany. Accord-
ingly, this test set will inform how well the algorithm generalizes to a different app
version/sensor configuration and data collected in a different country. Data from 5
users with 137 tracks are available. The transport mode distribution is shown in table
6.

Mode Count Percentage
Walk 78 0.61
Tram 27 0.21
Bike 10 0.08
Train 9 0.07
Bus 5 0.04
Metro 5 0.04
Ferry 3 0.02
Total 137 100

Table 6: Transport modes in open geo-data. Rows ordered by count.

Note that the decision tree was not trained on data containing the ‘ferry’ label. Thus,
the algorithm will fail to predict this label. However, it was collected to evaluate the
algorithm’s decision for this label. Lastly, the most prominent mode in the develop-
ment data, ‘car’, is not included. This dataset is publicly available in the SSI Git
repository (https://github.com/essnet-ssi/geoservice-ssi).
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4 Methods
The methods section contains the construction of GPS features (Section 4.1), the
construction of OSM features (Section 4.2), the pre-processing of GPS and OSM
feature (Section 4.3), development of the decision tree (Section 4.4), and the transport
mode prediction algorithm (Section 4.4).

4.1 Feature construction GPS
This section describes the required GPS features for the algorithm. In particular,
features from five themes were created and evaluated: speed (speed, acceleration,
jerk, snap), GPS (accuracy, frequency), direction (bearing, altitude), trip (length,
duration), and time (weekday, weekend indicator). For most features, several variants
were created based on different statistics. A list of all GPS features is given in
Appendix A. Even more GPS features were evaluated by Fourie et al. (expected 2025).
However, as they have been found not to be relevant, they were not implemented here.
The required Python code can be found in the accompanying script gps feature.py.
A list with a short description of all Python scripts can be found in Appendix C.

4.2 Feature construction OSM
This section describes the required OSM features for the algorithm. A list of all
used OSM features is given in Appendix B. The features are based on publicly avail-
able OpenStreetMap (OSM) data obtained from the official Geofabrik download por-
tal (https://download.geofabrik.de/). A documentation of all OSM infrastructure
contained in the database can be found at: https://wiki.openstreetmap.org/wiki/
Map features. OSM data complements the GPS features described in Section 4.1 by
providing details on infrastructure such as road networks, transit routes, and stations.
Integrating this data improves usually the quality of the transport mode classifications
(Fourie 2025; Gong et al. 2012; Sadeghian et al. 2022; Smeets et al. 2019). Fourie
(2025) systematically studied which OSM features have the most considerable poten-
tial to improve the transport mode classifications. The main findings by Fourie (2025)
were, a) that OSM did not help to improve the classification quality for the transport
modes walk, bike, and car. Based on these findings, it was decided not to create
features using OSM-specific information for these three transport modes, and b) that
although OSM provides a variety of data on transportation and travel infrastructure
– including features such as roundabouts, traffic junctions, stop signs, speed cameras,
and street lamps, these did not help improve the classification performance. Another
reason to limit the number of OSM features is computational efficiency. Accordingly,
in the development of the algorithm, only OSM features about bus, metro, train, and
tram stops and/or routes were created. The required Python code can be found in
the accompanying script osm features.py. Even more OSM features were evaluated
by Fourie et al. (expected 2025). However, as they have found not to be relevant,
they were not implemented here.

Track buffering

Buffering a GPS track when calculating features using OSM data is beneficial be-
cause it helps include relevant spatial context around the track, improving feature
extraction and accuracy. In the following, we explain why this step is helpful. First,
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it accounts for GPS inaccuracies and noise. GPS tracks often have errors due to
signal loss, multipath effects, or device inaccuracies. A buffer helps compensate for
small deviations and ensures relevant OSM features are included even if the track
is slightly misaligned. Second, it captures nearby infrastructure and context. Many
transport mode features depend on proximity to roads, paths, and transit stops. A
buffer ensures that all relevant OSM data is considered within a reasonable distance
of the track. This is especially important in urban environments where GPS can jump
between nearby roads. Third, it enables more robust feature engineering. By includ-
ing OSM features within the buffer, one can calculate more informative features such
as, for example, pathway availability (e.g., bike lanes, sidewalks, pedestrian zones) or
transit accessibility (e.g., nearest bus/tram stops). Fourth, it handles transport mode
variability. A narrow track-only approach may miss important context (e.g., a train
passenger may be slightly off the designated rail network). To conclude, buffering
the GPS track will likely improve spatial accuracy, feature information, and mode
classification robustness when integrating OSM data.

The buffering process takes the GPS coordinates representing the track and gen-
erates a buffer zone around it. This buffer is defined by a specified radius or distance,
which determines how far the area extends from the track’s centerline. For instance,
a buffer with a radius of 25 meters would create a region 25 meters wide on either
side of the track. This is the radius so that the diameter will be 50m. An example of
this procedure is shown in Figure 1.

Track
(no buffer)

Track
(buffered)

Track
with OSM
(buffered)

Figure 1: Simplified example of track buffering: a single track (black solid line), a
buffered track (black solid line with surrounding orange dashed line), and a buffered
track with mapped OSM infrastructure (black solid line with surrounding orange
dashed line and mapped OSM infrastructure. Green points in the buffer are considered
for feature construction, blue points outside the buffer are not.)

Once the buffer is constructed, spatial operations are performed to identify which
OSM coordinates or features lie within the buffered area. This is achieved using spa-
tial indexing and intersection techniques, which compare the locations of OSM fea-
tures to the buffer’s boundaries. The accompanying Python script osm features.py
contains the code to apply the buffering. Representing the track as a linestring object
instead of considering the individual measurements enormously increased computa-
tional efficiency. Points-of-interest that fall within or intersect the buffer are retained
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for further analysis. For the OSM count features, the total buffer was also used to nor-
malize features for a fair comparison between shorter and longer tracks. In contrast
to Fourie (2025), who used a 10 meter buffer, a buffer of 25 meters was used. It was
tested whether different buffer sizes (10, 20, 50, 75, and 100 meters) were having an
effect. No noticeable changes in results were observed (Fourie et al. expected 2025).
The lack of an impact might be due to the fixed thresholds used in the rule-based
algorithm.

4.3 Pre-processing of GPS and OSM features
Some GPS calculations did not result in reasonable numeric values. If the calculation
of a feature resulted in an infinite value, the infinite value was replaced with twice
the maximum value (inf → 2 * max). A negative infinity value was set to zero
(-inf → 0). Missing values remained unchanged since a decision tree can handle
missing data. String variables were factorized for the decision tree. For the OSM
features, some variables contained missing values. This occurs when there is no OSM
infrastructure in the buffer of a track. Here, the missing data was replaced with a
zero count, reflecting this feature’s actual absence.

4.4 Decision tree development
A decision tree is a supervised learning algorithm used for classification and regression
tasks. It is a tree-like model where each internal node represents a decision based on
a feature, each branch represents an outcome of that decision, and each leaf node
represents a final prediction. In the following, we briefly explain the components
of the tree. The tree starts with the root node, the topmost node of the tree. It
represents the entire dataset and the first decision point based on a selected feature.
The decision nodes are intermediate nodes that split data based on a condition. Each
decision node applies a rule (e.g., speed > 30km/h?) and branches accordingly. The
branches (or edges) represent possible outcomes of a decision. They connect nodes
and direct the data down the tree. The leaf nodes (or terminal nodes) represent the
final outcome/classification (e.g., ‘Car’ or ‘Bike’). The process of dividing a node into
two or more sub-nodes is based on feature conditions.

Optimizing hyperparameter space of decision tree

Grid search was done which is a hyperparameter tuning technique used to find the best
combination of parameters that optimize the model’s performance. It systematically
searches through a predefined set of hyperparameters by testing all possible combi-
nations and selecting the best one based on a scoring metric. The hyperparameter
search was conducted using the following space:

Maximum depth: d ∈ {3, 5, 7},

Minimum samples split: msplit ∈ {10, 25, 50},

Minimum samples leaf: mleaf ∈ {5, 10, 15, 20, 25},

Criterion: c ∈ {gini, entropy},

Maximum features: f ∈ {1, 3, 5, 7}.
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The output for the optimal decision tree and the transport mode prediction algorithm
respectively is shown below. The required Python code for the algorithm can be found
in the accompanying script train decision tree.py.
The file decision tree ssi.pickle contains the trained decision-tree model.
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Transport mode prediction algorithm

1

2 node =0 is a split node with value =[ anders : 0.034 , auto: 0.444 , bus: 0.025 , fiets : 0.214 , metro : 0.015 , tram: 0.006 ,
trein : 0.033 , voet: 0.228]: go to node 1 if bus_route_mean_distance <= 1287.4715576171875 else to node 64.

3 node =1 is a split node with value =[ anders : 0.022 , auto: 0.288 , bus: 0.016 , fiets : 0.297 , metro : 0.005 , tram
: 0.007 , trein : 0.004 , voet: 0.36]: go to node 2 if speed_percentile_10 <= 4.045245885848999 else to
node 39.

4 node =2 is a split node with value =[ anders : 0.029 , auto: 0.255 , bus: 0.013 , fiets : 0.235 , metro :
0.007 , tram: 0.005 , trein : 0.003 , voet: 0.453]: go to node 3 if speed_iqr_value <=
5.45417857170105 else to node 16.

5 node =3 is a split node with value =[ anders : 0.014 , auto: 0.062 , bus: 0.003 , fiets : 0.089 ,
metro : 0.006 , tram: 0.002 , voet: 0.824]: go to node 4 if speed_percentile_80 <=
10.346889019012451 else to node 15.

6 node =4 is a split node with value =[ anders : 0.013 , auto: 0.066 , bus: 0.003 , fiets :
0.048 , metro : 0.007 , tram: 0.002 , voet: 0.862]: go to node 5 if
jerk_percentile_85 <= 7493698.0 else to node 10.

7 node =5 is a split node with value =[ anders : 0.022 , auto: 0.231 , fiets :
0.088 , metro : 0.011 , tram: 0.011 , voet: 0.637]: go to node 6 if
altitude_percentile_85 <= 2.445638060569763 else to node 9.

8 node =6 is a split node with value =[ anders : 0.027 , auto: 0.178 ,
fiets : 0.055 , metro : 0.014 , voet: 0.726]: go to node 7 if
altitude_percentile_85 <= 0.14158499240875244 else to node 8.

9 node =7 is a leaf node with values =[ auto: 0.303 , fiets :
0.121 , metro : 0.03 , voet: 0.545].

10 node =8 is a leaf node with values =[ anders : 0.05 , auto:
0.075 , voet: 0.875].

11 node =9 is a leaf node with values =[ auto: 0.444 , fiets : 0.222 , tram:
0.056 , voet: 0.278].

12 node =10 is a split node with value =[ anders : 0.012 , auto: 0.037 , bus: 0.004 ,
fiets : 0.041 , metro : 0.006 , voet: 0.902]: go to node 11 if

metro_route_min_distance <= 0.024851143825799227 else to node 14.
13 node =11 is a split node with value =[ anders : 0.012 , auto: 0.038 , bus

: 0.004 , fiets : 0.042 , voet: 0.903]: go to node 12 if
speed_percentile_5 <= 0.2018592208623886 else to node 13.

14 node =12 is a leaf node with values =[ anders : 0.028 , auto:
0.099 , bus: 0.014 , fiets : 0.057 , voet: 0.801].12
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15 node =13 is a leaf node with values =[ anders : 0.006 , auto:
0.014 , fiets : 0.037 , voet: 0.944].

16 node =14 is a leaf node with values =[ metro : 0.143 , voet: 0.857].
17 node =15 is a leaf node with values =[ anders : 0.029 , fiets : 0.824 , voet: 0.147].
18 node =16 is a split node with value =[ anders : 0.042 , auto: 0.429 , bus: 0.021 , fiets : 0.367 ,

metro : 0.008 , tram: 0.008 , trein : 0.006 , voet: 0.118]: go to node 17 if speed_stddev <=
10.804237842559814 else to node 32.

19 node =17 is a split node with value =[ anders : 0.052 , auto: 0.297 , bus: 0.018 , fiets :
0.487 , metro : 0.008 , tram: 0.006 , trein : 0.004 , voet: 0.128]: go to node 18 if
bus_route_max_distance <= 144.82131958007812 else to node 25.

20 node =18 is a split node with value =[ anders : 0.114 , auto: 0.217 , fiets :
0.408 , metro : 0.005 , tram: 0.005 , trein : 0.005 , voet: 0.245]: go to node

19 if accuracy_percentile_85 <= 14.302633285522461 else to node 22.
21 node =19 is a split node with value =[ anders : 0.18 , auto: 0.261 ,

fiets : 0.486 , voet: 0.072]: go to node 20 if proportion_10_30 <=
0.280659481883049 else to node 21.

22 node =20 is a leaf node with values =[ anders : 0.179 , auto:
0.464 , fiets : 0.179 , voet: 0.179].

23 node =21 is a leaf node with values =[ anders : 0.181 , auto:
0.193 , fiets : 0.59 , voet: 0.036].

24 node =22 is a split node with value =[ anders : 0.014 , auto: 0.151 ,
fiets : 0.288 , metro : 0.014 , tram: 0.014 , trein : 0.014 , voet:
0.507]: go to node 23 if proportion_15_30 <= 0.2102891132235527
else to node 24.

25 node =23 is a leaf node with values =[ anders : 0.018 , auto:
0.123 , fiets : 0.193 , metro : 0.018 , trein : 0.018 , voet:
0.632].

26 node =24 is a leaf node with values =[ auto: 0.25 , fiets :
0.625 , tram: 0.062 , voet: 0.062].

27 node =25 is a split node with value =[ anders : 0.016 , auto: 0.344 , bus: 0.028 ,
fiets : 0.533 , metro : 0.009 , tram: 0.006 , trein : 0.003 , voet: 0.06]: go

to node 26 if acc_kurt <= inf else to node 29.
28 node =26 is a split node with value =[ anders : 0.029 , auto: 0.076 ,

fiets : 0.829 , voet: 0.067]: go to node 27 if sd_time_diff_s <=
1.9156306385993958 else to node 28.

29 node =27 is a leaf node with values =[ anders : 0.03 , fiets :
0.925 , voet: 0.045].
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30 node =28 is a leaf node with values =[ anders : 0.026 , auto:
0.211 , fiets : 0.658 , voet: 0.105].

31 node =29 is a split node with value =[ anders : 0.009 , auto: 0.476 , bus
: 0.042 , fiets : 0.387 , metro : 0.014 , tram: 0.009 , trein : 0.005 ,
voet: 0.057]: go to node 30 if speed_iqr_value <=
20.525142669677734 else to node 31.

32 node =30 is a leaf node with values =[ anders : 0.01 , auto:
0.171 , bus: 0.01 , fiets : 0.733 , metro : 0.01 , tram: 0.01 ,

voet: 0.057].
33 node =31 is a leaf node with values =[ anders : 0.009 , auto:

0.776 , bus: 0.075 , fiets : 0.047 , metro : 0.019 , tram:
0.009 , trein : 0.009 , voet: 0.056].

34 node =32 is a split node with value =[ anders : 0.019 , auto: 0.741 , bus: 0.028 , fiets :
0.085 , metro : 0.009 , tram: 0.014 , trein : 0.009 , voet: 0.094]: go to node 33 if
speed_percentile_85 <= 30.46554946899414 else to node 34.

35 node =33 is a leaf node with values =[ anders : 0.061 , auto: 0.306 , fiets :
0.327 , tram: 0.02 , voet: 0.286].

36 node =34 is a split node with value =[ anders : 0.006 , auto: 0.871 , bus: 0.037 ,
fiets : 0.012 , metro : 0.012 , tram: 0.012 , trein : 0.012 , voet: 0.037]: go
to node 35 if bus_route_std_distance <= 595.4812316894531 else to node

38.
37 node =35 is a split node with value =[ anders : 0.009 , auto: 0.897 ,

fiets : 0.017 , metro : 0.009 , trein : 0.017 , voet: 0.052]: go to
node 36 if speed_percentile_20 <= 0.006204613484442234 else to
node 37.

38 node =36 is a leaf node with values =[ anders : 0.077 , auto:
0.615 , fiets : 0.077 , trein : 0.077 , voet: 0.154].

39 node =37 is a leaf node with values =[ auto: 0.932 , fiets :
0.01 , metro : 0.01 , trein : 0.01 , voet: 0.039].

40 node =38 is a leaf node with values =[ auto: 0.809 , bus: 0.128 , metro :
0.021 , tram: 0.043].

41 node =39 is a split node with value =[ anders : 0.004 , auto: 0.38 , bus: 0.027 , fiets : 0.47 , tram: 0.01 ,
trein : 0.006 , voet: 0.103]: go to node 40 if proportion_45_80 <= 0.024996007792651653 else to

node 49.
42 node =40 is a split node with value =[ auto: 0.078 , bus: 0.01 , fiets : 0.757 , tram: 0.007 ,

trein : 0.003 , voet: 0.145]: go to node 41 if proportion_5_15 <= 0.6839917302131653 else
to node 48.
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43 node =41 is a split node with value =[ auto: 0.091 , bus: 0.012 , fiets : 0.825 , tram:
0.008 , trein : 0.004 , voet: 0.06]: go to node 42 if proportion_15_30 <=
0.04568206053227186 else to node 43.

44 node =42 is a leaf node with values =[ voet: 1.0].
45 node =43 is a split node with value =[ auto: 0.095 , bus: 0.012 , fiets : 0.863 ,

tram: 0.008 , trein : 0.004 , voet: 0.017]: go to node 44 if
avg_time_diff_s <= 1.8849532008171082 else to node 47.

46 node =44 is a split node with value =[ auto: 0.058 , bus: 0.01 , fiets :
0.903 , tram: 0.005 , trein : 0.005 , voet: 0.019]: go to node 45 if

accuracy_percentile_20 <= 5.499175310134888 else to node 46.
47 node =45 is a leaf node with values =[ auto: 0.03 , bus: 0.012 ,

fiets : 0.929 , tram: 0.006 , trein : 0.006 , voet: 0.018].
48 node =46 is a leaf node with values =[ auto: 0.184 , fiets :

0.789 , voet: 0.026].
49 node =47 is a leaf node with values =[ auto: 0.324 , bus: 0.029 , fiets :

0.618 , tram: 0.029].
50 node =48 is a leaf node with values =[ fiets : 0.364 , voet: 0.636].
51 node =49 is a split node with value =[ anders : 0.01 , auto: 0.848 , bus: 0.052 , fiets : 0.026 ,

tram: 0.016 , trein : 0.01 , voet: 0.037]: go to node 50 if altitude_percentile_80 <=
0.8099796772003174 else to node 57.

52 node =50 is a split node with value =[ anders : 0.019 , auto: 0.837 , bus: 0.058 , trein :
0.019 , voet: 0.067]: go to node 51 if jerk_skew <= -1.5975200533866882 else to
node 56.

53 node =51 is a split node with value =[ anders : 0.011 , auto: 0.832 , bus: 0.063 ,
trein : 0.021 , voet: 0.074]: go to node 52 if jerk_percentile_90 <=

21673985.0 else to node 53.
54 node =52 is a leaf node with values =[ auto: 0.765 , bus: 0.235].
55 node =53 is a split node with value =[ anders : 0.013 , auto: 0.846 , bus

: 0.026 , trein : 0.026 , voet: 0.09]: go to node 54 if
busway_normcount <= 3.5516588923201198e -06 else to node 55.

56 node =54 is a leaf node with values =[ auto: 0.778 , bus:
0.222].

57 node =55 is a leaf node with values =[ anders : 0.014 , auto:
0.855 , trein : 0.029 , voet: 0.101].

58 node =56 is a leaf node with values =[ anders : 0.111 , auto: 0.889].
59 node =57 is a split node with value =[ auto: 0.862 , bus: 0.046 , fiets : 0.057 , tram:

0.034]: go to node 58 if train_route_mean_distance <= 1428.7440795898438 else to
node 63.15
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60 node =58 is a split node with value =[ auto: 0.89 , bus: 0.012 , fiets : 0.061 ,
tram: 0.037]: go to node 59 if snap_min_value <= -2761052520448.0 else
to node 60.

61 node =59 is a leaf node with values =[ auto: 0.429 , fiets : 0.571].
62 node =60 is a split node with value =[ auto: 0.933 , bus: 0.013 , fiets :

0.013 , tram: 0.04]: go to node 61 if max_time_diff_s <= 32.5
else to node 62.

63 node =61 is a leaf node with values =[ auto: 0.979 , fiets :
0.021].

64 node =62 is a leaf node with values =[ auto: 0.857 , bus:
0.036 , tram: 0.107].

65 node =63 is a leaf node with values =[ auto: 0.4 , bus: 0.6].
66 node =64 is a split node with value =[ anders : 0.054 , auto: 0.693 , bus: 0.039 , fiets : 0.082 , metro : 0.03 , tram

: 0.005 , trein : 0.08 , voet: 0.017]: go to node 65 if railway_station_normcount <= inf else to node 72.
67 node =65 is a split node with value =[ anders : 0.03 , auto: 0.154 , bus: 0.053 , fiets : 0.036 , metro :

0.207 , tram: 0.024 , trein : 0.485 , voet: 0.012]: go to node 66 if bus_route_std_distance <=
8919.11767578125 else to node 69.

68 node =66 is a split node with value =[ anders : 0.023 , auto: 0.138 , bus: 0.092 , fiets : 0.046 ,
metro : 0.402 , tram: 0.034 , trein : 0.241 , voet: 0.023]: go to node 67 if
proportion_80_120 <= 0.017564226873219013 else to node 68.

69 node =67 is a leaf node with values =[ auto: 0.114 , bus: 0.136 , fiets : 0.045 , metro :
0.614 , tram: 0.068 , trein : 0.023].

70 node =68 is a leaf node with values =[ anders : 0.047 , auto: 0.163 , bus: 0.047 , fiets :
0.047 , metro : 0.186 , trein : 0.465 , voet: 0.047].

71 node =69 is a split node with value =[ anders : 0.037 , auto: 0.171 , bus: 0.012 , fiets : 0.024 ,
tram: 0.012 , trein : 0.744]: go to node 70 if jerk_iqr_value <= 47285052.0 else to node
71.

72 node =70 is a leaf node with values =[ anders : 0.086 , auto: 0.343 , trein : 0.571].
73 node =71 is a leaf node with values =[ auto: 0.043 , bus: 0.021 , fiets : 0.043 , tram:

0.021 , trein : 0.872].
74 node =72 is a split node with value =[ anders : 0.058 , auto: 0.785 , bus: 0.036 , fiets : 0.09 , tram:

0.002 , trein : 0.01 , voet: 0.018]: go to node 73 if speed_average <= 23.857415199279785 else to
node 76.

75 node =73 is a split node with value =[ anders : 0.014 , auto: 0.274 , bus: 0.041 , fiets : 0.589 ,
trein : 0.027 , voet: 0.055]: go to node 74 if accuracy_percentile_95 <= 16.21677875518799

else to node 75.
76 node =74 is a leaf node with values =[ anders : 0.021 , auto: 0.106 , bus: 0.043 , fiets :

0.745 , voet: 0.085].16



Sm
art

Survey
Im

plem
entation

(SSI)
W

P
3:

D
eveloping

Sm
art

D
ata

M
icroservices

77 node =75 is a leaf node with values =[ auto: 0.577 , bus: 0.038 , fiets : 0.308 , trein :
0.077].

78 node =76 is a split node with value =[ anders : 0.061 , auto: 0.826 , bus: 0.036 , fiets : 0.05 ,
tram: 0.002 , trein : 0.009 , voet: 0.015]: go to node 77 if proportion_5_15 <=
0.12189747020602226 else to node 86.

79 node =77 is a split node with value =[ anders : 0.062 , auto: 0.877 , bus: 0.021 , fiets :
0.025 , trein : 0.005 , voet: 0.01]: go to node 78 if speed_percentile_90 <=
43.59307289123535 else to node 79.

80 node =78 is a leaf node with values =[ auto: 0.286 , fiets : 0.714].
81 node =79 is a split node with value =[ anders : 0.064 , auto: 0.892 , bus: 0.022 ,

fiets : 0.006 , trein : 0.005 , voet: 0.01]: go to node 80 if
bus_route_max_distance <= 45133.2890625 else to node 83.

82 node =80 is a split node with value =[ anders : 0.037 , auto: 0.916 , bus
: 0.029 , fiets : 0.007 , trein : 0.003 , voet: 0.008]: go to node 81

if proportion_30_50 <= 0.0958034060895443 else to node 82.
83 node =81 is a leaf node with values =[ auto: 0.838 , bus:

0.068 , fiets : 0.054 , trein : 0.027 , voet: 0.014].
84 node =82 is a leaf node with values =[ anders : 0.042 , auto:

0.927 , bus: 0.023 , voet: 0.008].
85 node =83 is a split node with value =[ anders : 0.151 , auto: 0.816 ,

fiets : 0.005 , trein : 0.011 , voet: 0.016]: go to node 84 if
speed_median_value <= 83.79621505737305 else to node 85.

86 node =84 is a leaf node with values =[ anders : 0.29 , auto:
0.699 , voet: 0.011].

87 node =85 is a leaf node with values =[ anders : 0.011 , auto:
0.935 , fiets : 0.011 , trein : 0.022 , voet: 0.022].

88 node =86 is a split node with value =[ anders : 0.053 , auto: 0.469 , bus: 0.142 , fiets :
0.23 , tram: 0.018 , trein : 0.035 , voet: 0.053]: go to node 87 if
tram_route_std_distance <= 25382.951171875 else to node 88.

89 node =87 is a leaf node with values =[ anders : 0.034 , auto: 0.138 , bus: 0.276 ,
fiets : 0.345 , tram: 0.069 , trein : 0.138].

90 node =88 is a split node with value =[ anders : 0.06 , auto: 0.583 , bus: 0.095 ,
fiets : 0.19 , voet: 0.071]: go to node 89 if speed_percentile_90 <=
34.240671157836914 else to node 90.

91 node =89 is a leaf node with values =[ fiets : 0.75 , voet: 0.25].
92 node =90 is a split node with value =[ anders : 0.069 , auto: 0.681 , bus

: 0.111 , fiets : 0.097 , voet: 0.042]: go to node 91 if
jerk_percentile_15 <= -90295644.0 else to node 92.17
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93 node =91 is a leaf node with values =[ auto: 0.333 , bus:
0.083 , fiets : 0.5 , voet: 0.083].

94 node =92 is a leaf node with values =[ anders : 0.083 , auto:
0.75 , bus: 0.117 , fiets : 0.017 , voet: 0.033].

Listing 1: Python code for decision-tree based transport mode prediction
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4.5 Evaluation metrics
The algorithm’s performance will be assessed using precision, recall, F1-score, accu-
racy, and balanced accuracy, metrics commonly used in transport mode classification.
Precision evaluates the model’s ability to minimize false positives, while recall mea-
sures its ability to capture true positives. The F1-score combines both metrics to
provide a balanced evaluation, particularly useful for imbalanced datasets. Accuracy
represents the overall correctness of predictions but can be misleading in imbalanced
data, where balanced accuracy offers an evaluation by averaging recall across all
classes. Key definitions include true positive (TP), when the model correctly predicts
the actual class (e.g., predicting ‘walking’ when correct), false positive (FP), where
an incorrect class is predicted (e.g., predicting ‘car’ instead of ‘bike’), false negative
(FN), when the correct class is missed, and true negative (TN), when incorrect classes
are correctly excluded. The formulas for each metric are:

Precision = TP
TP + FP

Recall = TP
TP + FN

F1-Score = 2 × Precision × Recall
Precision + Recall

Accuracy = TP + TN
TP + TN + FP + FN

Balanced Accuracy = 1
2

(
TP

TP + FN + TN
TN + FP

)
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5 Results
First, the results based on the development data (see Section 3.1) are described.
Second, the results based on the open geo-data (see Section 3.2) are described.

5.1 Evaluation on development set
The results from the confusion matrix in Table 7 and classification report in Table
8 for the training data indicate the following key findings: The confusion matrix
reveals that the model performs well in predicting car and walking but struggles with
categories like bus and tram, where most instances are misclassified. Bike also shows
a strong prediction rate, though some misclassifications occur with cars and walking.
The ‘Other’ category is highly misclassified, with many instances incorrectly labeled
as car or bike, indicating potential difficulties distinguishing less common transport
modes.

Table 7: Confusion matrix of training data
Observed\Predicted Other Car Bus Bike Metro Tram Train Walking
Other 0 64 0 25 0 0 5 9
Car 0 1161 2 106 5 0 20 39
Bus 0 46 3 15 6 0 3 2
Bike 0 31 0 554 2 0 4 52
Metro 0 4 0 1 27 0 8 5
Tram 0 7 0 7 3 0 1 0
Train 0 10 0 5 1 0 82 1
Walking 0 39 0 48 0 0 2 595

The classification report reveals that the model performs well for high-frequency
classes like car and walking, achieving precision, recall, and F1-scores around 0.85–
0.87, indicating strong and balanced performance for these categories. Bike and train
also show relatively high F1 scores (0.79 and 0.73, respectively), with the train having
a high recall (0.83) despite moderate precision. However, the model struggles with
underrepresented classes. Other and tram have 0.00 F1-scores, as the model fails to
classify these instances correctly. Buses have low performance, with an F1 score of
0.07, mainly due to extremely low recall, meaning most buses are misclassified as
other categories (especially cars). Metro performs better, with precision and recall
around 0.60–0.61, but still shows room for improvement.
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Table 8: Classification report for training data
Class Precision Recall F1-Score Support
Other 0.00 0.00 0.00 103
Car 0.85 0.87 0.86 1,333
Bus 0.60 0.04 0.07 75
Bike 0.73 0.86 0.79 643
Metro 0.61 0.60 0.61 45
Tram 0.00 0.00 0.00 18
Train 0.66 0.83 0.73 99
Walk 0.85 0.87 0.86 684
Accuracy 0.81 3,000
Macro avg. 0.54 0.51 0.49 3,000
Weighted avg. 0.77 0.81 0.78 3,000

Although the overall accuracy is relatively high at 81%, the macro average F1-score of
0.49 and balanced accuracy of 0.51 indicate poor performance in less common classes.
The weighted average F1-score of 0.78 is boosted by the well-classified dominant
classes, masking the severe misclassification of minority classes. This suggests the
model may be biased towards common classes, struggling to capture the nuances of
less common transport modes.
The results from the confusion matrix in Table 9 and classification report in Table
10 for the test data indicate the following key findings: The model performs well for
high-frequency classes like car, bike, train, and walking, with relatively high precision,
recall, and F1-scores. For instance, car has an F1-score of 0.85, and walking achieves
0.84, reflecting consistent performance compared to the training set, where these
classes also had high scores. Train maintains strong recall (0.87) and a high F1-score
(0.82), showing that the model reliably identifies most train instances. Similarly,
bike achieves an F1-score of 0.76, demonstrating the model’s ability to generalize
reasonably well to this class.

Table 9: Confusion matrix of test data
Observed\Predicted Other Car Bus Bike Metro Tram Train Walking
Other 0 3 0 1 0 0 0 4
Car 0 459 0 67 6 0 9 18
Bus 0 15 0 4 1 0 0 1
Bike 0 12 0 249 6 0 1 35
Metro 0 2 0 1 4 0 5 1
Tram 0 3 0 3 7 0 0 1
Train 0 5 0 2 0 0 54 1
Walking 0 18 0 24 2 0 0 274

However, the confusion matrix highlights various misclassifications, especially for un-
derrepresented classes. For example, ‘Other’ is never classified correctly, with in-
stances being mistaken for car, bike, or walking – mirroring the training set where
‘Other’ had an F1-score of 0.00. Bus also performs poorly, with all instances mis-
classified, mostly as car or bike, leading to a 0.00 F1-score, just like in training data.
This suggests the model struggles to learn meaningful patterns for rare classes, likely
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because of class imbalance and overlapping features.
The metro and tram classes continue to be problematic. Metro shows a slight

improvement over the training set, with a 0.21 F1-score on the test set, but remains
low, with many instances misclassified as train. Tram remains entirely misclassified,
with an F1-score of 0.00, indicating the model failed to generalize this class from the
training set to the test set. These results indicate that minority classes are poorly
represented in the decision boundaries, possibly because the model is biased toward
more common classes like car and walking.

Table 10: Classification report for test data
Class Precision Recall F1-Score Support
Other 0.00 0.00 0.00 8
Car 0.89 0.82 0.85 559
Bus 0.00 0.00 0.00 21
Bike 0.71 0.82 0.76 303
Metro 0.15 0.31 0.21 13
Tram 0.00 0.00 0.00 14
Train 0.78 0.87 0.82 62
Walk 0.82 0.86 0.84 318
Accuracy 0.80 1,298
Macro avg. 0.42 0.46 0.44 1,298
Weighted avg. 0.79 0.80 0.79 1,298

Despite an overall accuracy of 80%, a macro average F1-score of 0.44 and a balanced
accuracy of 0.46 reveal that performance varies widely across classes, with the model
performing well on frequent categories but failing on rare ones. The weighted average
F1-score of 0.79 is heavily influenced by the well-classified majority classes, masking
the poor recognition of smaller classes. The test results confirm the patterns observed
in training: the model captures dominant class features well but struggles with mi-
nority classes, leading to repeated misclassification patterns across both datasets.

Feature Importance

Table 11 shows the feature importance of the top 20 selected features. In total, 39
were selected. Although the hyperparameter space should have limited the number
of features to seven, the final decision tree contains 39 features. This is, because
the hyperparameters are not strictly enforced. The feature importance results reveal
that the model relies heavily on a few key features, with ‘bus route mean distance’ as
the most influential feature, contributing 22.3% to the decision-making process. This
suggests that distance patterns along bus routes play a critical role in distinguishing
transport modes. Speed-related features also dominate the model’s decisions, with
metrics like ‘speed IQR’ (17.7%), ‘speed percentile 10’ (5.1%), and ‘speed standard
deviation’ (3.1%) collectively contributing a large share of the importance. This heavy
reliance on speed variation could explain the model’s struggles with modes with over-
lapping speed ranges (e.g., bus vs. car or metro vs. train). Interestingly, railway
station count (10,4%) is another essential feature, likely helping the model identify
train and metro trips. Proportion-based speed features (e.g., proportion 45–80 km/h,
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7.9%) also influence predictions, possibly helping differentiate slower modes like walk-
ing from faster ones like cycling or driving. Lower-ranked features, like ‘jerk percentile
85’ (0.9%) and ‘tram route standard distance’ (0.75%), contribute minimally. Over-
all, the model leans heavily on speed and distance metrics, explaining its success with
frequent modes like cars and bikes and its failures with underrepresented classes.
Strengthening the model with more contextual features (see discussion) or refining
route-based features for specific transport modes could help improve classification
performance, especially for minority classes.

Table 11: Top 20 decision tree feature importance
Feature Importance
bus route mean distance 0.22
speed iqr value 0.18
railway station normcount 0.10
proportion 45 80 0.08
speed percentile 10 0.05
proportion 5 15 0.04
speed stddev 0.03
speed average 0.03
speed percentile 90 0.03
speed percentile 80 0.02
bus route std distance 0.02
bus route max distance 0.02
proportion 15 30 0.02
speed percentile 85 0.02
acc kurt 0.02
accuracy percentile 85 0.01
jerk percentile 85 0.01
proportion 80 120 0.01
tram route std distance 0.01
speed median value 0.01

5.2 Evaluation on open geo-data
The results from the confusion matrix in Table 12 and classification report in Table
13 for the test on the open geo-data show the following key findings: The confu-
sion matrix reveals considerable misclassification patterns, particularly among spe-
cific transport modes. Walking is the most accurately predicted class, with 52 correct
classifications, though it is still confused with bike (16) and car (9). Tram shows the
highest misclassification rate, frequently being predicted as car (14), bike (7), or metro
(5). Bus is rarely identified correctly and is often confused with car, bike, metro, and
train. Similarly, the ferry is misclassified as the bike. The label ‘ferry’ did not appear
in the observed labels in the development data. However, this label was kept to study
what prediction would result for this label. This is especially interesting, because
GPS signals usually get noisy when the smartphone is close to or on the water. Train
and metro show moderate accuracy, but car and other categories are never correctly
predicted. These results highlight challenges in distinguishing between modes with
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similar speed profiles and infrastructure characteristics.

Table 12: Confusion matrix of open geo-data
Observed\Predicted Other Car Bus Ferry Bike Metro Tram Train Walking
Other 0 0 0 0 0 0 0 0 0
Car 0 0 0 0 0 0 0 0 0
Bus 0 2 0 0 1 1 0 1 0
Ferry 0 0 0 0 3 0 0 0 0
Bike 0 2 0 0 7 1 0 0 0
Metro 0 3 0 0 0 1 0 0 1
Tram 0 14 0 0 7 5 0 0 1
Train 0 3 0 0 0 0 0 6 0
Walking 0 9 0 0 16 1 0 0 52

The classification report highlights performance variations across transport modes.
Walking and the train achieve the highest F1 scores (0.79 and 0.75, respectively),
indicating relatively good performance. The bike also shows moderate recall (0.70)
but low precision (0.21), leading to a modest F1-score of 0.32. In contrast, bus, ferry,
tram, car, and other categories are never correctly identified, resulting in F1-scores
of 0.00. Metro has a low F1-score (0.14) due to poor precision and recall. The
overall accuracy of 0.48, the balanced accuracy of 0.32, and the macro F1-score of
0.22 reflect substantial class imbalances and misclassification issues, particularly for
underrepresented classes.

Table 13: Classification report for test open geo-data
Class Precision Recall F1-Score Support
Other 0.00 0.00 0.00 0
Car 0.00 0.00 0.00 0
Bus 0.00 0.00 0.00 5
Ferry 0.00 0.00 0.00 3
Bike 0.21 0.70 0.32 10
Metro 0.11 0.20 0.14 5
Tram 0.00 0.00 0.00 27
Train 0.86 0.67 0.75 9
Walking 0.96 0.67 0.79 78
Accuracy 0.48 137
Macro avg. 0.24 0.25 0.22 137
Weighted avg. 0.62 0.48 0.53 137

6 Discussion
This report describes the development and performance of a transport mode classifi-
cation algorithm for smart surveys. A decision-tree-based algorithm was developed.
The results show that the decision tree model achieves a reasonable overall accuracy
of 81% (balanced accuracy 51%) on the training data and 80% on the test set from the
development data (balanced accuracy 46%), with a weighted average F1-score of 0.78
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and 0.79, respectively. These results indicate that the model generalizes relatively
well, but deeper analysis shows considerable class-specific imbalances and misclassi-
fication patterns. The model performs well in identifying high-frequency classes like
car, bike, and walk, with consistently high F1 scores. In contrast, classes like bus and
tram are poorly classified, with F1 scores of 0.00, suggesting that these classes are
either rarely predicted or consistently confused with more dominant classes. When
tested on the open geo-data, exclusively reserved for model evaluation, the results
indicate that the model struggles with generalizability, particularly for less frequent
transport modes. While it performs reasonably well for walking and trains, its failure
to correctly classify buses, trams, and cars suggests poor generalization to unseen
data. The low macro F1-score and imbalanced precision-recall values highlight a
strong bias toward dominant classes, leading to frequent misclassifications. This re-
sult suggests the developed algorithm may overfit to patterns in the training data
rather than learning robust, generalizable decision rules. The feature importance
table highlights that OSM-based distance metrics and GPS-based speed features pre-
dominantly drive the decision-making process. This heavy reliance on distance and
speed could explain the model’s difficulty distinguishing between modes with similar
speed ranges and infrastructure patterns. The confusion matrices reveal some sys-
tematic misclassifications, such as walking and biking. The other class instances are
spread across multiple categories, reflecting this group’s lack of distinctive patterns.

A non-nested rule-based algorithm was also developed as part of creating the
decision-tree-based algorithm (Fourie et al. expected 2025). This rule-based algorithm
achieved an overall accuracy of 85%, a balanced accuracy of 70% when evaluated on
the test set from the development data. When tested on the open geo-data collected
within the SSI project, an accuracy of 80% and a balanced accuracy of 83% were
achieved. These results suggest that the manual rule-based algorithm generalizes
better unseen data than the decision-tree-based algorithm developed in this paper.
The main differences between the decision tree and the rule-based algorithm are a)
single vs. multiple transport mode predictions and b) the number of predicted classes
(excluding the class ‘Other’ and ‘Ferry’).

Limitations and future work
GPS signal
There are commonly known issues with GPS signals, which vary depending on smart-
phone and sensor configuration (Gootzen et al. expected 2025). Features about the
different GPS measurements had predictive power to classify the transport mode.
However, the GPS signals are only helpful to a certain extent by capturing variations
in speed, but nearly no other GPS-based feature is important. This is a shortcom-
ing of smartphone sensors. GPS-loggers, for example, are typically more accurate,
especially high-end devices with better antennas. The influence of GPS signals on
features and prediction quality needs more research in the future.

Features
About 200 features based on GPS and OSM were considered in the development.
However, in the current version of the decision tree, only 39 features are important,
which are predominantly speed (GPS) and distance metrics (OSM). The decision
tree prioritized OSM distance metrics over OSM count variables. This means that
counting OSM infrastructure is less sufficient for transport mode prediction. This was
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also shown by Fourie et al. (expected 2025), that OSM-based proximity features have
more predictive power. More research is required on the quality and coverage of the
OSM database. The fact that counts were not chosen could also be due to low and
incomplete coverage.

Transport mode labels
The class ‘Other’ complicated the model training as this might contain a huge vari-
ability in transport modes. Without additional features, such a category will always
remain challenging to predict. Moreover, there are errors in the labels of the devel-
opment data as explained by Fourie (2025). Future studies must ensure to collect
high-quality labels, especially for the public transport modes as these are most chal-
lenging to predict.

Machine learning
The decision tree and rule-based model are straightforward algorithms. Machine
learning could also be considered to predict the transport mode. However, the issues
encountered during development include, for example, the imbalance of data, rare
classes, errors in training labels, and the absence of potentially more relevant fea-
tures that will remain with this dataset. Especially contextual features, for example,
owning a car or (e)bike, subscription for public transportation, the smartphone being
logged in to WiFi from public transport, or the smartphone using services such as
Apple Carplay or Android Auto, or other smartphone background services, are con-
sidered to have potential to improve the performance of the algorithm. No machine
learning algorithm alone will solve these problems.

Performance
In the literature, sometimes better algorithm performance is reported. However, sev-
eral papers only report accuracy, not the F1 or balanced accuracy. This report shows
that accuracy alone can lead to over-optimistic conclusions about the algorithm’s per-
formance.

Comparability and generalization
For a fair comparison of general algorithm performance, a reference public dataset
should be utilized, such as the open geo-dataset collected within the scope of this
project. Otherwise, there will always be tailored solutions that do not generalize or
are not comparable. The rule-based algorithm shown in Appendix D showed that it
generalizes to two countries (The Netherlands and Germany) and to different sensor
configurations of the smartphone app, see also Fourie et al. (expected 2025).

7 Conclusion
Transport mode prediction is central to improving the functionalities for smart time-
use, travel, and mobility surveys. The decision tree model shows some promising re-
sults, but also shows issues of not being able to distinguish between transport modes
with similar movement and infrastructure patterns. The high performance of domi-
nant classes (like car and walk) comes at the expense of minority classes (bus, metro,
tram), leading to poor recall and precision scores. The developed algorithm lays the
groundwork for automatic transport mode prediction, while full automation of this
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smart feature remains a future goal.
By establishing this algorithm as a benchmark, the development provides a prac-

tical starting point for refining future models. The algorithm’s simplicity and speed
make it a viable option for real-world implementation, potentially alongside user
prompts, to reduce respondent burden without compromising accuracy.
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Appendix A GPS features
We provide some information on features that might not be known to a general
audience. Speed is the rate at which an object covers distance. It tells how fast an
object is moving but does not specify direction. Acceleration is the rate at which
velocity changes over time. It describes how quickly an object’s speed or direction of
motion changes. Acceleration is a vector quantity, meaning it has both magnitude
and direction. Jerk is the rate at which acceleration changes over time. Jerk is also
a vector quantity that describes how abruptly an object’s acceleration changes. Snap
is the rate at which jerk changes over time. Snap is used less frequently but can be
important when analyzing systems where smooth motion is essential.

Bearing refers to the direction or angle from one point to another, typically mea-
sured clockwise from a reference direction (often true north) to the line connecting
two points on the Earth’s surface. In GPS applications, bearing is used to specify the
direction in which an object or location lies relative to another point.

Altitude refers to the vertical position or height of a point above a reference surface,
typically mean sea level.

• Speed, Acceleration, Jerk, and Snap

– Shared features:
∗ Mean
∗ Median
∗ Standard deviation
∗ Minimum
∗ Maximum
∗ Interquartile range
∗ Skewness
∗ Kurtosis
∗ 95, 90, 85, 80, 20, 15, 10, 5 percentile

– Additional speed features:
∗ Proportion at very low speed (0 – 5 km/h)
∗ Proportion at low speed (5 – 15 km/h)
∗ Proportion at low to medium speed (10 – 30 km/h)
∗ Proportion at low to medium speed (15 – 30 km/h)
∗ Proportion at medium speed (30 – 50 km/h)
∗ Proportion at medium to high speed (45 – 80 km/h)
∗ Proportion at high speed (80 – 120 km/h)
∗ Proportion at very high speed (≥ 120 km/h)

• Bearing

– Features:
∗ Mean
∗ Median
∗ Standard deviation
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∗ Minimum
∗ Maximum
∗ Interquartile range
∗ Skewness
∗ Kurtosis
∗ 95, 90, 85, 80, 20, 15, 10, 5 percentile

• Altitude

– Features:
∗ Mean
∗ Median
∗ Standard deviation
∗ Minimum
∗ Maximum
∗ Interquartile range
∗ Skewness
∗ Kurtosis
∗ 95, 90, 85, 80, 20, 15, 10, 5 percentile
∗ Proportion below sea

• Accuracy

– Features:
∗ Mean
∗ Median
∗ Standard deviation
∗ Minimum
∗ Maximum
∗ Interquartile range
∗ Skewness
∗ Kurtosis
∗ 95, 90, 85, 80, 20, 15, 10, 5 percentile

• Time

– Features:
∗ Trip Length (seconds)
∗ Day of the week
∗ Weekend indicator

• Distance

– Features:
∗ Trip length (km)
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• GPS Frequency

– Features:
∗ Number of GPS measurements
∗ Mean time between subsequent measurements
∗ Median time between subsequent measurements
∗ Standard deviation time between subsequent measurements
∗ Minimum time between subsequent measurements
∗ Maximum time between subsequent measurements
∗ Number of long GPS gaps (a period of at least 10 min. without GPS

observations)

Appendix B OSM features
• Infrastructure counts and normalized counts

– Features:
∗ bus station
∗ bus stop
∗ railway
∗ light rail
∗ subway
∗ tram
∗ busway
∗ tram stop
∗ railway halt
∗ railway station
∗ bicycle

• Route proximity for bus, bike, metro, train, and tram routes

– Features:
∗ Minimum distance of entire track to route
∗ Maximum distance of entire track to route
∗ Mean distance of entire track to route
∗ Standard deviation distance of entire track to route
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Appendix C Python scripts
The Git repository (https://github.com/essnet-ssi/geo-transportmode-prediction-ssi0
contains the following Python scripts that contain the code required to implement the
transport mode prediction algorithm.

1. transport mode main.py

• The main script for transport mode prediction that will load and run the
other scripts.

2. options.py

• This script contains all options regarding file paths, data preprocessing and
model training required in the other scripts.

3. functions general.py

• This script contains general functions required for the transport mode pre-
diction process.

4. gps features.py

• Contains functions for gps-based feature creation for events and locations
data. These features are added to the events dataframe.

5. osm features.py

• Contains functions for osm-based feature creation for events and locations
data. These features are added to the events dataframe.

6. train decision tree.py

• This script runs a grid search over a hyperparameter set to train the
best decision tree model for the given data. The current best result is
20250424 decision tree ssi.pickle.

7. decision tree ssi.pickle

• The best decision tree model for the available development data resulting
from the combination of options, feature creation and model training.
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Appendix D Rule-based transport mode prediction
The rule-based algorithm presented here was developed by Fourie (2025) and will soon
be published, and therefore, we refer to Fourie et al. (expected 2025) for a detailed
development description of this rule-based algorithm. Alongside the algorithm, we
will present and elaborate the results of this algorithm. The algorithm was developed
using the dataset described in Section 3.1. The confusion matrix in Table 14 shows
the algorithm’s results based on the training data. There are a large number of correct
predictions for bike (560), car (825), and walk (573) indicating the algorithm performs
well for these categories. Train (80) and metro (29) have relatively lower correct pre-
dictions but still show some accuracy. There are some misclassification trends. Bike is
often confused with walk (62) and car (28). Car is sometimes misclassified as bike (70)
and walk (30). Walk is sometimes misclassified as bike (81) and car (31). Metro and
Train are occasionally misclassified as cars. For Buses and trams, the classification
accuracy is poor. Bus has no correct predictions (all zeros on the diagonal for that
row), meaning it is entirely misclassified. Tram has only 13 correct classifications,
frequently misclassified as car (7) or walk (2). In conclusion, the algorithm performs
well for bikes, cars, and walks but struggles with buses and trams. Misclassification
patterns suggest possible feature overlap between cars, walking, bikes, and between
metro and trains.

Table 14: Confusion matrix of training data

Observed\Predicted Bike Bus Car Metro Train Tram Walk
Bike 560 0 28 0 6 0 62
Bus 3 0 6 0 2 0 2
Car 70 1 825 2 8 3 30
Metro 5 0 4 29 1 0 8
Train 3 0 11 2 80 0 5
Tram 0 0 7 0 0 13 2
Walk 81 0 31 2 3 2 573

It was found that some misclassifications for bike, walk, and car were due to wrong
labels assigned by the user. This issue was analyzed by Fourie et al. (expected 2025)
and found that misclassifications are primarily due to incorrect labeling and data
quality issues. Bike trips are misclassified as walking and have an unrealistically
low average speed (on average, 4.86 km/h), suggesting labeling errors. Conversely,
walks misclassified as bikes have an unusually high average speed (on average, 9.54
km/h) with greater speed variation, indicating possible data inconsistencies. Car
misclassifications follow similar trends. Car trips are misclassified as walking and
have an average speed of 3.22 km/h, likely due to mislabeling. Car trips misclassified
as bikes have an average speed of 13.4 km/h, suggesting low-quality data or user
errors.

The test set confusion matrix in Table 15 shows similar misclassification trends as
the training set, supporting previous findings. There are persistent misclassifications
between bike and walk. Bike is often misclassified as walk (17 instances) and walk
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as bike (30 instances), consistent with the training set. This aligns with the previous
finding that speed-based classification thresholds may be causing incorrect labeling.
Car is misclassified as walk (12) and bike (25), similar to the training set pattern.
This suggests difficulty distinguishing low-speed car trips from other modes, possibly
due to labeling errors or data quality issues. Just like in the training set, bus has zero
correct classifications, meaning the model struggles to recognize this mode entirely.
There is improved performance for the metro, train, and tram. These categories had
limited correct classifications in the training set but showed slightly improved results
in the test set. However, some misclassification persists, particularly train being
confused with car (8 instances). The algorithm struggles with low-speed distinctions,
particularly bike vs. walk and car vs. walk/bike. Bus classification remains a major
issue that needs further investigation. The slight improvement in metro, train, and
tram suggests some learning transfer but still room for optimization.

Table 15: Confusion matrix of test data

Observed\Predicted Bike Bus Car Metro Train Tram Walk
Bike 243 0 24 0 0 0 17
Bus 2 0 8 0 0 0 0
Car 25 0 360 2 2 2 12
Metro 0 0 1 5 1 0 0
Train 1 0 8 0 32 1 1
Tram 0 0 1 0 0 9 1
Walk 30 1 11 0 1 1 247

Table 16 shows the classification report of the algorithm based on the training set.
The algorithm achieves 84% accuracy, indicating good general performance. However,
balanced accuracy is much lower (65%), suggesting poor performance on underrepre-
sented classes. There is a strong predictive Performance for the majority classes. Car
(F1-score: 0.89), Walk (0.84), and Bike (0.81) are well classified with high precision
and recall. These categories have the highest support (sample count), contributing
to strong performance. There are severe issues with Bus classifications. Bus has a
precision, recall, and F1-score of 0.0, meaning the model fails completely in iden-
tifying bus trips. This aligns with the confusion matrix, where bus instances were
entirely misclassified. There is moderate performance for Metro, Train, and Tram.
Metro (F1: 0.71) and Train (F1: 0.80) show acceptable performance, though metro
has a lower recall (0.62), indicating missed detections. Tram has the weakest perfor-
mance (F1: 0.65) among the non-bus classes, likely due to its small sample size (22).
The key takeaways are, that the algorithm performs well for high-frequency classes
(Car, Walk, Bike). THe bus classification is completely ineffective. Metro, Train, and
Tram need improvement, likely due to lower support and feature overlap. Balanced
accuracy (65%) suggests the model struggles with minority classes.

Table 17 shows the classification report of the algorithm based on the training
set. The model achieves 85% accuracy, slightly higher than in the train set (84%).
Balanced accuracy improves to 70% (from 65%), indicating better handling of class
imbalances but still showing weaknesses. There are consistently strong classifications
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Table 16: Classification report for training data
Class Precision Recall F1-Score Support
Bike 0.78 0.85 0.81 656
Bus 0.00 0.00 0.00 13
Car 0.90 0.88 0.89 939
Metro 0.83 0.62 0.71 47
Train 0.80 0.79 0.80 101
Tram 0.72 0.59 0.65 22
Walk 0.84 0.83 0.84 692
Accuracy 0.84 2470
Balanced Accuracy 0.65 2470

for the majority classes: Car (F1-score: 0.88), Walk (0.87), and Bike (0.83) perform
well, similar to the training set. Precision and recall are stable across both datasets,
suggesting the model generalizes well for these major classes. Bus classification still
fails. This confirms that the model cannot recognize and misclassifies bus trips en-
tirely. There are slight improvements for minority classes: Tram (F1: 0.75) improves
from 0.65 in the train set, showing better recall (0.82 vs. 0.59). Metro (F1: 0.71)
now has balanced precision and recall, unlike in the training set where recall was
lower. Train (F1: 0.81) has similar performance but a recall drop (0.74 vs. 0.79),
meaning some train trips are still misclassified. The key takeaways and comparison
to the train set are that major classes (Bike, Car, Walk) maintain high performance.
Bus classification failure persists. Minor classes (Metro, Train, Tram) show slight im-
provements, especially Tram. Balanced accuracy improves (70% vs. 65%), indicating
slightly better recognition of underrepresented classes. The model still struggles with
class imbalances and distinguishing low-speed modes.

Table 17: Classification report for test data
Class Precision Recall F1-Score Support
Bike 0.81 0.86 0.83 284
Bus 0.00 0.00 0.00 10
Car 0.87 0.89 0.88 403
Metro 0.71 0.71 0.71 7
Train 0.89 0.74 0.81 43
Tram 0.69 0.82 0.75 11
Walk 0.89 0.85 0.87 291
Accuracy 0.85 1049
Balanced Accuracy 0.70 1049

The algorithm allowed for multiple classifications for bus and car. This was done since
it was challenging to distinguish between these two modes, even with the inclusion
of OSM data. It also allowed the classification to be unknown. In the results above,
it was found that the bus classification failed. It was found that Bus instances were
classified as multiple classifications. This is shown in Tables 18 and 19. When the
classification was (Car, Bus) it was also usually a Bus or Car.
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Table 18: Multiple classifications in training data
Class Combination Bike Bus Car Metro Train Tram Walk
(car, bus) 9 39 347 1 3 0 17
(unknown) 0 0 2 0 7 0 0

Table 19: Multiple classifications in test data
Class Combination Bike Bus Car Metro Train Tram Walk
(car, bus) 5 33 167 0 2 0 7
(unknown) 0 0 0 0 0 0 1

The algorithm was also tested on the open geo-dataset described in Section 3.2. The
results are shown in Table 20. Here, the label ‘Ferry’ was excluded. The model
achieves 80% accuracy. Balanced accuracy (83%) is higher than in previous results,
indicating improved performance across all classes, even those with fewer samples.
Bike has perfect recall but very low precision, leading to a weak F1-score. This
suggests the model overclassifies instances as Bike, resulting in many false positives.
Bus and metro perform well, though metro has lower recall, meaning some metro
trips are missed. Train and tram both show strong performance, with high precision
and recall. Walk has high precision but lower recall, meaning some walking trips are
misclassified.

Table 20: Classification report for open geo-data
Class Precision Recall F1-Score Support
Bike 0.36 1.00 0.53 9
Bus 1.00 0.80 0.89 5
Metro 1.00 0.60 0.75 5
Train 0.89 0.89 0.89 9
Tram 0.77 0.91 0.83 22
Walk 0.97 0.75 0.85 77
Accuracy 0.80 127
Balanced Accuracy 0.83 127

Table 21 shows the multiple classifications in the open geo-dataset. Here, no multiple
classifications were observed because of the absence of car trips in the data. The
‘unknown’ category, where the algorithm failed to classify a trip confidently, only
occurred very few times. Thus, 127 out of the 134 tracks were classified.

Table 21: Multiple classifications in open geo-dataset
Predicted/Observed Bike Bus Metro Train Tram Walk
unknown 1 0 0 0 5 1
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1 def ALG(df):
2 def apply_classification (row):
3 modes = []
4 # Walking
5 if (row[’speed_p95 ’] < 13):
6 modes . append (’walk ’)
7 else :
8 # Bike
9 if (13 < row[’speed_p95 ’] < 30):

10 modes . append (’bike ’)
11 else :
12 # Tram
13 if(row[’min_distance_tram ’] <0.5 and row[’

std_distance_tram ’] <250 or row[’mean_distance_tram ’
] <100):

14 modes . append (’tram ’)
15 else :
16 # Metro
17 if(row[’min_distance_metro ’] <1.5 and row[’

std_distance_metro ’] <450 or row[’
mean_distance_metro ’] <100):

18 modes . append (’metro ’)
19 else :
20 # Train
21 if (row[’min_distance_train ’] <0.05 or row[’

std_distance_train ’] <25 or row[’
mean_distance_train ’] <100):

22 modes . append (’train ’)
23 else :
24 # Bus
25 if(row[’std_distance_bus ’] <120 or row[’

mean_distance_bus ’] <40 or row[’
min_distance_bus ’] <0.015):

26 modes . append (’bus ’)
27 # Car
28 if (30 < row[’speed_p95 ’] < 140):
29 modes . append (’car ’)
30 return modes if modes else [’unknown ’]
31 df[’modes ’] = df. apply ( apply_classification , axis =1)
32 return df

Listing 2: Python code for rule-based transport mode classification
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