

ESSnet Trusted Smart Statistics – Web Intelligence Network

Grant Agreement Number: 101035829 — 2020-PL-SmartStat

WP2: OJA and OBEC Software

Deliverable 2.6: Technical guidelines on the implementation of the scripts produced

for OJA and OBEC statistics

Final version, 2025-03-28

Prepared by:

WP leader: Jacek Maślankowski (Statistics Poland, Poland, j.maslankowski@stat.gov.pl)

Contributors:

OBEC:

Ewelina Niewiadomska, Heidi Kuehnemann, Vilma Nekrašaitė-Liegė, Marta Sobieraj,

Donato Summa, Kostadin Georgiev, Črt Grahonja, Jacek Maślankowski, Michał Bis,

Johannes Gussenbauer

OJA:

Žydrūnas Eisinas, Johannes Gussenbauer, Alberto Columbano, Dominik D.P. Blatt, Nuška

Brnot, Matej Divjak, Martine M.T. de Mooij-Schep, Erika Cerasti , Angela Pappagallo,

Francesco Amato, Francesca Inglese, Giuseppina Ruocco, Galia Stateva, Kostadin Georgiev,

Annalisa Lucarelli, Jacek Maślankowski, Pierre Villedieu, Yannis Bouachera, Renato

Magistro, Giulio Massacci

2

This document was funded by the European Union.

The content of this deliverable represents the views of the author only and is his/her sole

responsibility. The European Commission does not accept any responsibility for use that may

be made of the information it contains.

3

Contents

1. Introduction .. 4

2. Prerequisites ... 5

2.1. OJA .. 5

2.2. OBEC ... 5

3. Writing scripts for OJA .. 7

3.1. Description of the datasets ... 7

3.2. Preparation of the environment in the Datalab .. 9

3.3. Connecting to Athena .. 11

3.4. List all tables for OJA .. 12

3.5. Typical query ... 13

3.6. How to get a sample of rows from the latest table .. 14

3.7. Getting data by countries ... 14

3.8. Total number of unique OJAs ... 15

3.9. Getting data for the first active year .. 15

3.10. Getting OJAs by countries for the first active year and skills at hierarchy 0 16

3.11. Calculate number of job ads by countries in the first quarter of 2023 17

3.12. The script used to generate tables .. 17

4. OBEC Use case .. 19

4.1. General outline on the statistical production ... 19

4.2. Technical manual on the OBEC use case step-by-step ... 21

List of figures ... 32

List of tables ... 32

References .. 32

4

1. Introduction

The purpose of this guideline is to demonstrate the technical feasibility of accessing the

resources of the Web Intelligence Hub (WIH) to execute scripts developed by members of the

Web Intelligence Network (WIN). The guideline includes two specific use cases: Online-Based

Enterprise Characteristics (OBEC) and Online Job Advertisements (OJA).

Online-Based Enterprise Characteristics (OBEC) is a concept that originated in 2016. It refers

to the utilization of digital platforms, including websites and social media, by enterprises to

showcase their business activities. OBEC encompasses not only the presence of a website

hosted on servers owned or operated by the enterprise itself, but also includes websites hosted

by third parties, such as those managed by parent companies or related enterprises within a

corporate group. The OBEC use case focuses on enterprises that maintain a website and have a

workforce of 10 or more employees.

Mostly it was on to support ICT Usage in Enterprises, which is a ESS survey. The population

is strongly related to the question from this survey, i.e.:

Methodological manual for data compilers and users of the ICT survey:

A4. Does your enterprise have a website?

[Scope: enterprises with access to the internet, i.e. A1 > 0],

[Type: single answer (i.e. Tick only one); binary (Yes/No); filter question].

Online Job Advertisements (OJA) refers to data collected from various online job portals across

European countries. This data is standardized and harmonized to enable the generation of

comparable results across all countries using a single query.

5

2. Prerequisites

2.1. OJA

To work with Online Job Advertisements (OJA), it is essential to use Python or R for data

access, and a knowledge of SQL is required for direct database interactions. This technical

guideline focuses on Python, as it has been utilized across all use cases within the Web

Intelligence Network. Access to the following resources is necessary for working with OJA

data:

• OJA Datalab: https://portal.eurostat.datalab.ecdp.tech.ec.europa.eu/

The following technical skills are required for effective data processing:

• Python: For scripting and data analysis.

• SQL (Athena): For querying and managing data within the database.

• Linux: For operating system-level data management and processing tasks.

2.2. OBEC

To work with Online-Based Enterprise Characteristics (OBEC), access to the following

resources is required:

• Web Intelligence Hub Platform (WIHP, WIP) – Data Acquisition Service (DAS):

https://prod.wihp.ecdp.tech.ec.europa.eu/

• Datalab: https://portal.eurostat.datalab.ecdp.tech.ec.europa.eu/

To execute scripts for OBEC analysis, the following files are necessary:

• A JSON file containing the URLs that need to be examined.

• The WIN_OBEC Python package, provided by Work Package 2.

For effective linkage of the results to the Business Register, the JSON file with URLs should

include two datasets with the following attributes:

• For Web Intelligence Hub Platform – Data Acquisition Service (web scraping tool

with OpenSearch):

o Anonymized ID: A unique identifier for each enterprise.

o Enterprise URL: The website address of the enterprise.

o Group: The group, such as "OBEC", which is the group to which the user

belongs and have at least developer rights.

https://portal.eurostat.datalab.ecdp.tech.ec.europa.eu/
https://prod.wihp.ecdp.tech.ec.europa.eu/
https://portal.eurostat.datalab.ecdp.tech.ec.europa.eu/

6

• For further processing in Datalab (JupyterLab with Python, RStudio):

o Business Register ID: A unique identifier linking the enterprise to the business

register.

o Anonymized ID: To maintain consistency across datasets.

o Other attributes: Additional information needed for analysis.

The following technical skills are required for data processing:

• Python: For scripting, data analysis, and processing.

• NoSQL (OpenSearch): For querying and managing data extracted from the WIP-DAS.

• Linux: For managing the data environment and performing server-side operations.

7

3. Writing scripts for OJA

3.1. Description of the datasets

The OJA DataLab is a system that comprises several tables, with the most important being the

table containing the final, processed data derived from the raw data. Below is the list of key

attributes available in this table.

Table 1. Attributes available in processed data in the OJA DataLab

Column name Data type Description

oja_id object Internal ID of the online job offer

first_active_date object Date of posting the offer

first_active_day int64 The day the offer was posted

first_active_month int64 The month the offer was placed

first_active_year int64 The year the offer was placed

last_active_date object Offer end date

last_active_year int64 Offer end date

last_active_month int64 The month the offer ends

last_active_day int64 Offer end year

language object Language of the offer

occupation4d_id object ISCO 4-character code

occupation3d_id object ISCO 3-character code

occupation2d_id object ISCO 2-character code

occupation1d_id object ISCO 1-character code

occupation4d object ISCO Level 4 name

occupation3d object ISCO Level 3 name

occupation2d object ISCO Level 2 name

occupation1d object ISCO Level 1 name

skill_id object Skill ID

skill object Skill name

skill_hier3_id object Skill code, level 3

skill_hier3 object Skill name, level 3

skill_hier2_id object Skill code, level 2

skill_hier2 object Skill name, level 2

skill_hier1_id object Skill code, level 1

skill_hier1 object Skill name, level 1

skill_hier0_id object Skill code, level 0

skill_hier0 object Skill name, level 0

city_id object Location identifier

city object Town

nuts3_id object Code NUTS3

nuts3 object Name NUTS3

8

nuts2_id object Code NUTS2

nuts2 object Name NUTS2

nuts1_id object Code NUTS1

nuts1 object Name NUTS1

country_id object Two-character country identifier according to ISO-3166

country object Country name

contract_id object Contract ID

contract object Contract name

education_id object Educational level identifier according to ISCED-11

education object Educational level according to ISCED-11

economic_activity2d_id object Economic activity code (activity classification) of the

entity posting the offer, level 2

economic_activity2d object Economic activity (activity classification) of the entity

posting the offer, level 2

economic_activity1d_id object Economic activity code (activity classification) of the

entity posting the offer, level 1

economic_activity1d object Economic activity (activity classification) of the entity

posting the offer, level 1

activity_sector_id object Code of the activity sector of the unit inhabiting the offer

activity_sector object Name of the sector of activity of the unit inhabiting the

offer

salary_id object Pay Level ID

salary object Salary level

working_time_id object Job size identifier

working_time object Name of the job size

experience_id object Required Experience ID

experience object Name of required experience

source_id object ID of the source from which the offer was obtained

source_category object Category of the source from which the offer was

obtained

source_category_id object Category identifier of the source from which the offer

was obtained

source_country object The country in which the offer was published

source_stability object The stability level of the data source

Many of the attributes described above are derived from detection algorithms implemented

within the OJA processing pipeline, leveraging machine learning techniques. These include

classifications such as occupation (ISCO), educational attainment (ISCED), economic activity

(NACE), among others. The underlying assumption is that, in most instances, these algorithms

accurately identify and classify the relevant data within the OJA pipeline.

9

Data access is facilitated through Python or R environments, using SQL queries executed within

the Amazon Web Services (AWS) cloud computing environment. The backend database is

Amazon Athena, requiring that all queries conform to Athena’s SQL syntax.

As detailed in the country-specific subchapters below, maintaining high data quality is crucial.

An annotation exercise conducted in 2022 revealed that the statistics produced by the OJA

DataLab may not yet meet the standards required for publication as official statistics. In some

instances, however, limited aggregations of the data can be used to present findings as

experimental statistics. A final decision regarding the use of OJA data as official statistics will

depend on the outcomes of the 2024 OJA annotation exercise, in agreement with member

countries of the Web Intelligence Network (WIN).

The following sections detail the specific applications of OJA data by individual countries

within WIN, while also highlighting commonalities among them. For example, France,

Lithuania, Slovenia, and the Netherlands have developed in-house systems for generating

statistics from OJA data, leading them to focus on how WIN OJA data might complement their

existing datasets. Austria and France provided comparative tables that align DataLab OJA

results with their official Job Vacancy Statistics, and a similar analysis was carried out in

Poland. In Poland’s case, the OJA data displayed greater variability and, at times, diverged from

the trends observed in official labor market statistics. Notably, Italy, Slovenia, and Bulgaria

collaborated on a joint initiative to produce a set of indicators using a standardized

methodology, enabling the presentation of comparable results across these countries.

3.2. Preparation of the environment in the Datalab

To begin working with the OJA DataLab, it is first necessary to establish a connection by

logging in through the following URL:

• OJA DataLab Login: https://portal.eurostat.datalab.ecdp.tech.ec.europa.eu/

It is important to note that this URL may change as the DataLab platform evolves. Currently,

users can log in through the EU login using either a QR code or a PIN. Since this is a standard

login method for European Union services, we will not delve into the specifics here. However,

users must contact the Web Intelligence Hub (WIH) authorities to obtain access credentials for

the DataLab.

The initial parameters required for setting up the environment are provided in Figure 1 (not

included here). These parameters are essential for configuring the data access environment,

enabling users to interact with the OJA datasets once access is granted.

https://portal.eurostat.datalab.ecdp.tech.ec.europa.eu/

10

Figure 1. Parameters used in configuration of the OJA Datalab

To set up the environment in the OJA DataLab, follow these steps:

1. Name of the Datalab:

o While there are no strict naming conventions, it is recommended to use a name

that is easily associated with your organization or the country creating the

environment. This helps in identifying the workspace more effectively.

2. Sharing Status:

o Private: Only the creator (single user) has access to this environment.

o Public: Allows sharing of the environment with other users.

For most users working with OJA data within the Web Intelligence Hub (WIH), it

is advisable to set the group to WIH-DATALAB.

11

3. Configuration:

o Set the config to custom. This means that the environment's resources, such as

CPU and memory allocation, can be tailored to specific needs.

4. Password:

o A password will be generated automatically during the setup process, which

ensures secure access.

5. Permissions:

o These should be left unchanged and must match the permissions shown in the

reference figure. This ensures that the environment operates correctly and

remains aligned with the access requirements of the WIH.

6. CPU Resource Configuration:

o This parameter defines how many CPU resources will be allocated. For

example, setting 1000m indicates that one full CPU will be utilized.

7. Memory Resource:

o It is recommended to allocate a memory resource of no more than 8 GB. This

is specified as 8192Mi in the configuration.

8. NFS PVC Name:

o Select the NFS PVC (Persistent Volume Claim) name from the provided list.

For users in this setup, it should be wih-datalab-default-nfs.

These settings ensure that your Datalab environment is correctly configured for accessing and

analyzing OJA data, while also maintaining compatibility with the Web Intelligence Network's

standards.

3.3. Connecting to Athena

To access the OJA data from the SQL database using Python, you can use the following script

in a new Jupyter notebook within the DataLab environment. This script sets up a connection to

the Athena database and allows you to query the data.

#!pip install pyathena

from pyathena import connect

from pyathena.pandas.util import as_pandas

cursor = connect(

12

 region_name="eu-west-1",

 s3_staging_dir="s3://wih.aws-athena-query-results.eu-west-

1/",

 work_group="primary"

).cursor()

cursor.execute("""

 SHOW TABLES IN AwsDataCatalog.wih_oja_latest;

 """, {'param': 'a string'})

tables = as_pandas(cursor)

tables

To begin using the pyathena package for accessing data from the OJA DataLab's Athena

database, you will first need to install the package. Here’s how you can do that, followed by an

updated script that connects to the environment and lists all tables from the wih_oja_latest

schema, which is the recommended schema for users to access.

1. Step 1: Install the pyathena Package

In your Jupyter notebook, you can install the pyathena package by running the following

command:

pip install pyathena

2. Step 2: Connect to the Athena Environment and List Tables

After installing the package, you can use the following script to connect to the Athena

environment and list all tables in the wih_oja_latest schema:

3.4. List all tables for OJA

To always retrieve the most recent list of tables in the wih_oja_latest schema, you can execute

the following SQL command:

SHOW TABLES IN wih_oja_latest;

Explanation:

• Command: SHOW TABLES IN wih_oja_latest;

o This SQL command instructs Athena to list all tables currently available within

the specified schema (wih_oja_latest).

13

o Executing this command will provide an up-to-date view of all tables, ensuring

you have the latest information.

cursor.execute("""

 SHOW TABLES IN AwsDataCatalog.wih_oja_latest;

 """, {'param': 'a string'})

tables = as_pandas(cursor)

tables

The aforementioned command executes an SQL query that retrieves the list of tables from the

specified schema and stores the results in a Pandas DataFrame. Therefore, it is essential to

import the Pandas package prior to executing this command, as it provides the necessary

functionality for data manipulation and storage within the Python environment.

3.5. Typical query

A typical query executed within the environment pertains to the wih_oja_latest schema,

specifically targeting the wih_oja_blended table. This query is illustrated in the code provided

below.

0. FIRST QUERY

latest dataset SCHEMA: wih_oja_latest

all the variables available in the table (i.e. blending all

the information available - "wih_oja_blended")

cursor.execute("""

 SELECT *

 FROM AwsDataCatalog.wih_oja_latest.wih_oja_blended

 LIMIT 1;

 """, {'param': 'a string'})

documents = as_pandas(cursor)

column_names = documents.columns.values.tolist()

column_names

The query presented above will retrieve all columns available within the wih_oja_blended table.

A comprehensive list of these columns has been previously detailed in the preceding subchapter

of this guideline.

14

3.6. How to get a sample of rows from the latest table

A prevalent example of a query involves retrieving data directly from the wih_oja_blended

table. The example provided below demonstrates the process of extracting this data and storing

it within a Pandas DataFrame for subsequent analysis and manipulation.

1. Get a sample of rows for all variables

cursor.execute("""

 SELECT *

 FROM AwsDataCatalog.wih_oja_latest.wih_oja_blended LIMIT

1000;

 """, {'param': 'a string'})

my_sample = as_pandas(cursor)

my_sample

As previously indicated, not all data is stored in the DataFrame due to the inclusion of the

LIMIT 1000 clause in the SQL query. It is advisable to avoid executing SQL queries that yield

outputs comprising tens of thousands of rows, as this may result in excessive memory

consumption. Querying the whole table can create large cost, that can be avoided by the LIMIT

clause.

3.7. Getting data by countries

To retrieve data categorized by country, it is essential to utilize the country attribute, which is

a designated column within the wih_oja_blended table. A typical query that lists occupations

along with their corresponding country names is presented below.

2. FIRST PRACTICAL QUERY

cursor.execute("""

 SELECT distinct occupation4d, country, country_id

 FROM AwsDataCatalog.wih_oja_latest.wih_oja_blended LIMIT

10;

 """, {'param': 'a string'})

documents = as_pandas(cursor)

documents

15

The aforementioned table contains two columns pertinent to country identification: one is

designated as country, and the other as country_id. The country_id column utilizes a two-

character code to represent each country; for instance, "PL" corresponds to Poland, "DE"

represents Germany, and "IT" signifies Italy, among others. The query provided above will

yield a list of unique occupations associated with the countries in which these occupations were

advertised.

3.8. Total number of unique OJAs

The script employed to calculate the total number of unique objects is presented above. It is

important to note that the query must consistently utilize the DISTINCT keyword for the oja_id

column. This column is not inherently unique, as it is utilized to represent multiple skills

associated with each occupation.

calculate number of unique OJA ids

cursor.execute("""

SELECT country, COUNT(DISTINCT oja_id)

 FROM AwsDataCatalog.wih_oja_latest.wih_oja_blended

GROUP BY country LIMIT 100;

 """, {'param': 'a string'})

nr_ads = as_pandas(cursor)

print(nr_ads)

The query presented above can be employed to compute the total number of unique identifiers

within the dataset.

3.9. Getting data for the first active year

A critical component of the queries is the date-related WHERE condition. To filter the data

based on specific dates, it is necessary to utilize attributes such as first_active_date,

first_active_month, last_active_year, last_active_month, and last_active_day. The query

presented below demonstrates the methodology for determining the number of job

advertisements that have been published according to the year of their initial activation.

calculate number of unique OJA ids grouped by

first_active_year

cursor.execute("""

16

 SELECT COUNT(DISTINCT oja_id) AS ads, first_active_year

 FROM AwsDataCatalog.wih_oja_latest.wih_oja_blended

 GROUP BY(first_active_year) LIMIT 10;

 """, {'param': 'a string'})

nr_ads = as_pandas(cursor)

nr_ads

As indicated above, the results of the query will be restricted to the first ten rows. While we

have enumerated all job advertisements based on their initial activation year, the corresponding

last active year remains unspecified.

3.10. Getting OJAs by countries for the first active year and skills at

hierarchy 0

The tables recommended by the Web Intelligence Network include references to selected

occupations and territorial aggregations. Furthermore, it is possible to extract skills associated

with specific occupations. The query presented below will display the relevant skills along with

their corresponding first active year.

6. No duplicates - use distinct

cursor.execute("""

 SELECT COUNT(DISTINCT oja_id) AS ads, first_active_year,

skill_hier0

 FROM AwsDataCatalog.wih_oja_latest.wih_oja_blended

 GROUP BY(first_active_year, working_time, skill_hier0)

 LIMIT 1000000;

 """, {'param': 'a string'})

nr_ads_by_year_worktime_skill = as_pandas(cursor)

nr_ads_by_year_worktime_skill

However, the utilization of skills is not recommended by the Web Intelligence Network, as it

has not been possible to verify all identified skills. It is important to recognize that a machine

learning algorithm is employed for skill identification, which may result in inaccuracies in the

identification process, leading to the possibility that certain skills are not correctly recognized.

17

3.11. Calculate number of job ads by countries in the first quarter of

2023

To compute the number of job advertisements by country for the first quarter of 2023, the query

provided below can be utilized.

cursor.execute("""

 SELECT country, count(distinct oja_id) as number_of_ojas

 FROM AwsDataCatalog.wih_oja_latest.wih_oja_blended

 WHERE (first_active_month in (1,2,3) or last_active_month

in (1,2,3))

 AND (first_active_year=2023 or last_active_year=2023)

 GROUP BY country ORDER BY 2 LIMIT 100;

 """, {'param': 'a string'})

documents = as_pandas(cursor)

documents

The query presented above will display the number of job advertisements categorized by

country, while restricting the results to the first three months of 2023, thereby representing the

first quarter of the year.

3.12. The script used to generate tables

Finally, the scripts employed to generate the tables recommended by the Web Intelligence

Network align with the guidelines outlined in Deliverable 2.4. This deliverable specifically

advocates for the listing of the most accurate occupations categorized by territorial

disaggregation.

cursor.execute("""

 SELECT country, nuts3, occupation4d, count(distinct

oja_id) as number_of_ojas

 FROM AwsDataCatalog.wih_oja_latest.wih_oja_blended

 WHERE (first_active_month in (1,2,3) or last_active_month

in (1,2,3))

 AND (first_active_year=2024 or last_active_year=2024)

18

 AND occupation4d_id in

 ('OC2113')

 GROUP BY country, nuts3, occupation4d ORDER BY 1,2,3 LIMIT

10;

 """, {'param': 'a string'})

documents = as_pandas(cursor)

documents

The query presented above will reveal the number of job advertisements that occurred in the

first quarter of 2024, categorized by country, NUTS-3 region, and occupation. An illustrative

example of the resultant data is provided in the table below.

Table 2. Result of the suggested query to present the final set of tables

No Territorial unit: country and NUTS 3 Occupation number_of_ojas

1 Belgique/België Arr. Antwerpen Chemists 6

2 Belgique/België Arr. Charleroi Chemists 13

3 Belgique/België Arr. Gent Chemists 5

4 Belgique/België Arr. Hasselt Chemists 6

5 Belgique/België Arr. Huy Chemists 4

19

4. OBEC Use case

4.1. General outline on the statistical production

The business functions and technical components utilized within the Web Intelligence Platform

Data Acquisition Platform (DAS) and the Online-Based Enterprise Characteristics (OBEC)

Datalab are illustrated in the figure below.

Figure 2. Technical components and business functions of WIP-DAS and OBEC Datalab

Source: WP2 Deliverable 2.2. Second Interim Progress Report, 2023.

The data pipeline illustrates the process of data collection and analysis, which can be delineated

into six distinct steps:

1. Preparing a dataset of enterprise URLs, accompanied by anonymized Business Register

numbers.

2. Uploading the dataset of URLs into the Data Acquisition Platform (WIP-DAS).

3. Modifying the necessary parameters and initiating the web crawler.

4. Cloning the scripts responsible for generating statistics from GitHub repositories.

5. Executing the cloned scripts from step 4 to access data from the WIP-DAS for the

websites that have already been scraped.

6. Processing the data to generate output files (in CSV format) containing statistical

indicators.

In the initial step (1), a JSON file must be prepared and subsequently loaded into the WIP-DAS.

20

An example of such a file is provided below:

{

"sources":[

 {

 "name": "PL_000001",

 "url": "https://stat.gov.pl",

 "group": "/OBEC"

 },

 {

 "name": "DE_000001",

 "url": "https://destatis.de",

 "group": "/OBEC"

 },

 {

 "name": "IT_000001",

 "url": "https://istat.it",

 "group": "/OBEC"

 }

]

}

This dataset is uploaded to the WIP-DAS through the dedicated interface provided by the

platform (step 2). The figure below illustrates a screenshot demonstrating the process of

defining the data source within the WIP-DAS.

Figure 3. Importing JSON files in the WIP-DAS

Source: WP2 Deliverable 2.2. Second Interim Progress Report, 2023.

21

The next step (Step 3) is to modify the necessary parameters of the crawler, such as defining

the actions to be taken when encountering errors during website scraping, and then initiating

the crawler. Data that has already been scraped and is available for extraction can be viewed in

the OpenSearch repository.

The subsequent step (Step 4) in the OBEC pipeline involves cloning the repository of libraries

necessary for executing the software that detects OBEC characteristics. For instance, the

software responsible for detecting social media presence can be found at the following GitHub

repository: https://github.com/jmaslankowski/WP2_OBEC_Starter. To clone this repository,

the appropriate git cloning command must be executed within the OBEC Datalab environment.

The following step (Step 5) involves executing the scripts cloned from the GitHub repository.

These scripts, written in Python, are designed to be run through Jupyter Notebook or

JupyterLab. The example provided will enumerate all social media links present on the website,

categorizing them by various social media channels, including Facebook, Twitter, YouTube,

LinkedIn, Instagram, Xing, and Pinterest.

The final step of the OBEC pipeline (Step 6) is to retrieve the results generated in Step 5 for the

purpose of aggregating the data and producing statistical indicators related to the social media

presence of enterprises. Currently, our focus is on assessing the data quality aspects of this use

case, particularly in identifying potential issues related to incorrect linkages between social

media profiles and the corresponding enterprise URLs.

4.2. Technical manual on the OBEC use case step-by-step

The data collection process for our use case can be delineated into four fundamental steps, as

outlined below:

1. Preparation of a list of URLs associated with the Business Register.

2. Uploading the dataset of URLs into the WIP-DAS.

3. Modifying the necessary parameters of the crawler and initiating the data

acquisition process.

4. Accessing the data from the Datalab.

4.2.1. The use of anonymized Business Register to feed the data sources in the WIP-

DAS

As previously mentioned, the initial step involves preparing anonymized Business Register

numbers. This step is crucial because the Business Register should not be shared on the WIP-

DAS, given that it may be accessible to other users. While the specific names assigned to these

anonymized identifiers are not critical, it is essential that they remain unique, as they will be

referenced in subsequent scripts. It is important to note that these identifiers must facilitate the

22

linkage between the list of URLs and the Business Register. This linkage is vital for enabling

the aggregation of data by various attributes derived from the Business Register, such as the

NACE code.

The JSON file should be defined this way:

{

"sources":[

 {

 "name": ”PL_00000001",

 "url": ”https://www.stat.gov.pl",

 "group": "/OBEC"

 },

 {

 "name": ”PL_00000002",

 "url": ”https://ug.edu.pl”,

 "group": "/OBEC"

 },

 {

 "name": ”PL_00000003",

 "url": ”https://gdansk.stat.gov.pl”,

 "group": "/OBEC"

 },

 {

 "name": ”PL_00000004",

 "url": ”https://szczecin.stat.gov.pl”,

 "group": "/OBEC"

 },

 {

 "name": ”PL_00000005",

 "url": ”https://wzr.ug.edu.pl”,

23

 "group": "/OBEC"

 }

]

}

The file prepared this way should be saved in JSON format. In fact this is the list of URLs as

sources separated by comma. The group used in the file is OBEC.

4.2.2. Uploading the dataset of URLs into WIP-DAS

Once the file referenced in the previous step has been prepared, it can be uploaded to the

dashboard of the WIP-DAS. To initiate this process, it is necessary to navigate to the "Sources"

tab and select the file intended for upload to the platform.

Figure 4. Choosing the file to be imported to the WIP-DAS.

After successful import of the file, the report of importing the file will be displayed.

4.2.3. Modifying necessary parameters of the Crawler and starting the acquisition

process

The next step involves the creation of a crawler that will be utilized during the data acquisition

phase. The crawler must be assigned a unique identifier, and it should be categorized under the

appropriate group, which in this instance is OBEC.

24

Figure 5. Creating a new crawler in the WIH-DAS

Following the creation of the crawler, additional URLs can be incorporated by selecting the

"Add Sources" option, as illustrated in the figure below. Data services may be added

individually or through batch import, utilizing the common segment of the URL names. In this

instance, the shared portion of the names is "WISER," as depicted in the figure below.

Figure 6. Adding new URLs to the crawler in the WIP-DAS

25

Once the crawler has been defined, data acquisition can be initiated by selecting the

"Acquisitions" option and creating a new workflow. Utilizing the default values will facilitate

the retrieval of data from the landing page associated with each URL listed in the uploaded file.

To enhance the depth of the data collection process, it is possible to specify the parameter for

depth, allowing for a more comprehensive exploration of the website.

Figure 7. Starting the data acquisition in the WIP-DAS

The workflow ID is generated automatically and will subsequently be referenced in the Python

code to access the data collected by the crawler. Once the data has been successfully acquired,

the crawler will be automatically terminated to finalize the data collection process. The

termination of the crawler can also be done manually, even the data collection process is not

finished.

4.2.4. Accessing the data from Datalab

The script developed by the work package tool for processing data to generate indicators on

OBEC utilizes the data available within the platform. When initiating data analysis, it is

essential to identify the acquisition ID that contains the data intended for processing. The list

of data acquisitions and their corresponding crawler names can be accessed through the

"Acquisitions" tab located on the left side of the WIP-DAS.

26

Figure 8. The list of acquisitions and associated crawlers in the WIP-DAS

The scripts developed for OBEC were authored in Python, necessitating access to the Datalab

for execution. To reconfigure these scripts, it is imperative to know the acquisition ID

associated with the specific crawler name of interest. The initial step involves updating the

acquisition ID to the one relevant to the crawler intended for processing, specifically by

modifying the parameter labeled query_content_doc.

All requisite algorithms for processing the data in accordance with OBEC standards have been

encapsulated within the package named WIN_OBEC. In the code below, the class

SocialMediaPresence is utilized, featuring its method searchSocialMediaLinks.

import WIN_OBEC as obec

import sys

import json

import requests

import re

import os

import pandas as pd

import json

opensearch_url = "https://...."

def get_result(query):

 payload={}

27

 headers = {}

 response = requests.request("GET", opensearch_url + query,

headers=headers, data=payload)

 return response.text

query_content_doc = "/content_2e049f3e-b8be-41c5-9608-

726654126214_769098/_search?pretty=true"

smp=obec.SocialMediaPresence()

res = json.loads(get_result(query_content_doc))

execute the searchSocialMediaLinks function for the first 50

URLs

for i in range(0,50):

 try:

 url=res['hits']['hits'][i]['_source']['fetched_url']

 htmlfile=res['hits']['hits'][i]['_source']['html']

 print(i,url)

 print("*"*100)

 smp.searchSocialMediaLinks(url,htmlfile)

 print("*"*100)

 except:

 break

The key components of the script outlined above include:

• Importing the WIN_OBEC package: This package provides the necessary

functionalities for processing data related to OBEC.

• Utilizing query_content_doc: This variable serves as a reference to the data acquisition

phase, facilitating data access.

• Employing methods such as searchSocialMediaLinks, searchEcommerce, or

searchLanguage: These methods are designed to calculate indicators in accordance

with Deliverable 2.4, which specifies the recommended tables for statistical production.

The classes within the script, such as SocialMediaPresence, do not feature a constructor. To

instantiate a new object, one merely references the class. However, within the functions—

specifically searchSocialMediaLinks—it is crucial to include two arguments: the first being the

28

URL and the second being the HTML file obtained from the WIP-DAS. The execution of the

aforementioned script yields a list of URLs along with their corresponding social media

channels, which is stored in a file named WP2_date.csv.

The output of the script is presented in the figure below.

Figure 9. Output of the OBEC script - the use of the searchSocialMediaLinks function

The output generated by this script provides critical insights into the scraped content. It includes

the total number of links present on the website, as well as a character count of the website's

content. Additionally, the script presents the number of unique social media links along with a

comprehensive list of these links.

Other applications include, but are not limited to, evaluating whether a website addresses e-

commerce-related issues. This script is grounded in the methodological framework outlined in

WIN Deliverable 2.4. Additionally, as detailed in the same Deliverable, another use case

involves the multi-language analysis of websites, the technical aspects of which are analogous

to those discussed in this chapter.

For large-scale data processing Amazon OpenSearch is used which is a typical NoSQL index

based database, specifically designed to search for terms in large textual databases.

29

The challenges and solutions associated with OBEC include the following:

• The target population may be unidentified or difficult to define.

• Obtaining a comprehensive list of relevant URLs may pose logistical challenges in

certain ESS (European Statistical System) countries.

• Divergent regulatory requirements across countries may complicate the process; for

example, some jurisdictions mandate the inclusion of tax identification numbers on

business websites, while others do not.

From a legal perspective, the following issues are pertinent:

• A formal web scraping policy must be established to ensure compliance with legal

frameworks.

• There may be evolving regulations governing the sharing of URL datasets and other

associated data by National Statistical Institutes (NSIs).

Regarding methodology:

• Machine learning techniques may be suboptimal for this task due to their lower accuracy

compared to the use of gold standard records.

• Text mining approaches are employed as part of the data analysis process to extract

relevant information from web content.

30

Glossary

Amazon OpenSearch: A fully managed, scalable search and analytics service based on the

open-source OpenSearch project. It is used to search, analyze, and visualize large volumes of

data in real time. OpenSearch is commonly used for log and event data analysis.

AWS (Amazon Web Services): A comprehensive and widely adopted cloud platform provided

by Amazon, offering a broad range of cloud computing services such as storage, compute,

networking, machine learning, and analytics. AWS is used by organizations to scale and

innovate their infrastructure and applications.

AWS Athena: A serverless, interactive query service provided by Amazon Web Services

(AWS) that allows users to analyze data stored in Amazon S3 using standard SQL queries.

Athena is designed to process large amounts of data without the need to manage infrastructure.

OpenSearch: A distributed search and analytics engine used for large-scale data retrieval and

analysis. It is often used for full-text search, log analytics, and real-time data exploration.

JSON (JavaScript Object Notation): A lightweight, human-readable data format used for

representing structured data. JSON is commonly used for transmitting data between a server

and a web application, and it is easy to parse and generate in many programming languages.

Linux: An open-source, Unix-like operating system kernel that forms the basis for various

operating systems, such as Ubuntu, CentOS, and Red Hat. Linux is known for its stability,

security, and versatility, commonly used in server environments and for development.

NoSQL: A category of database management systems that do not use the traditional table-based

relational model. NoSQL databases are designed to handle large amounts of unstructured or

semi-structured data, and they provide flexibility for scalability, high availability, and

performance. Examples include document stores, key-value stores, wide-column stores, and

graph databases.

Python:A high-level, interpreted programming language known for its simplicity and

readability. Python is widely used in fields such as web development, data analysis, artificial

intelligence, machine learning, and automation.

31

URL (Uniform Resource Locator): A reference to a resource on the internet, commonly

known as a web address. A URL specifies the protocol (e.g., HTTP or HTTPS), domain name,

and path to the resource.

Web Scraping: The process of extracting data from websites using automated scripts or tools.

Web scraping typically involves parsing HTML content, navigating web pages, and collecting

data such as text, images, or links.

32

List of figures

Figure 1. Parameters used in configuration of the OJA Datalab .. 10

Figure 2. Technical components and business functions of WIP-DAS and OBEC Datalab ... 19

Figure 3. Importing JSON files in the WIP-DAS .. 20

Figure 4. Choosing the file to be imported to the WIP-DAS. .. 23

Figure 5. Creating a new crawler in the WIH-DAS ... 24

Figure 6. Adding new URLs to the crawler in the WIP-DAS .. 24

Figure 7. Starting the data acquisition in the WIP-DAS .. 25

Figure 8. The list of acquisitions and associated crawlers in the WIP-DAS 26

Figure 9. Output of the OBEC script - the use of the searchSocialMediaLinks function 28

List of tables

Table 1. Attributes available in processed data in the OJA DataLab .. 7

Table 2. Result of the suggested query to present the final set of tables 18

References

Web Intelligence Network: WP2 Deliverable 2.1. First Interim Progress Report, 2022.

Web Intelligence Network: WP2 Deliverable 2.2. Second Interim Progress Report, 2023.

Web Intelligence Network: WP2 Deliverable 2.3. Third Interim Progress Report, 2024.

Web Intelligence Network: WP2 Deliverable 2.4. Third Interim Progress Report, 2025.

