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Preliminary report on methodologies

MNO-MINDS

25.05.2024

Mobile network operator (MNO) data have great potentials for producing
official statistics on population, tourism, mobility and environment. However,
MNO data would not suffice on their own whenever the target statistical unit
or the measurement unit is not mobile device per se.

This preliminary report constitutes Deliverable D3.1 from ESSnet project
MNO-MINDS WP3, Methodologies and open source tools for integrating MNO
and non-MNO data sources. It consists of three chapters. A reference frame is
presented in Chapter One, as a common basis for examining all the methods
relevant to utilising MNO data. Chapter Two provides a review of the literature
on existing statistical methods and related quality assessment. The methods
will be appraised in light of the needs and requirements of official statistics.
An outline of further developments for WP3 is given in Chapter Three.

Depending on how the associated uncertainty is defined, one can classify
any statistical method under three broad approaches: randomisation, quasi-
randomisation and super-population modelling.

• Randomisation requires a specialised survey to convert the MNO data into the
target statistical outputs, whose uncertainty is considered to be dominated
by the sampling error under the known survey sampling design.

• Although MNO data are not observed based on some known probabilities, one
may introduce a model of the underlying mechanism as if they were, and
assess the uncertainty accordingly. Such a quasi-randomisation approach
can be implemented together with suitable non-MNO population data and, if
fit-for-purpose, can remove the need of specialised surveys altogether.

• It is often possible to build a so-called super-population model for specific
variables from non-MNO sources, using features derived from relevant MNO
data. However, different models are needed for different statistics generally,
unlike building a quasi-randomisation model that is applicable to all the
different variables associated with the same mobile devices.

In Chapters Two and Three we will explain the challenges that exist for all
the three approaches and the outlined developments in order to address them.
Without specifying the target statistics and the available MNO and non-MNO
data, any potential solutions can only be discussed in a preliminary manner at
this stage. However, we hope to have anticipated and covered the key elements
that are likely to be required in future use-cases and applications.
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For those readers who may be interested in examining closely the techniques
mentioned in the sequel, we note that the notations are not always consistent
across the different parts of this report. This is simply due to the diverse
background of the methods and ideas, as well as the conventions that exist in
the respective fields of literature. However, we have made an effort to keep the
notations self-contained and consistent in each subsection, such as Section
2.3.3, and as far as possible in each section, such as Section 3.2.

Finally, one needs not to read the report page after page. For instance, after
Chapter One, it is possible to read first the introductory text in Chapters Two
and Three, respectively, before Sections 2.1 and 3.1, and then select among
the different sections depending on one’s interest. It might also be helpful to
read the related sections in tandem, such as Section 2.1 followed by Section
3.1 now that both deal with the randomisation approach.
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1 Introduction

1.1 MNO data
Signal contacts between a mobile device and the mobile network operator (MNO)
infrastructure may have a recorded time and a cell-ID of the tower (or base
station) hosting antennas. Regardless the purposes of contacts, we shall refer
to such (device, time, cell-ID) records as the nano MNO data.

Whilst the time attribute is largely unproblematic, the other two attributes
of nano MNO data may cause challenges to secondary statistical uses:

• insofar as the target statistical or measurement unit is not mobile device per
se, a conversion from devices to the target units will be necessary;

• the device’s position at the time of contact and movement over time need
to be inferred (or approximated) from the recorded cell-ID, according to the
network infrastructure and various operational contingencies.

Meanwhile, the Official Statistics Agency (OSA) cannot have access to nano
MNO data, due to confidentiality, commercial interest and technology reasons.
What is being made available to the OSA is (anonymised) macro MNO data
( Multi-MNO project), which refers to summary measures over multiple devices
within a specified time period, such as the number of devices that moved from
city A to B during the 24 hours on May 25, 2024, provided it is larger than a
specified confidentiality threshold.

However, provided necessary and appropriate computational and regulatory
support, it may become possible to process micro MNO data in a multiparty
confidential setting (Ricciato, 2024; Zhang and Haraldsen, 2022), in order to
enhance the resulting macro MNO data. Here, micro MNO data refers to sum-
mary measures of each distinct device within a specified time period, such
as whether or not a particular device moved from city A to B during the 24
hours on May 25, 2024. The multiple parties may include several MNOs, as
well as the OSA that contributes data from non-MNO sources. It should be
stressed that the final outputs accessible to the parties will remain in the form
of (anonymised) macro data. Confidential multiparty computing at the micro
level is only a means to enhance the aggregated outputs; but micro MNO data
need not to be and will not be revealed to any party, including the owner MNO
itself if this is considered desirable.

The methods for combing MNO and non-MNO data for official statistics will
assume macro MNO data as outlined above, possibly enhanced by confidential
multiparty micro data computing. The only exception will be an opt-in smart
survey, whereby informed consent is given by sampled individuals to collect
their micro or even nano MNO data directly.

1.2 A reference frame for methods
Two structured approaches to data integration have proven to be useful in the
past. First, adopting a total error framework allows one to analyse and identify
the most important error sources in each situation (Zhang, 2012; Reid et al,
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2017; Rocci et al, 2022). Next, specifying a range of generic settings of the data
to be combined can provide practical guidance to the relevant methods (ESSnet
KOMUSO, 2019; De Waal et al, 2020a). To capture the range of problems
pertaining to combining MNO and non-MNO data, we propose a reference frame
(Figure 1) that combines the elements from both the approaches, which enables
one to place and examine all the relevant methods on a common basis.

Target Statistics

Statistical Unit Total Error Method Use of MNO data

Data Configuration

M1

M2

Figure 1: Reference frame for methods to combine MNO and non-MNO data.
M1, M-executor methods; M2, M-enabler methods.

Firstly, the statistical unit (and the population) of interest follows from the
definition of the target statistics. It is generally the case for official statistics
that one is not interested in making statistics of mobile devices but of persons
or spatial objects (such as a city centre). Even when each detected device
corresponds to a person belonging to the target population, all the detected
devices would rarely, if ever, correspond to the target population. It is therefore
critical to maintain the distinction between the statistical unit (e.g., person)
and the observation unit (device), in order to deal with the potential coverage
or selection bias of MNO data.

Secondly, data configuration is characterised by the aggregation process of
MNO data and any additional relevant features.

• Whether macro MNO data can be enhanced by micro-data integration will
affect the choice of methods. The granularity of location (cell-ID, map grid,
administrative area, etc.) or movement (between municipalities, within city,
route on a street map, etc.) matters, as well as the reference time period (e.g.
within each 24-hour period, or over 12 months).

• Similarly for the non-MNO data. For instance, the choice of methods and
the resulting uncertainty of tourism statistics will be affected, depending on
whether airline passenger counts are available by the different flights or only
as a daily total (e.g. of arrivals at a given airport).

Thirdly, it is also important to clarify whether the MNO data are to be treated
as the target measures or as auxiliary information (i.e. covariate, feature) for
non-MNO measures, which is referred to as “Use of MNO data” in Figure 1. For
instance, if the MNO origin-destination (OD) trip counts are treated directly to
as the number of persons making such trips, then bias can be caused by the
non-representativity of the detected devices and possibly the errors associated
with the OD classification. However, if the same device counts are used as
auxiliary information to a Travel Survey, where trip data are collected from
the survey respondents directly, then these MNO counts would no longer be a

5



cause of bias to the resulting statistics, whether the MNO and survey data are
combined at the individual or aggregated level.

Now, given the statistical unit (and population), the data configuration and
the use of MNO data, it becomes possible to conduct a total-error analysis with
respect to the target statistics, in order to identify the most important errors,
as well as the corresponding methods that are required to deal with them.

Finally, we shall distinguish two types of methods, referred to as M-executor
and M-enabler, respectively. M-executors are methods that are applicable to
the available data in the given configuration, and M-enablers are methods that
enable alternative improved data configurations and M-executor methods. Let
us illustrate with two examples.

• Suppose there are relatively too many employed persons underlying the de-
tected devices compared to that in the target population, whereas the MNOs
cannot produce separate macro data according to census or register-based
employment status of the device users. Any means of micro processing en-
hancement (mentioned in Section 1.1) that can enable suitably adjusted
macro MNO data would be an M-enabler method in this situation, which
would affect the feasible M-executor methods.

• Suppose MNO counts are classified according to device ‘Home’ municipality
assigned by the MNO. Any longitudinal analysis algorithm that produces the
MNO-Home classification can be regarded as an M-enabler method in this
context, which would affect the properties of MNO-Home classification and
the M-executor methods that make use of the resulting macro MNO data.
Such matters are within the scope of the ongoing Multi-MNO project.

Although we will be mainly dealing with M-executors, attention will be given
to M-enablers when appropriate, such that the development of methods for
combining MNO and non-MNO data not only accommodates the existing data
configurations but also point to more favourable scenarios in future.

2 Literature review and appraisal
Ahas et al. (2007) illustrate early the potentials of using mobile phone data
that are relevant to official statistics. United Nations (2019) provides a first
overview in this respect. Nichols et al. (2023) offer recently a comprehensive
survey of the literature aimed at the use of mobile phone location data in official
statistics, as well as other social, demographic and health studies. The main
topics in official statistics are population estimates, mobility, socio-economic
indicators, and epidemic (covid-19) tracing-monitoring.

Given that nano MNO data are unavailable, inference of device positions
is out of our scope here. To the extent it matters to the target statistics, the
errors will have to be dealt with by other methods than directly modelling device
position conditional on cell-ID (e.g. Tennekes and Gootzen, 2022).

Below we review the relevant statistical methods for using macro MNO data.
Many ways of organisation are possible. One can e.g. broadly divide between
parametric or non-parametric methods, MNO data used as target or auxiliary
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measures, prediction (or regression) vs. other techniques. We shall adopt an
inferential perspective, which distinguishes how the associated uncertainty is
conceptualised and measured, whereby all the relevant statistical methods can
be classified according to the three broad approaches below.

• Randomisation is also commonly referred to as the design-based approach in
survey sampling, where a survey is conducted under some known sampling
design and the uncertainty of the resulting estimation is considered to be
dominated by the associated sampling error.

• Quasi-randomisation is a common model-based approach to observational
studies or nonprobability samples: given observations that are not selected
according to some known probabilities, one could postulate a model of the
observation mechanism of the MNO data as if they had been obtained by
designed randomisation, and the same mechanism is applicable to all the
attributes associated with detected devices.

• Super-population modelling is another common model-based approach to ob-
servational studies or nonprobability samples. Unlike quasi-randomisation,
which e.g. builds a selection model applicable to multiple outcome variables,
a super-population model is tailored to specific outcome variables, such that
different models are needed for different outcomes generally. The distinction
between super-population and quasi-randomisation modelling is convenient
and traditional in official or survey statistics (e.g. Zhang, 2019).

In short, we first distinguish whether the basis of inference is a known sampling
design or an assumed statistical model and, for model-based methods, whether
the assumed model is about the target-agnostic observation mechanism or
specific outcome variables.

Notice that although all the relevant statistical methods (or techniques) we
have come across can be classified in this manner, different types of methods
may be required in a given application to produce the target statistics, in case
one needs to deal with multiple important sources of error — as discussed for
the total error analysis (Figure 1) previously.

Without attempting to compile an exhaustive reference list of all the relevant
methods, we do aim to cover the most typical ideas of the different approaches.
Moreover, the existing methods will be appraised to identify the developments
relevant to the needs of official statistics.

2.1 Randomisation
Grassini and Dugheri (2022) give tourism statistics in Estonia and Indonesia
as currently the only accredited official statistics based on MNO data.

The Central Bank of Estonia has been the official host of the statistics since
2008. The Methodology@Estonia relies on confidential processing of nano
MNO data over time, combined with card payment transactions.

The method in Indonesia (Lestari et al. 2018) for producing foreign visitor
statistics combines macro MNO counts with a tailored sample survey. One
can view a macro MNO count here either as a target measure of devices, or
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as a proxy to the target measure of persons (instead of devices), for which the
sample survey is used to estimate a device-to-person adjustment factor. The
method is a typical example of randomisation approach due to the tailored
sample survey and the absence of any statistical model.

To be specific, let m be the number of active-roaming foreign SIM cards,
which is a macro MNO count after MNO processing to remove the out-of-scope
devices such as carried by fast fliers, seamen, accidental roamers. The total
number of foreign visitors corresponding to m can be written as

N = wm and w = ξ−1{Pr(1− Pw)}(1− Pnr)
−1

which involves (i) deduplication from foreign devices to travellers, via

ξ = no. active-roaming SIMs per foreign traveller;

(ii) subsetting of tourists among the foreign travellers, via

Pr = proportion of foreign residents among travellers,
Pw = proportion of workers among foreign residents;

and (iii) weighting tourist-roamers to all foreign tourists, via

Pnr = proportion of non-roamers among foreign tourists, including e.g.
without phone, turn off roaming, switch to local SIMs.

A sample survey is used to estimate w (including all its constituent quantities),
which is conceptualised as a finite-population parameter, i.e. the ratio between
two population constants m (observed) and N (unknown). In applications, the
adjustment is stratified by the border regions, and the estimate of w varies
between 0.48 and 2.58 in Table 2 of Lestari et al. (2018).

Two central lessons are worth noting for this randomisation-based method
of the only accredited official statistics based on macro MNO data.

• Survey sampling provides a universally valid approach for utilising macro
MNO data, just like survey sampling could have been without the MNO data.
Thus, the added value of MNO data here lies primarily in efficiency gains and
reduced sample size (compared to what is necessary otherwise).

• The long-term cost of randomisation approach will not be negligible, not least
because the adjustment factor w is target-specific, in that it only applies to a
particular MNO count m. Different factors are needed across space (e.g. the
border regions), time, and topics (e.g. domestic vs. foreign visitors).

2.2 Quasi-randomisation
Expansion of macro MNO counts according to official population sizes and
MNO market shares is commonly practiced for the sake of ‘representativity’.
The underlying idea belongs to the quasi-randomisation approach, which pos-
tulates a selection model of the detected devices for the MNO counts.

In terms of Figure 1, the macro MNO counts are treated as target measures,
albeit based on a subset of the target population. The non-uniform selection
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probabilities across the population are determined by the assumed selection
model, the most convenient of which amounts to post-stratification.

The method of Suarez Castillo et al. (2024) is typical. Denote by r the MNO-
detected Home (place) for any device d ∈ Dr, and let D = ∪rDr contain all the
devices. Denote by jd,t the (contact) cell of device d during time t, where jd,t is
imputed even if no contacts exist for d during t. We have∑

j

mjr,t ≡ |Dr| where mjr,t =
∑
d∈Dr

I(jd,t = j)

is the macro MNO count of Home-r devices with contact cell j during t. Let the
weight (or expansion factor) from device to population Ur, ∀d ∈ Dr, be

wd = w(r) =
|Ur|
|Dr|

Let the device location i conditional on jd,t = j be given according to

θij = Pr(i | j)

Predict Home-r individuals at location i during t by

E(Nir,t | Dr, [mjr,t]) = w(r)
∑
j

θijmjr,t

where [mjr,t] denotes the matrix of MNO counts by j and r given t.
Clearly, wd = w(r) for any d ∈ Dr amounts to a post-stratification model of

selection (by r). To see the problem with this model, imagine one has a perfect
location technique such that θij = 1 if i = ij and 0 otherwise, i.e. a location ij
can be assigned without error given j. We would then have

E(Nir,t | Dr, [mjr,t]) = w(r)mir,t

where
mir,t =

∑
d∈Dr

I(ijd,t = i) and
∑
i

mir,t ≡ |Dr|

i.e. a straightforward post-stratification estimator, where the devices Dr are
treated as a completely random sample from Ur.

We note that CBS (2020) adopts the same post-stratification model by MNO-
Home, but allows for multiple contact cells for each device during a given t and
varying active device totals |Dr,t| (instead of constant |Dr| by jd,t-imputation).
These modifications affect only the conditional distribution of location given
contact cells and the potential location errors, but not the selection model that
characterises the quasi-randomisation approach.

However, the MNO-Home selection model is surely mistaken, because the
persons carrying the devices Dr can hardly be a proper subset of Ur. Detecting
Home location from device positions is just not the same measurement concept
underlying the official statistics on |Ur|, whether the latter is produced based
on population census, sample surveys or administrative registers.
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Notice that the Multi-MNO project aims to reduce the spuriousness of MNO-
Home classification by leveraging data over a longer period, say, 12 months.
This is likely to improve the compatibility between MNO-Home and the usual
residence concept, but it cannot remove the definitional discrepancy. External
validation will be needed to show if the MNO-Home selection model can become
fit-for-purpose, e.g. by auditing as discussed in Section 2.4.

2.3 Super-population modelling
Super-population modelling is perhaps the most common approach to MNO
data particularly in applications outside the OSAs, where it is simply known as
‘statistical modelling’. As explained earlier, we have adopted ‘super-population’
to emphasise the distinction to ‘quasi-randomisation’ modelling. From now
on, the shorthand QR may be used for quasi-randomisation and SP for super-
population.

2.3.1 Data fusion

The simplest SP modelling approach is to assume that the target distribution
(e.g. related to the population of residents) is the same as a distribution derived
from mobile devices directly. In the literature of using mobile phone position
data, this is sometimes referred to as a data fusion approach, perhaps because
the assumption cannot be empirically established based on the data that are
actually available, similarly to statistical matching or data fusion problems.

For example, Batista e Silva et al. (2020) explore temporal changes in EU
population density by dasymetric mapping, which is an interpolation technique
that disaggregates population counts per administrative areas or census zones
to a finer set of spatial units using a ‘covariate’ distribution of higher spatial
resolution, such as macro MNO counts of cellphone contact records between
the mobile devices and cell towers at high temporal frequency. The authors call
it a data fusion approach, which essentially imputes the distributions required
for disaggregation by those derived from a suitable geotagged covariate, such
as MNO data or social media posts.

Another example can be found in Koebe et al. (2022), where a large area
population size is disaggregated into the small areas therein proportionally to
a covariate count with high spatial resolution, while respecting the benchmark
constraints at the large-area level. Mobile phone data and satellite imagery are
mentioned as possible covariate sources, although only satellite image data are
used in the said application.

Such data fusion methods clearly require a high degree of faith and subject-
matter judgement. Insofar as the associated error cannot be quantified based
on the data actually available, external validation such as auditing would be
necessary in order to accept the outputs as official statistics.

2.3.2 MNO features for prediction, time series, etc.

In terms of Figure 1, macro MNO data are used here as features (or covari-
ates) in SP prediction models of some target outcome variable from non-MNO
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sources, such as sample survey or census. It is of course possible to include
additional features from other non-MNO sources. The term ‘prediction models’
implies that supervised learning is needed.

Although prediction models may be the most common in practice, other
types of models can also make use of features extracted from MNO data. For
instance, van den Brakel et al. (2017) study a bivariate time series model,
where one series contain sample survey estimates and the other is derived from
social media posts. Obviously, the approach remains feasible in principle, if
one of the series is compiled based on MNO data.

Such use of ‘MNO features’ in model-based estimation for official statistics
is not unusual conceptually speaking. The question yet is to demonstrate that
one actually succeeds in making official statistics in this way.

Some brief illustrations of prediction models using macro MNO features are
given below. Due to the popularity of random effects in small area estimation,
we make a distinction between fixed effects and mixed effects models.

Fixed effects models Douglass et al. (2015) consider census population
counts in Lombardy, denoted by Ni for sezione i = 1, ..., 10506 in year 2011.
MNO counts of call data records (CDRs) can be obtained for spatial grids of
size 235× 235m2 over November and December 2013. The best single covariate
is found to be the number of daily callouts during 10-11am, denoted by mi, in
terms of a linear model

E(Ni | mi) = βmi

In addition, combining CDR and Land Cover covariates, denoted by xi, a better
random forest model is obtained, denoted by

E(Ni | xi) = µ(xi)

To generate useful population estimates, the authors suggest that the census-
trained µ(x) may be “recalibrated over time... using a very small scale stratified
population count in key calibration regions” (Douglass et al, 2015). However,
the feasibility of this suggestion is neither clarified nor substantiated.

Mixed effects models The targets may be socio-economic indicators.
Steele et al. (2017) report an application of poverty mapping in Bangladesh,

where small area estimation incorporating spatial correlations is applied to
relevant survey variables using features generated from satellite remote sensing
data, MNO CDR counts or in combination of both.

Schmid et al. (2017) apply the Fay-Herriot model with variable transfor-
mation and benchmarking to estimate literacy rates in Senegal by gender and
commune (431 of them), where a large number of mobile phone covariates are
extracted from tower-to-tower CDRs.

Hadam et al. (2023) apply the Fay–Herriot model with variable transforma-
tion to small area estimation for North Rhine-Westphalia in Germany based
on the Labour Force Survey. The authors explore an alternative definition of
unemployment rate, where the unemployed persons are counted at the place of
residence while the employed persons are counted at the place of work. MNO
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features are based on mobile activities defined as an event caused by a length
of stay in a specific geometry without movement (also known as dwell time).
The macro MNO counts are associated with the cell towers.

2.3.3 Geographically weighted regression

Gilardi et al. (2022) apply geographically weighted regression (GWR) to combine
road sensor vehicle counts with counts derived from TomTom navigation app in
vehicles or mobile phones. The approach is the same if the latter is replaced by
similar MNO counts. With reference to Figure 1, such macro MNO counts can
be considered at proxies to the sensor counts, where two variables are proxy of
each other if they have similar definition and the same support (Zhang, 2021b).
A proxy to the target measure is a special kind of auxiliary variable or feature,
because it is often more powerful than all the other auxiliary variables. For
instance, the binary register-employed variable is more predictive for the binary
ILO-employed variable than age, education, etc. Moreover, some statistical
methods only make sense given proxies but not any other auxiliary variables,
such as structure preserving estimation (Purcell and Kish, 1980) in small area
estimation, or the situation of Gilardi et al. (2022).

To be specific, let {yi : i ∈ s} denote the sensor vehicle counts at the set of
sites s. Let {xj : j ∈ R} be the TomTom (or MNO) counts for the set of sites R,
where s ⊂ R. Let dij ≡ dji be the road distance between j ∈ R and i ∈ s. For any
j ∈ R, GWR yields

ŷj = bjxj where bj =

∑
i∈sw(dij)xiyi∑
i∈sw(dij)x

2
i

as the predicted sensor count at site j, for which yj may be lacking, given a
suitable choice of the weights w(dij) that depend on distances dij.

GWR (Brunsdon et al, 1996) is a special case of nonparametric regression
(Stone 1977) or statistical calibration (Osborne, 1991). We shall consider gen-
eralisations or adaptions of GWR in Section 3.3. Together, they form a family
of nonparametric methods highly relevant for utilising macro MNO data, which
can potentially lead to many novel official statistics of interest.

2.4 Quality assessment and guideline
Salgado et al. (2020) outline a probabilistic framework to the uncertainty of
statistics propagated from nano MNO data. This covers device location error,
device duplication error, selection error of device carriers, and other relevant
errors specific to applications. Although the framework is not operational given
only macro MNO data, with or without enhancement by micro-data processing,
various elements of it are included in the statistical methods reviewed above.
For instance, device deduplication and carrier selection are covered under the
randomisation approach in Section 2.1. Or, the device location error is handled
by geographically weighted regression in a sensible manner.

It is of course possible to assess the quality of specific statistical outputs
originated from MNO data, such as a population spatial density derived from
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geographically allocated MNO device counts, either by comparisons to external
sources or sensitivity analysis; see e.g. Sakarovitch et al. (2018), Vanhoof et al.
(2018), Statistisches Bundesamt (2019) and Ricciato et al. (2020). Such ideas
are not very different to those employed to assess register-based statistics in
their earlier years; see e.g. Myrskylä (1991).

ESSnet KOMUSO (2019) both collected and developed a number of ‘quality
measures and calculation methods’ for multisource statistics, some of which
may also be relevant in the context of combing MNO and non-MNO data, given
appropriate data configuration and final statistics. However, as remarked by
De Waal et al. (2020b), most of these methods are directed at “separate steps,
or building blocks, in the statistical production process. We hope that in the,
hopefully near, future, an all-encompassing theory or framework to base qual-
ity measures for multisource statistics upon will be developed. Such an all-
encompassing theory or framework should be able to handle several different
types of error sources at the same time and, preferably, use the same statistical
theory to treat these error sources.”

In this respect, auditing inference (Zhang, 2023) provides a general and valid
design-based approach, which can be applied to evaluate the final statistical
outputs directly. As formulated by Zhang (2021), “Wherever the goal of survey
sampling is to produce a point estimate of some target parameter of a given
finite population, auditing aims not to estimate the target parameter itself but
some chosen error measure of any given estimator of the target parameter...”
The approach is as universally applicable as survey sampling, given the same
inference basis in finite population sampling theory.

Notwithstanding Quality Guideline for Multisource Statistics from the ESS-
net KOMUSO project (Brancato and Ascari, 2019), Quality Guidelines for the
Acquisition and Usage of Big Data (Kowarik et al., 2020) from the Essnet Big
Data II project pay closer attention to new data sources such as MNO data. The
statistical production process is divided into Input phase, Throughput phase I
(Lower layer), Throughput phase II (Upper layer) and Output phase. The result
from the Input phase is so-called raw data (nano or micro data in the case of
MNO data), the result from Throughput phase I is so-called statistical data (e.g.
macro MNO data), whereas the statistical output is the final product after the
Throughput phase II. For each phase quality guidelines are listed. Since the
ESSnet Big Data II covered several types of new data sources - among others
MNO data - the guidelines listed are partly source-specific.

Currently, the Multi-MNO project (on a reference processing pipeline of MNO
event data and network topology data) is developing a comprehensive quality
assurance framework. The development so far has analysed how the gen-
eral quality requirements from ES Code of Practice and ESS Quality Assur-
ance Framework apply to the statistics based on MNO data and the proposed
pipeline and considered the quality issues arising in the Input data. While
this quality framework pertains to the entire processing pipeline of MNO data,
it does not explicitly cover the later phases of combining MNO and non-MNO
data, where the present MNO-MINDS project focuses on the methods of utilis-
ing macro MNO data at the Throughout phase II (Upper layer).

Ascari et al. (2023) follow a similar approach aimed at defining a structured
quality framework for official statistics based on MNO data. They identify the
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main components of the quality framework, highlight specific quality aspects
related to the institutional environment and input data, and provide reflections
on throughput quality.

Finally, Ascari and Simeoni (2024) examine the production process from
nano to macro MNO data, regarding the errors that may occur when including
MNO data into a statistical process, and propose to split the first phase of the
two-phase data life-cycle model (Zhang, 2012) into two phases, one concern-
ing the mobile phone event (or nano) data and the other the device (or micro)
data. Such a split is also relevant to the M-enabler methods, e.g. confidential
multiparty micro data computing mentioned in Section 1.1, which may involve
multiple MNOs and non-MNO data (e.g. from the OSA).

3 Method development: An outline
Based on our review of relevant statistical methods for using MNO data, the
WP2 results of landscaping non-MNO sources and the envisaged deliverable
MNO data from the Multi-MNO project, we summarise in Table 1 some potential
official statistics based on MNO data.

Table 1: Official statistics based on MNO data
Statistics Possible examples

(Unit: person) Long-term de facto residents
Population Census zone population updates

Tourism
Foreign visitors to the country

Residents going abroad
Multi-destination trips

Mobility Commuters by origin-destination
Commuting time/distance to work

(Unit: spatial object) Green-area utility
Spatial, Environmental City-centre traffic

Although the four generic types seem reasonable, i.e. population, tourism,
mobility and spatial/environmental statistics, one must take the examples in
Table 1 as tentative suggestions. In particular, without defining the target
statistics and the available MNO and non-MNO data (in terms of the reference
frame in Figure 1), one cannot discuss the details of any relevant methods.
Nevertheless, let us take a couple of examples from Table 1 to illustrate the
possibility and challenges of applying the methodological approaches reviewed
earlier and to be developed further.

Consider the first example of long-term de facto residents. Suppose the
MNOs together can provide mi as the device count over the 12 months previous
to a given time point t, which have municipality i as the usual environment
called Home, where i = 1, ..., n, and the target statistics is the number Yi of
in-scope persons with municipality i as the de facto place of residence.

• To implement the randomisation approach to estimate the factor wi = mi/Yi,
let a sample be taken from the population of in-scope persons, such that

14



wi = ξiηi where ξi is the number of devices (underlying mi) per device user and
ηi is the proportion of device users among the Yi in-scope persons. However,
there are several potential complications, such as how to correctly identify the
devices relevant to mi, how to cover the entire population including children,
elderly and others who may be impractical to survey directly.

• The simplest estimator under the QR approach is given by Ŷi = miN/m, where
m =

∑n
i=1mi and N =

∑n
i=1Ni given the de jure population sizes Ni, assuming∑n

i=1 Yi = N . But is this simple assumption about the device selection and
duplication effect acceptable? The naïve QR estimator reviewed in Section
3.2 yields Ŷi = mi(Ni/mi) = Ni, which breaks down completely here. However,
does there exist an acceptable QR selection model otherwise?

• To generate observations of the target de facto residents for SP modelling,
suppose a sample survey is conducted as in the randomisation approach.
Let yi be a corresponding design-based estimator of Yi. A simple predictor
of Yi is µi = miβ̂ under the model E(yi) = E(Yi) = miβ, which is model-based
despite the use of sample survey, because the validity and variance of µi

are assessed with respect to the model, in contrast to design-based yi. To
alleviate the bias of potential model misspecification, one may apply a small
area estimation technique to obtain µ̂i = γiyi+(1−γi)µi, where γi is a shrinkage
coefficient to be estimated, as reviewed in Section 2.3.2.

Consider the last example of city-centre traffic. Suppose point-of-interest
(POI) k = 1, ..., n in city A, such as the central railway station (k = 1), the zoo
(k = 2), the opera (k = 3), etc. Let the target statistics Ykt be the number of
motorised vehicle-passings at POI k on day t = 1, ..., T throughout the year.

• For a randomisation approach, one may sample k and hours h during t, count
the number of vehicles passing by k during h, obtain design-based estimate
ykt of Ykt. However, the cost would be high in order to cover all (k, t).

• The QR approach is not straightforward here, since the statistical unit is POI
and the measurement unit is motorised vehicle, neither of which coincides
with the mobile device or user, such that a selection model of detected devices
or users would not suffice even when these can be related to any (k, t).

• Suppose there exist road sensors of motorised vehicles in city A at reference
points (RPoi) j = 1, ...,m, for the purpose of traffic control or congestion tax.
Let Yjt be the vehicle count at RPoi j on day t. Let xit be the MNO count of
devices (travelling on motorised vehicles) passing by RPoi or POI i. This yields
a setting of statistical calibration with proxy measures xit and calibration
measures Ykt, similar to that for GWR reviewed in Section 2.3.3.

The outline of method development topics below will be organised according
to the three broach approaches reviewed above, while allowing for solutions to
specific use-cases (e.g. Table 1) to be developed provided these emerge through
the relevant works of WP2, WP4 and the Multi-MNO project.

• In principle, the randomisation approach is applicable to all the statistics.
But there are some general challenges that require methodological solutions,
in order to move beyond the existing use-case of foreign visitors.
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• The aim of developing the QR approach is to establish a basic selection model,
instead of post-stratification by MNO-Home, which can achieve statistical
validity that is as general as possible. If successful, this will profoundly
scale up the use of MNO data and impact the uptake of other forms of big
data such as payment transactions.

• When it comes to SP modelling, we shall focus on two topics that are currently
underdeveloped, statistical calibration and origin-destination models, which
can have many MNO data applications (as indicated by the examples above).

Moreover, we shall consider the creation of a sandbox environment of syn-
thetic data and open-source tools, which can support the activities outlined
above as well as future method developments. The tools for simulating MNO
data (nano to macro) will be described, which are capable of supporting com-
prehensive and realistic simulation environments. The simulation scenarios
will be specified in the coming months, taking into account feedbacks from the
SPRINT as well as the outputs of WP2 and Multi-MNO project.

Finally, relevant quality guidelines will be part of the final deliverable D3.4
of MNO-MINDS, pertaining to the processing and integrating of MNO data with
non-MNO sources. The work will be based on the methodological developments
outlined here, as well as the relevant results of WP2 and WP4. The guidelines
would also depend on the envisaged outcomes of the Multi-MNO project. A
specific outline of the contents and tasks will be formulated in due course.

3.1 Randomisation
As pointed out earlier, to reduce the long-term cost of sample surveys required
for adjusting the relevant MNO data, a key challenge is to improve the efficiency
of target-specific survey estimation. Transfer learning over time and domain will
be considered, since official statistics typically need to be repeated over time
and disaggregated over space (or other population domains).

Next, user ambiguity can be a major challenge for making statistics of the
usual residents, in case macro MNO data can only be organised according to
the service contractors instead of the users. The activities of actual device
carriers will then need to be either observed or inferred from the available
MNO data. It is therefore necessary to develop methods that can enable valid
randomisation approach in the presence of user ambiguity.

Finally, opt-in smart surveys have attracted attention recently, in which
mobile devices are heavily involved. Some relevant elements of methodological
development will be discussed.

3.1.1 Transfer learning over time and domain

Denote by µ(x; β) a target model with unknown parameters β. Suppose there
exists a relevant source model for a different though similar population, which
has been estimated separately, denoted by µ(x; θ̂), where the two models belong
to the same family with different parameter values β and θ. Transfer learning
in such a setting aims to improve the estimation of β by leveraging θ̂.
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For instance, one may estimate β based on the target observations that are
associated with the units in s, subject to a chosen penalty of the discrepancy
between β and θ̂, such as minimising

∆(β) =
∑
i∈s

{yi − µ(xi; β)}2 + γ∥β − θ̂∥2

given γ > 0. Although the resulting estimator of β is biased due to the penalty
term, the variance of estimation can be greatly reduced compared to estimating
β only based on s. One can thus view the approach as a form of regularisation,
which has shown to be especially helpful in cases with insufficient number of
target observations (e.g. Li et al. 2020; Gu et al., 2023a).

Transfer learning for parametric models above can easily be adapted to
model-assisted estimation in survey sampling. For instance, to apply transfer
learning to design-consistent generalised regression estimation (GREG), one
only needs to replace the unweighted loss over s above for transfer learning by
a corresponding ‘GREG loss’. But we shall investigate more broadly.

Some remarks are necessary given that transfer learning does introduce a
bias to the randomisation approach. First, the result may be fit-for-purpose if
the induced bias is limited. Next, a design-consistent estimator may have its
own finite-sample bias, given the desired sample size reduction. Finally, bias
cannot be avoided practically in the randomisation approach to MNO data.
As noted by Lestari et al. (2018), seasonality exists in the number of foreign
visitors, “since the survey period was limited, it is necessary to repeat the
survey and continue observe and, if necessary, correct for seasonality with
proper algorithm”. Obviously, any such algorithmic correction would introduce
bias just like transfer learning. In short, the question is not whether but how
to carry out transfer learning for the randomisation approach.

Remark Transfer learning for nonparametric models such as random forest
or boosted trees is still an open topic (e.g. Segev et al. 2017; Gu et al. 2023b).

3.1.2 User ambiguity

There are two major complications for device-to-person conversion. The first
one is device duplication, in case the user can be identified but the MNO cannot
deduplicate the multiple devices of a given user, as illustrated to the left in
Figure 2. The second one is user ambiguity, in case the MNO cannot identify
all the users, if a contractor can subscribe for a device without specifying its
user, as illustrated to the right in Figure 2, which is the situation in many
European countries.

In the use-case of foreign visitors (Lestari et al. 2018), device deduplication
is achieved via the coefficient ξ, whereas user ambiguity seems non-existent if
one can assume that all the travellers are surveyed directly.

However, for statistics pertaining to the whole domestic population, directly
sampling and surveying any in-scope person, including children, teenagers
or other specific individuals, may be either infeasible or too costly. It would
therefore be necessary and useful to develop sampling and estimation methods
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Figure 2: Device-individual connections, device d1, d2, d3, individual k1, k2, k3.
Left, device-user (solid). Right, device-contractor in addition (dashed).

in the presence of user ambiguity and device duplication, which allow for any
contractor-user connections that may exist in the population.

3.1.3 Opt-in smart survey

An opt-in smart survey is administered through digital instruments, including
mobile devices such as phones and tablets. Data from the respondents may
be collected actively or passively, which is sometimes known as data donation.
There are two ESSnet projects on this topic: ESSNet Smart Surveys 2020-2022
worked to create a common methodological and architectural framework; the
ongoing ESSNet Smart Surveys Implementation 2023 will pilot services and
solutions for Time Use and Household Budget surveys.

There are unavoidably new problems of representation and measurement
associated with smart surveys. For instance, the respondents (or data donors)
to an opt-in smart survey are unlikely to be a completely random sample from
the target population, censoring effects and measurement errors will arise
whether based on active or passive data collection.

Smart surveys can be viewed chiefly as an effort in the evolution of survey
methods, which is not situated at the core of this ESSnet project on combining
MNO and non-MNO data. But we shall at least consider some methodological
elements that may be relevant to the other development topics outlined here,
such as user ambiguity, adjustment of selection effects.

3.2 Quasi-randomisation
Let Y =

∑
k∈U yk be the target total over population U . For any given time t, let

Dt contain all the in-scope, active and deduplicated devices, such that different
MNO-measures in {yd : d ∈ Dt} refer to different units in U and all the carriers
of the devices in Dt form a subset of U which varies with t, denoted by

Pt = P (Dt) ⊂ U

Let yk = ykd be detected (or observed), where kd is the carrier of d ∈ Dt. Let
yk be missing if k /∈ Ut. Suppose the QR selection model

Pr(k ∈ Pt | k ∈ U, xk, yk) = π(xk) (1)

such that we have non-informative selection (NIS) k ∈ Pt regarding yk given xk,
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where xk is generally a vector of features associated with each k ∈ U . We have

E(nx) =
∑
k∈U

Pr(k ∈ Pt | xk = x) I(xk = x) = π(x)Nx

E(yx) =
∑
k∈U

Pr(k ∈ Pt | xk = x) I(xk = x) yk = π(x)Yx

where Nx =
∑

k∈U I(xk = x) and Yx =
∑

k∈U I(xk = x)yk are the population size and
total given x, respectively, and nx =

∑
d∈Dt

I(xkd = x) and yx =
∑

d∈Dt
I(xkd = x)yd

are the macro MNO counts that exist by definition. Consistent estimation of Y
is possible given {Nx} from OSA and {nx, yx} from MNO, since

Y =
∑
x

Nx
E(yx)

E(nx)
(2)

Note that we ignore device duplication and user ambiguity for the moment, but
return to them in Section 3.2.2.

Denote by P all the mobile users with active subscription, P ⊂ U , which
is treated as stable over any given period of time. The detected mobile phone
users Pt form a subset of P , Pt ⊆ P . Unlike the randomisation approach, the
QR approach is target-agnostic since, under the model (1), there exist features
xU = {xi : i ∈ U} such that, for any yU = {yi : i ∈ U} of interest, we have∑

i∈U yiI(xi = x)∑
i∈U I(xi = x)

≈ E
(∑

i∈Pt
yiI(xi = x)∑

i∈Pt
I(xi = x)

)
(3)

where the expectation is with respect to the random event i ∈ Pt given any t.
In the QR approach based on (1) - (3), the timely variation of Pt (e.g. whether

a user has detected signals in a given hour) is treated as random given xU

and unrelated to yU , such that it affects only the size of Pt (i.e. variance of
estimation) but does not cause bias of QR-based estimation.

3.2.1 Proof of concept

Only the MNOs know Pt. Neither is P available in its entirety. However, the OSA
may have the possibility to automatically search P for mobile phone numbers
associated with the sampled individuals in its household surveys. Let s be a
simple random cluster sample from U (with household as cluster), and let

sP = s ∩ P

Whatever imbalance between P and U is expected to be mirrored by sP and s.
Allowing for the extra sampling variation, one can explore (3) by replacing U
with s and Pt with sP , and using any known ZU = {zi : i ∈ U} instead of yU ,
such as register-based (or census-based) employment status, education level,
places of home-work. Notice that one only needs to associate all the specified
features zi to s (but not necessarily to U ) in data preparation.

Analysis of such automatic phone number search results has traditionally
been conducted Norway. Karlsson et al. (2013, Table 2) show similar results
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in Iceland and Norway for their respective EU-SILC samples, with respect to
gender, age group, foreign born or not, married or not, and education level.
Mobile phone numbers are found automatically for approximately 80% of the
sample in Iceland and 81% in Norway.

Table 2: Percentages in a random sample s of persons age 18-79 in 2015,
Norway, and subsample sP of those with mobile phone, or with email address,
or with mobile, email, landline. Source: Lagerstrøm and Wangen (2015).

sP according to contact information
Feature s Mobile Email Mobile, email or landline

Gender
Male 50.8 51.4 52.2 51.0
Female 49.2 48.6 47.8 49.0
Age
< 24 13.9 14.2 15.8 14.4
25-34 18.0 18.3 20.0 17.9
35-44 19.5 20.0 21.4 19.6
45-54 17.8 18.1 18.3 18.0
55-64 14.9 14.8 14.3 14.9
> 64 16.0 14.6 10.2 15.3
Education
Low 24.1 23.6 22.3 23.4
Middle 39.5 39.8 38.8 40.4
High 30.0 31.3 33.3 30.5
Unknown 6.4 5.3 5.6 5.8
Origin
Native born 82.9 83.9 83.4 84.1
Foreign born 17.1 16.1 16.6 15.9
Total 4000 3750 3366 3868

Table 2 shows the results from an internal report prepared by Lagerstrøm
and Wangen (2015). In addition to the mobile phone sP , we also include sP
of those with email address, as well as sP with any form of contact including
mobile, email and landline phone. Any discrepancy between a percentage in s
and sP is an unbiased estimate of the underlying difference between U and P ,
the latter of which is the bias of treating P as a simple random sample (SRS)
from U with respect to the given feature, i.e. the simplest QR selection model

Pr(i ∈ P | i ∈ U) ≡ π

The results are largely compatible with the SRS model, since the discrepancies
are quite small, which seems even more promising given that the mobile phone
user percentage must have increased since 2015. The coverage of automatic
search has increased to 93.75% compared to 2013.

To prove the concept of a broadly valid target-agnostic QR approach to the
use of MNO data, we propose to conduct experiments or pseudo experiments
as explained below, which considerably extend the scope of Lagerstrøm and
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Wangen (2015) and Karlsson et al. (2013). First, the SRS model may not hold
for all the other features that may be of interest, and it may be inadequate
for various disaggregation needs that arise naturally in the use of MNO data.
Moreover, one needs to account for the uncertainty of analysis, such as using
(s, sP ) for (U, P ). Finally, appropriate methods for assessing the uncertainty of
the statistics generated by the QR approach need to be developed.

Experiment In countries where mobile phone interview is a standard survey
mode in practice, it may be possible to identify sP given any s without contacting
the sample units. There is then no need to actually survey the sample units.
The unit of analysis will be persons, but drawing a household sample makes
it easier to investigate scenarios of use ambiguity in addition. We refer to this
as the setup for a proof-of-concept experiment.

Pseudo experiment For a pseudo experiment, suppose one has a sample s
from a completed mixed-mode household survey, where it is possible to label
the respondents sP with mobile phone as the survey mode. In this setup we
need to take into account several additional complications below.

• The probability Pr(i ∈ s) may not be equal over U . While one may examine
(3) in terms of the respondents sP and the gross sample s, expansion to the
population may be necessary to make the analysis relevant.

• The analysis may be unduly affected by inappropriate survey nonresponse
adjustment that is necessary in order to generalise from sP .

• It may be unclear whether mobile phone or landline is used. Possible modes
(including mobile phone) are offered as an option after the initial contact with
sample units is made, such that the subjective choice of mobile phone may
have its own selection effect (in addition to response or not).

3.2.2 Potential complications

Several potential difficulties of implementing the QR approach require a study.

MNO classification The key difficult to implement any selection model here
lies in the lack of access to micro MNO data, which makes it impossible to
obtain macro MNO data related to proper subsets of arbitrary subpopulations.
Any M-enabler in this respect is a method that can generate MNO counts (yx, nx)
for any given subpopulation Ux = {i ∈ U : xi = x}.

For any d ∈ Dt, let x∗
kd

be available to MNO instead of xkd, where x∗
kd

and xkd

are not always be equal to each other. For instance, xk may be the Population
Register home-municipality of person k, and x∗

k the MNO-Home municipality.
Ideally, the QR selection model should depend on features that are known

to both the OSA and the MNO, such that the MNO misclassification problem
here can be avoided. However, in case the QR-model must use features that
are unknown to the MNO, statistical adjustments will be explored.
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Sparse cells problem Confidentiality concerns may prevent the MNOs from
delivering a large number of macro counts, if there are many sparse cell counts
close to 0. Empty sample cells despite non-empty population cells could also
cause complications to simple post-stratified estimation.

For instance, let jk,t indicate the present locality of any given k ∈ U during
t. Let the population mobility measure by residence r and locality j be

Yjr =
∑
k∈U

I(rk = r)ykj and ykj = I(jk,t = j)

where r is the residence known to the OSA, e.g. in the Population Register. In
case d ∈ Dt, we have kd ∈ Ut and ykdj = I(jd,t = j) by the device presence locality,
whereas ykj is missing if k /∈ Ut. Let nrx be the number of active device carriers
in Ut with (rk, xk) = (r, x), among whom yjrx are present at locality j. Under the
QR-model (1), we have

E(nrx) = π(x)Nrx and E(yjrx) = π(x)Yjrx

where Nrx is the number of all individuals in U with (rk, xk) = (r, x), and Yjrx is
the number of those among Yjr. Similarly to (2), we have

Yjr =
∑
x

Nrx
E(yjrx)

E(nrx)

This illustrates a potential sparse cells problem, where MNO counts (yjrx, nrx)
are needed instead of (yx, nx) in (2).

Should one relax the QR-adjustment by using a less detailed classification
than x, can one use some marginal MNO counts instead of the cross-classified
ones? The pros and cons of such alternatives need to be investigated.

Device duplication Let yk be the value of interest for any k ∈ U . Let yd = yk for
any (dk) ∈ A given device duplication (Figure 2), where A contains the device-
user connections. The observed total of yd over D, denoted by YD, is given as

YD =
∑
d∈D

yd =
∑

(dk)∈A

yk =
∑
k∈U

ykαk

where αk is the number of devices of each k ∈ U , who is a user iff αk > 0. The
overall target-agnostic factor

ᾱ =
1

N

∑
k∈U

αk

can be applied to any YD given above, provided

YD =
∑
k∈U

ykαk =
(∑

k∈U

yk

)(∑
k∈U αk

N

)
= YU ᾱ
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i.e. (finite-population) non-informative device-duplication (NIDD) if

CovU(yk, αk) =

∑
k∈U ykαk

N
−
(∑

k∈U yk

N

)(∑
k∈U αk

N

)
= 0

This NIDD-assumption is a special case of the condition for valid inference
from non-probability samples given by Zhang (2019). Insofar as it is unrealistic
for the whole population, one may replace it by a stratified-NIDD assumption,
whereby NIDD holds in various subpopulations defined according to a feature
vector denoted by x, provided which we have

ȲD,x =
YD,x∑
k∈Ux

αk

=

∑
k∈Ux

ykαk∑
k∈Ux

αk

=

∑
k∈Ux

yk

Nx

= Ȳx

i.e. the subpopulation mean over persons Ȳx is equal to the subpopulation
mean over devices ȲD,x, so that there would be no need to estimate the target-
agnostic conversion factor ᾱx =

∑
k∈Ux

αk/Nx at all. The matter can be included
in a proof-of-concept experiment or pseudo-experiment if αk is available.

User ambiguity Given user ambiguity, {αk : k ∈ U} are unknown, and YD is
an apparent sum over all the contractors instead of users, i.e.∑

(dk)∈C

yk =
∑
k∈U

ykζk

where the edges C are the device-contractor connections (dashed in Figure 3),
and ζk is the number of edges in C of each individual in U , who is a contractor
iff ζk > 0. For instance, yd3 = yk3 in Figure 3 would be associated with k2 instead
of k3. The approach above for dealing with device duplication is no longer
applicable due to unknown YD,x and ȲD,x in the presence of user ambiguity.

d1 k1

d2 k2

d3 k3

d1 k1

d2 k2

d3 k3

νk2k3=1

Figure 3: Multigraph given user ambiguity, device d1, d2, d3, individual k1, k2, k3.
Left, bipartite (as in Figure 2). Right, non-bipartite with user-contractor edges.

Let the number of devices used by j and contracted by k be given by

νkj =
∑
d∈D

cdkadj

such as νk2k3 = 1 in Figure 3, where adj = 1 if device d is used by individual
j and 0 otherwise, and cdk = 1 if device d is contracted by individual k and 0
otherwise. Note that νkk is the number of devices used and contracted by k. It
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follows that
αj =

∑
k∈U

νkj and ζk =
∑
j∈U

νkj

The MNO total YD can then be written as

YD =
∑
j,k∈U

νkjyj =
∑
k∈U
ζk>0

ykνkk +
∑
k∈U
ζk>0

∑
j∈U
j ̸=k

yjνkj

The last expression decomposes YD into a ‘self-representing’ part (involving νkk)
and an ‘indirect-representing’ part of other users, since

y∗k =
∑
j∈U
j ̸=k

yjνkj

is the apparent total attributed to the contractor k by the MNO which is actually
due to the usage and activity of other users than k.

We will investigate if the QR approach can be extended to accommodate
user ambiguity. First, in case one introduces a second model in addition to the
selection model (1), can the model be estimated from the available data? Next,
if sample survey is used in addition to the selection model, can it be aligned
with the treatment of user ambiguity in the randomisation approach?

3.3 Statistical calibration
As Osborne (1991) points out, the term “statistical calibration” is perhaps best
explained by analogy to the process of scientific calibration, which determines
or adjusts the scale of a measuring instrument on the basis of a ‘calibration
experiment’. For example, let {xj : j ∈ R} be all the imprecise MNO-measures
and {yi : i ∈ s} the trusted ‘calibration measures’ from non-MNO sources,
where the latter are only available for a subset s ⊂ R. Viewing {(xi, yi) : i ∈ s}
as a calibration experiment, one may estimate yj by adjusting xj for all the rest
j ∈ R \ s. By statistical calibration we shall refer to any method that uses proxy
MNO-measurements in such manners resembling scientific calibration.

3.3.1 Spatial statistical calibration

For any j ∈ R, the best predictor of yj given xj is

E(yj | xj) =

∫
yf(y | xj)dy =

∫
yf(xj | y)f(y)dy∫
f(xj | y)f(y)dy

Suppose observations {yi : i ∈ s} where s ⊂ R. Replacing f(y) by its empirical
distribution function arising from s, we can estimate E(yj | xj) by

ŷj =
∑
i∈s

wi(xj, s)yi (4)

24



where
wi(xj, s) =

f(xj | yi; s)∑
k∈s f(xj | yk; s)

and f(x | y; s) is an estimator of the conditional density based on s. An estimator
of the conditional cumulative distribution function of yj given xj is

F̂ (y | xj) =
∑
i∈s

I(yi ≤ y)wi(xj, s)

Viewed as a nonparametric regression estimator (Stone, 1977), the weights
wi(xj, s) in (4) can be given in many other ways. In case the elements of s and
R are spatial points, geographically weighted regression (GWR) would yield

wi(xj, s) =
w(dij)xixj∑
k∈sw(dkj)x

2
k

and ŷj = xj

∑
i∈sw(dij)xiyi∑
k∈sw(dkj)x

2
k

as reviewed before, where dij = dji is some chosen measure of the distance
between i ∈ s and j ∈ R. For instance, w(dij) = I(dij < d) for a given threshold
value d, or w(dij) = exp{−αd2ij} given the tuning constant α, or the bisquare

w(dij) = I(dij < d) (1− d2ij/d
2)2

Remark Spatial statistical calibration is a widely applicable nonparametric
SP modelling approach for combining MNO and non-MNO data.

3.3.2 Network statistical calibration

Network statistical calibration is a statistical calibration approach, where the
data are given an underlying graph structure (of which spatial data are a special
case), and the target measures are subject to network constraints.

For instance, denote by G = (U,A) a road network with crossroads U , and
(ij) ∈ A iff road exists in direction i to j for any i, j ∈ U . Figure 4 illustrates
a part of road network with 4 crossroads, the incoming and outgoing vehicle
directions, as well as two fixed road sensors marked as triangles.

Figure 4: Illustration of road network with two fixed sensors (triangles)
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Let {yij : (ij) ∈ As} be the trusted vehicle counts over (ij) in As, where As ⊂ A,
obtained by fixed road sensors or other suitable means. Let {xij : (ij) ∈ A} be
the proxy MNO-counts, where xij and yij may differ for various reasons, e.g. xij

may include multiple devices travelling in the same vehicle or devices travelling
without vehicles at all.

By network statistical calibration, we shall obtain for any (ij) ∈ A,

ŷij = τ(xij;As)
.
= E(yij | xij)

subject to
∑

(ji)∈A

ŷji =
∑

(ij)∈A

ŷij for any i ∈ U0
(5)

i.e. the numbers of incoming and outgoing vehicles, called the inflows and
outflows, must be equal to each other at any crossroad in U0, where U0 ⊆ U .
Since E(yij | xij) can be modelled without the network constraints, the notation
“ .=” in (5) signifies that ŷij may be close to the conditional expectations of yij
given xij but not directly given as the estimates of such. Moreover, U0 ⊆ U
generally. For instance, U0 may consist of the four crossroads in Figure 4 but
not the other undepicted ones (that must exist in addition to U0). One may refer
to U0 as the interior nodes of G; non-interior nodes U \ U0 exist as long as G is
not a closed network. We are not concerned with all the inflows and outflows
of any non-interior node except those to and from the nodes U0.

Remark Network statistical calibration at street level may not be natural given
only MNO data, not least because the nano MNO data tend not to be frequent
enough for such detailed routing. However, it is as relevant if the nodes are
geographic areas instead of crossroads and the connections are not roads per
se but refer to spatial congruity or origin-destination relationships.

3.3.3 Compositional statistical calibration

Compositional data are proportions of some whole (Aitchison, 1982). Denote
by K the fixed number of components. A set of K counts are compositional
either given their total or any one of them, i.e. without loss of information the
counts can then be transformed to proportions that sum to 1, where we have
at most K−1 ‘freely-varying’ counts or proportions. In compositional statistical
calibration the target and proxy measures are treated as compositional data.

Suppose K = 2 to focus on the basic idea and to simplify the notation. Let
(x1, x2) be the two proxy MNO-counts for the target measurements (y1, y2), of
which only y1 is known from non-MNO sources but not y2. To estimate y2 given
y1 is the same as estimating the proportion y2/(y1+y2) or ratio y2/y1 given y1. As
an example, y1 may be the known number of cinema goers on a given day and
y2 the unknown restaurant diners, for which MNO-counts (x1, x2) are available.

Simple methods of data fusion have been applied to integrate compositional
MNO-data (e.g. Batista e Silva et al, 2020). For instance, let

E
( y2
y1 + y2

)
= E

( x2

x1 + x2

)
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be the stipulated binomial distribution of (y1, y2), such that we obtain

ŷ2 = x2(y1/x1)

which can as well be given by statistical calibration under the assumption

E(yk | xk) = βxk

for any k. However, such data fusion assumptions are too limited generally.
Denote by i = 1, ..., n the different cities or areas, each of which is associated

with (x1i, x2i) and (y1i, y2i). To estimate {y2i} given θi = x2i/x1i and a tuning
constant γ ≥ 0, consider minimising

L =
n∑

i=1

(pi − θi)
2 + γ

n∑
i=1

(pi − µi)
2 (6)

with respect to pi and µi, where pi = y2i/y1i and

µi = µ(y1i, zi)

is a predictor of pi which may depend on additional covariates zi. For instance,
in case y2i is the number of restaurant diners in city i, one may let zi include
the city population size, its number of restaurants, etc.

By (6), the otherwise unconstrained sum of (pi− θi)
2 is regularised (via γ) by

a penalty in terms of a model of pi given the relevant covariates, where pi − µi

would have been the model discrepancy had y2i been observed. It is of course
possible to attach weights to each (pi − θi)

2 or (pi − µi)
2 in (6), and so on.

Illustration For a quick illustration of compositional statistical calibration by
(6), let us consider the special case without additional zi and simply use

E(y2i | y1i) = βy1i ⇒ µi = E(p2i | y1i) = β

i.e. the penalty is just the smoothness of pi in the absence of zi. The estimator
ŷ2i = x2iy1i/x1i above would follow from minimising the first term of (6) on its
own if γ = 0. More generally, by minimising (6), we obtain

β̂ =
1

n

n∑
i=1

pi = p̄ and pj =
1

1 + γ
θj +

γ

1 + γ
p̄

Thus, we recover pj = θj if γ = 0. Whereas, if we let γ = 1, then we would obtain
pj =

1
2
(θj + p̄) instead, which is solved by pj =

1
2
(θj + θ̄) given θ̄ = 1

n

∑n
i=1 θi.

Remark Identifiability of (6) is a key issue in general terms, although the
illustration above has already demonstrated its feasibility in the simplest setup.
Notice that identifiability can always be achieved in case necessary external
information (or estimates) can be plugged into (6), e.g. by sample surveys.
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3.4 Origin-destination estimation
Mobile devices can generate various origin-destination (OD) mobility data. To
adjust for inevitable population coverage errors and possible misclassification
errors of OD, one may consider OD models that exist in multiple disciplines
such as transportation, population migration, spatial econometrics. It is also
worth investigating other approaches that can make use of either mathematical
models or alternative statistical models of network flows.

3.4.1 Regression estimation

Take e.g. the spatial interaction model considered by LeSage and Fischer
(2008), which can be given as

logE(Yij) = α + h⊤
i β + g⊤j ϕ+ dijθ

where E(Yij) is the expected flow from origin i to destination j, hi is a vector
of features measuring the ‘push’ from i and gi a vector measuring the ‘pull’ of
destination j, and dij is a suitable distance measure between i and j. Suitable
MNO OD-counts xij (on the log-scale) provide an additional feature.

Suppose there exists a sample survey which yields a separate design-based
estimate yij = log Ŷij. One can then improve the efficiency of estimation under
the assumed model

yij = α + xijξ + h⊤
i β + g⊤j ϕ+ dijθ + eij

where eij is a sampling error, by replacing yij with a synthetic predictor given
the estimated regression coefficients

µij = α̂ + xij ξ̂ + h⊤
i β̂ + g⊤j ϕ̂+ dij θ̂

Whereas yij depends only on the sample observations related to the given
(i, j), the predictor µij depends on all the other observations as well via the
estimated regression coefficients. Hence, one may expect µij to be less variable
than yij. Notice that this is SP modelling approach rather than randomisation,
although it involves a sample survey, since the validity and variance of µij are
with respect to the assumed OD model (instead of the sampling design).

To alleviate the bias due to potential model misspecification, one may apply
shrinkage estimation such as in small area estimation reviewed earlier, Let

µ̂ij = γyij + (1− γ)µij

where γ ∈ [0, 1) is the shrinkage coefficient to be estimated, such as under the
mixed effects model given as

y = η + u+ e and ηij = α + xijξ + h⊤
i β + g⊤j ϕ+ dijθ

where y, η, e are N-vectors, N = n2, and u is the N-vector of random effects.
LeSage and Fischer (2008) outline also two possibilities to allow for spatial
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autoregressive impacts. First, let

(IN − ρWd)(IN − λWo)y = η + e

where Wd = W ⊗ In and Wo = In ⊗W , IN and In are identity matrices with the
specified dimensions, and W is a row-standardised spatial weight matrix whose
non-zero elements allow for spatial impacts of congruous or nearby places and
wij = 0 if such impact is absent (including wii ≡ 0). Next, let

y = η + u and (IN − ρWd)(IN − λWo)u = e

In other words, spatial autoregressive impact is either introduced for y or u.
Similar autoregressive impact has been considered in spatial or social analysis,
such as Ord (1975), Friedkin (1990) and Leenders (2002).

However, implementation to OD flows may be challenging computationally
given potentially a very large number N . For instance, there are nearly 8000
municipalities in Italy, such that N is about 64 million in this setup. In the
meantime, the Permanent Census Survey has a yearly sample of 1.4 million
households, such that many flows will not be observed in the sample or have
only very few instances. The feasibility and efficacy of synthetic or shrinkage
estimation will be studied, with or without spatial autoregressive impacts.

3.4.2 Network flow models

Mobility data can be regarded as flows in a (connected) network of places. Let
G = (U,A) be a directed network with a cost cij on each edge (ij) ∈ A from node i
to j in U . Let B denote the |U |×|A| node-edge incidence matrix, whose elements
are bia = 1 and bja = −1 given each edge a = (ij) ∈ A, and bia = bja = 0 otherwise.
The matrix B sums to 0 by each column.

Let yij be the flow on edge (ij), which can be given a lower bound lij and
upper bound uij. Each node i ∈ U can be assigned an integer number bi to
represent its supply (if bi > 0) or demand (if bi < 0). The minimum-cost flow
problem (e.g. Ahuja et al., 1993), i.e. min(ij)∈A cijyij, can be dealt with by linear
programming, i.e. optimisation of linear objective function given linear equality
{bi} and inequality {(lij, uij)} constraints. One may refer to such formulations
of network optimisation problems as mathematical network flow models.

O1 D1

s O2 D2 t

... ...

On Dn

Figure 5: Network flow model of OD mobility.

OD mobility estimation seems possible combining statistical assumptions
and network optimisation. Take the setting of Section 3.4.1. As illustrated in
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Figure 5, let the nodes in the network G be U = O ∪D ∪ {s, t}, where O consists
all the origins and D all the destinations, including when they refer to the
same set of places 1, ..., n. Two additional nodes s and t are introduced, where
t accounts for the total inflows to all the destinations and s the total outflows
from all the origins, by which the supply and demand are balanced as bi ≡ 0
for any i ∈ O ∪D. The flow from t to s makes bs = bt = 0 as well.

Let Yij be the flow from Oi to Dj, given each permitted edge (ij), and Yij = 0 by
definition if edge (ij) is not permitted (such as Oi to Di in Figure 5). Moreover,
Yjt =

∑n
i=1 Yij is the total inflow to destination Dj, and Ysi =

∑n
j=1 Yij is the total

outflow from origin Oi. Finally, Yts =
∑n

i=1 Ysi =
∑n

j=1 Yjt is the total flow.
Let the estimates {mij} of {Yij} solve the network optimisation problem

max
m

c⊤m subject to Bm = 0, l ≤ m ≤ u

where c,m, l, u are vectors (over all the edges A in the network). For instance, one
can let cij = µij be the synthetic estimates. It is possible to introduce various
constraints, such as lts = uts = Ŷts where Ŷts is the design-based total flow
estimate. Similarly for other selected estimates Ŷsi, Ŷjt or Ŷij, whether model or
design-based. Moreover, the flow bounds (lij, uij) can be imposed statistically,
e.g. a confidence interval of Yij or simply lij = min(Ŷij, µij), uij = max(Ŷij, µij).

Notice that the solution would be m ∝ c, if the bound constraints {(lij, uij)}
are sufficiently accommodating and {cij} are balanced to start with.

The feasibility of such network flow models will be investigated, including
how best to set the costs c, the flow constraints and bounds, as well as other
statistical assumptions about the network flows.

3.5 Sandbox of data and tools
In order to tackle data access problems from real-world mobile networks, which
is often constrained by privacy concerns, high costs, and logistical challenges,
as an alternative, synthetic data generation offers a viable solution to create
realistic and representative datasets for developing and testing the proposed
methodological. Synthetic mobile network data generation strategy focuses
on using the OMNeT++ (OpenSim Ltd. 2024), Simu5G (Nardini et al. 2020),
and Veins (Sommer et al. 2018) software stack to generate synthetic mobile
network phone data. These tools provide a robust framework for simulating
mobile network environments and generating detailed datasets that can be
used to enhance the performance and reliability of mobile networks.

OMNeT++ is a discrete event simulation environment that is widely used for
simulating communication networks. Its modular and extensible architecture
enables one to model a variety of network protocols and technologies. Simu5G
is an extension of OMNeT++ that provides a detailed simulation model for 5G
networks. It includes features such as enhanced mobile broadband (eMBB),
ultra-reliable low latency communications (URLLC), and massive machine-type
communications (mMTC). Veins is another extension of OMNeT++ that focuses
on vehicular network simulations, integrating realistic mobility models with
network communication protocols.
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One can create comprehensive simulation scenarios that mimic real-world
mobile network environments by combining OMNeT++, Simu5G and Veins.
These simulations can generate synthetic datasets that include various metrics
such as user mobility patterns, call detail records (CDRs), data traffic volumes,
and network performance metrics.

Scenario specification

OMNeT++

Simu5G

Veins

Simulation run

Data export

Data validation

Figure 6: Simulation steps.

The process of generating synthetic MNO data using OMNeT++, Simu5G,
and Veins is given in Figure 6. To set up the simulation environment, one needs
to define the network topology, specifying the mobility models, and configuring
the communication protocols, as illustrated generically by the examples below.
In each case the simulation can generate synthetic MNO data at different levels
of granularity: nano, micro and macro data.

Example 1: Urban Network In this example, we simulate a mobile network
in an urban environment with high population density. The network topology
includes a grid of base stations covering a city area, with user devices randomly
placed within the coverage area. The mobility model is configured to simulate
pedestrian and vehicle movement using random waypoint models, with users
moving randomly within the city.

Example 2: Rural Network In this example, we simulate a mobile network
in a rural environment with low population density. The network topology
includes a few base stations randomly distributed across a large geographic
area, with user devices randomly placed within the coverage area. The mobil-
ity model is configured to simulate vehicular movement using realistic traffic
models, with users moving along roads and highways.
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Example 3: Mixed Mobility In this example, we simulate a mobile network
in a mixed environment with both urban and rural areas. The network topology
includes a mix of base stations covering both city areas and rural regions, with
user devices randomly placed within the coverage area. The mobility model is
configured to simulate both pedestrian and vehicular movement, with users
moving randomly within the city and along roads and highways in rural areas.

The software stack (OMNet++, Simu5G, Veins) is provided as an off-the-shelf
virtual machine image, available at https://simu5g.org/install#download_vm.
Below we provide some more details of the process steps in Figure 6.

Scenario specification The first step in generating synthetic MNO data is to
clearly define the objectives and requirements of the simulation. This involves
understanding the specific goals of the synthetic data generation effort and de-
tailing the characteristics that the synthetic data should possess. The primary
objective is to create realistic and representative datasets.

The synthetic data should exhibit similar statistical properties and patterns
as real data. This includes metrics such as call durations, data session fre-
quencies and user mobility patterns. Additionally, the data should be versatile
and adaptable to different use cases, which requires specifying the types of
data to be generated, such as CDRs and data traffic records. The granularity
of the data is also important, as different use cases may require different lev-
els of detail, ranging from high-level summaries (macro) to detailed user-level
data (nano). The time interval of the data should be specified, with options for
short-term data (minutes or hours) and long-term data (days or months).

The network topology is a critical aspect of the simulation environment to be
determined at this stage. The topology defines the structure of the mobile net-
work, including the locations and configurations of base stations, user devices,
and other network elements. The topology should be designed to mimic real-
world scenarios, taking into account factors such as geographic distribution,
population density, and network coverage.

OMNeT++ OMNeT++ is installed and configured on the simulation platform
first. OMNeT++ provides a user-friendly graphical interface that simplifies the
process of creating and managing simulation projects. Once OMNeT++ is set
up, Simu5G can be integrated to provide the necessary models and features
for simulating 5G networks.

Simu5G As can be read from its name, Simu5G is an advanced simulation
framework that builds on OMNeT++ to model and simulate 5G networks. It
incorporates detailed implementations of 5G New Radio features and network
elements, allowing one to study and develop 5G technologies in a simulated
environment. Understanding its components is crucial for effectively utilising
its capabilities.

At the core of Simu5G is the base station, also known as gNodeB, which
serves as the primary connection point between user equipment (UE) and the
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5G core network. The gNodeB component models the radio interface, imple-
menting physical layer (PHY) and medium access control (MAC) protocols for
communication with UEs. It also includes a scheduler that manages radio
resource allocation based on various algorithms, and a Radio Resource Con-
trol (RRC) module that handles the setup, maintenance, and release of radio
bearers. The Packet Data Convergence Protocol (PDCP) manages data transfer,
encryption, and compression over the radio interface, while the Service Data
Adaptation Protocol (SDAP) manages the mapping between Quality of Service
(QoS) flows and data radio bearers.

User Equipment (UE) refers to mobile devices connected to the 5G network.
The UE component includes a radio interface that implements PHY and MAC
layers for communication with the gNodeB. It features mobility models that
simulate user movement across the network, affecting handover and connec-
tivity. The application layer models user applications and traffic generation
patterns such as web browsing, video streaming, and VoIP. Similar to gNodeB,
the UE component includes RRC, PDCP, and SDAP modules to maintain con-
nections, manage data transfer, and ensure QoS.

The 5G core network is responsible for overall control and data manage-
ment in the 5G network. Simu5G models key elements of the core network,
including a number of functions. The Access and Mobility Management Func-
tion (AMF), which manages UE registrations, connection states, mobility, and
access control. The Session Management Function (SMF) handles session es-
tablishment, modification, and release, managing IP address allocation and
QoS parameters. The User Plane Function (UPF) forwards user data packets
between the gNodeB and external data networks, while the Network Slice Se-
lection Function (NSSF) manages the selection of network slices, ensuring that
UEs are connected to appropriate slices based on their service requirements.
The Unified Data Management (UDM) function manages subscriber data and
profiles, facilitating authentication and authorisation processes.

In order to create a simulation scenario as close as possible to real world
applications, Simu5G provides an application programming interface which
implements features such as: network slicing, a fundamental feature of 5G,
allows the creation of multiple virtual networks over a common physical infras-
tructure. Simu5G includes components to model and manage network slices,
such as the slice descriptor that defines the characteristics and requirements
of a network slice, including resource allocation, QoS parameters, and ser-
vice types. The slice manager handles the creation, modification, and deletion
of network slices, ensuring proper resource allocation and isolation between
slices; Quality of Service (QoS) and traffic management are critical for ensuring
that different applications and services meet their performance requirements.
Simu5G models various QoS mechanisms, including QoS flows that define
the QoS requirements for different types of traffic, such as latency, through-
put, and reliability. Traffic shaping and policing mechanisms control traffic
rates and enforce QoS policies, while priority handling ensures that higher-
priority traffic receives preferential treatment in terms of resource allocation
and scheduling; Radio Resource Management (RRM) is responsible for efficient
utilisation of radio spectrum and resources. Simu5G includes components for
resource allocation, implementing algorithms for allocating radio resources to
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different UEs based on their QoS requirements and channel conditions.
Moreover, interference management addresses the interference between dif-

ferent cells and UEs, optimising overall network performance. Handover man-
agement handles the process of transferring UEs from one cell to another, en-
suring seamless connectivity and minimal disruption. Mobility management
is essential for maintaining continuous service as UEs move across the net-
work. Simu5G models various aspects of mobility management, including
handover procedures that simulate the handover process between gNodeBs,
including measurement reporting, decision making, and execution. Tracking
area management manages the registration and tracking of UEs within differ-
ent geographical areas, ensuring efficient paging and location updates. Mo-
bility models provide realistic simulations of UE movement patterns, including
pedestrian, vehicular, and aerial mobility.

Simu5G offers comprehensive tools for controlling and configuring simula-
tions, allowing users to define various parameters and scenarios. Simulation
configuration files enable users to specify parameters such as network topology,
UE density, traffic patterns, and mobility models. Runtime control provides
mechanisms for dynamically adjusting simulation parameters and controlling
the execution of the simulation. Result collection and analysis tools collect and
analyse simulation results, such as performance metrics, QoS indicators, and
network statistics.

Veins Veins (Vehicles in Network Simulation) is an open-source simulation
framework designed to facilitate the study of vehicular networks by integrat-
ing realistic mobility models with communication network protocols. It builds
on OMNeT++ and SUMO (Simulation of Urban Mobility) to provide a compre-
hensive platform for vehicular ad hoc network (VANET) simulations. Veins is
integrated to simulate vehicular networks and realistic mobility patterns. Veins
includes models for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication, as well as realistic mobility traces that can be used to simulate
user movement in urban environments.

Veins integrates two major simulation tools: OMNeT++ for network simula-
tion and SUMO for traffic simulation. OMNeT++ handles the communication
aspects, while SUMO simulates vehicle mobility. These two simulation tools are
connected through the Traffic Control Interface (TraCI), which allows for real-
time exchange of information between the mobility and network simulators.
This integration enables the simulation of realistic vehicular communication
scenarios where vehicle movements and network communications are closely
interlinked.

The OMNeT++ component of Veins provides the environment for simulating
network protocols and communication mechanisms. It includes modules that
model vehicles as mobile nodes equipped with communication devices, typi-
cally IEEE 802.11p or DSRC (Dedicated Short-Range Communications) radios.
These modules simulate the communication stack from the physical layer up
to the application layer, including channel access, message dissemination, and
application-level logic. Vehicles can communicate with each other (vehicle-to-
vehicle, V2V) or with roadside infrastructure (vehicle-to-infrastructure, V2I),
enabling the study of various VANET applications such as collision avoidance,
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traffic management, etc.
The SUMO component simulates the mobility of vehicles, providing realistic

traffic patterns and vehicle behaviours. SUMO supports detailed road network
modelling, including intersections, traffic lights, and lane changes. It allows
for the specification of routes, vehicle types, and driver behaviours, generat-
ing realistic vehicle movement patterns based on real-world traffic scenarios.
SUMO’s flexibility in defining traffic scenarios makes it possible to simulate a
wide range of urban and highway environments, contributing to the realism of
the vehicular network simulations.

TraCI, the Traffic Control Interface, is the bridge that links OMNeT++ and
SUMO. It enables bidirectional communication between the network and traffic
simulators. Through TraCI, OMNeT++ can query and control the state of the
traffic simulation, such as vehicle positions, speeds, and routes. Conversely,
SUMO can receive commands from OMNeT++ to alter vehicle behaviours based
on network events, such as rerouting vehicles in response to traffic conges-
tion detected through V2V communication. This real-time interaction ensures
that the mobility patterns and network communications influence each other
dynamically, providing a more accurate representation of vehicular network
scenarios.

The application layer in Veins is where the logic of vehicular applications is
implemented. This layer can simulate a wide range of applications, from simple
message dissemination to complex cooperative driving scenarios. For instance,
safety applications can simulate warning messages broadcasted to nearby vehi-
cles to prevent collisions, while efficiency applications can optimise traffic flow
by dynamically adjusting traffic signals based on real-time traffic data. Veins
also includes models for simulating the wireless communication environment,
such as the propagation of radio waves in urban environments. These models
take into account factors like buildings, terrain, and other obstacles that af-
fect signal strength and quality. The accurate modelling of the communication
environment is crucial for realistic VANET simulations, as it directly impacts
the reliability and performance of vehicular communications.

Mobility models are essential for simulating realistic user movement within
the mobile network. Veins provides a range of mobility models that can be used
to simulate different types of user movement, including pedestrian, vehicular,
and mixed mobility patterns. These models can be configured to match the
specific characteristics of the simulation scenario. For example, pedestrian
mobility can be simulated using random waypoint models, where users move
randomly within a specified area. Vehicular mobility can be simulated using
realistic traffic models that take into account factors such as road networks,
traffic signals, and vehicle speeds. Mixed mobility models can combine pedes-
trian and vehicular mobility to simulate scenarios where users move between
different modes of transportation. The mobility models should be configured to
generate realistic user movement patterns that match the characteristics of the
target environment. This includes specifying parameters such as user speeds,
movement directions, and stop duration. Veins provides tools for visualizing
and analysing mobility traces, which can be used to validate the realism of the
simulated movement patterns.
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Simulation, data export and validation Once the simulation environment
is set up and configured, the next step is to execute the simulation scenarios,
generate and collect data on various metrics such as user mobility patterns,
call detail records, data traffic volumes aggregated at different levels depending
on simulation objectives.

OMNeT++ provides tools for collecting and analyzing simulation data. The
data can be exported in various formats, including CSV (Comma-Separated
Values) and XML (eXtended Markup Language), for further analysis and pro-
cessing. The collected data should be organized and structured to facilitate
easy access and analysis. This includes creating separate datasets for different
types of data, such as CDRs, data traffic records, and performance metrics. To
generate realistic mobile network data, the simulation should capture details
such as call initiation time, call duration, and the locations of devices. This
data can be used to analyze user behavior patterns and network performance.
Data traffic records should include information about data sessions, such as
the volume of data transferred, session durations, and the types of services
accessed. Performance metrics should capture various parameters related to
network quality, such as signal strength, latency, and throughput.

The synthetic data generated by the simulation should be validated and
evaluated to ensure its ecological validity and accuracy. This involves compar-
ing the synthetic data with real-world data to assess its statistical properties
and patterns. Various metrics can be used for validation, including statistical
measures such as mean squared error and domain-specific metrics such as
call duration distribution and mobility pattern similarity.
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