Large Language Models and SDMX: From Natural Language to Structured Stats

2024 SDMX Experts Workshop - 07/10/2024

WHO AM I?

ALESSANDRO BENEDETTI

- Born in **Tarquinia** (ancient Etruscan city in Italy)
- R&D Software Engineer
- Director
- Master degree in Computer Science
- PC member for ECIR, SIGIR and Desires
- Apache Lucene/Solr PMC member/committer
- Elasticsearch/OpenSearch expert
- Semantic search, NLP, Machine Learning technologies passionate
- Beach Volleyball player and Snowboarder

SEArch SErvices

- Headquarter in London/distributed
- **Open-source** Enthusiasts
- Apache Lucene/Solr experts
- Elasticsearch/OpenSearch experts
- Community Contributors
- Active Researchers

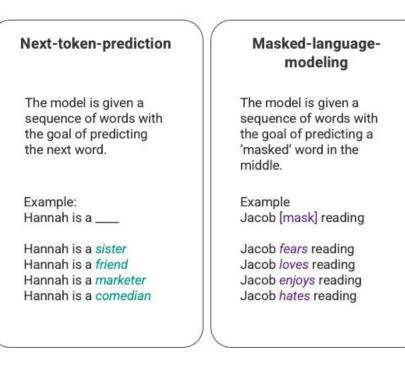
HOT TRENDS:

- Large Language Models Applications
- Vector-based (Neural) Search
- Natural Language Processing
- Learning To Rank
- Document Similarity
- Search Quality Evaluation
- Relevance Tuning

<u>www.sease.io</u>

WHAT IS A LARGE LANGUAGE MODEL

- Next-token-prediction and masked-language-modeling
- Estimate the likelihood of each possible word (in its vocabulary) given the previous sequence
- Learn the statistical structure of language
- Pre-trained on huge quantities of text
- Fine-tuned for different tasks (Following Instructions)



https://towardsdatascience.com/how-chatgpt-works-the-models-behind-the-bot-1ce5fca96286

VOCABULARY MISMATCH PROBLEM

- Terms matching between the query and the documents.
 - false positive: docs retrieved (terms match) but the information need is not satisfied
 - false negative: docs not retrieved (terms don't match) but there was the information need in the corpus → zero result query

SEMANTIC SIMILARITY

- Same terms different meaning: How old are you? How are you?
- **Different terms same meaning**: How old are you? What is your age?

DISAMBIGUATION

• Same term in two totally different contexts assume totally different meanings

There are some lexical solutions to these:

Manually curated

• Synonyms, Hypernyms, Hyponyms

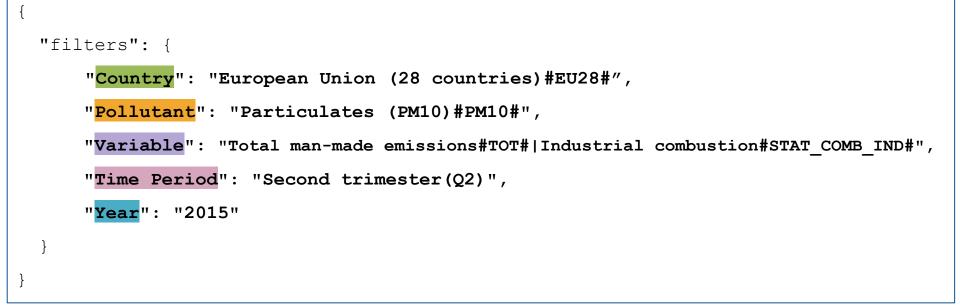
Algorithmic

- Stemming, lemmatization
- Knowledge Base disambiguation

These solutions are expensive to maintain and do not guarantee high quality results. We can do better!

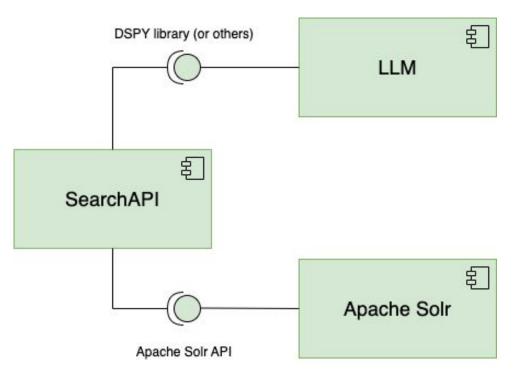
NATURAL LANGUAGE QUERY PARSING

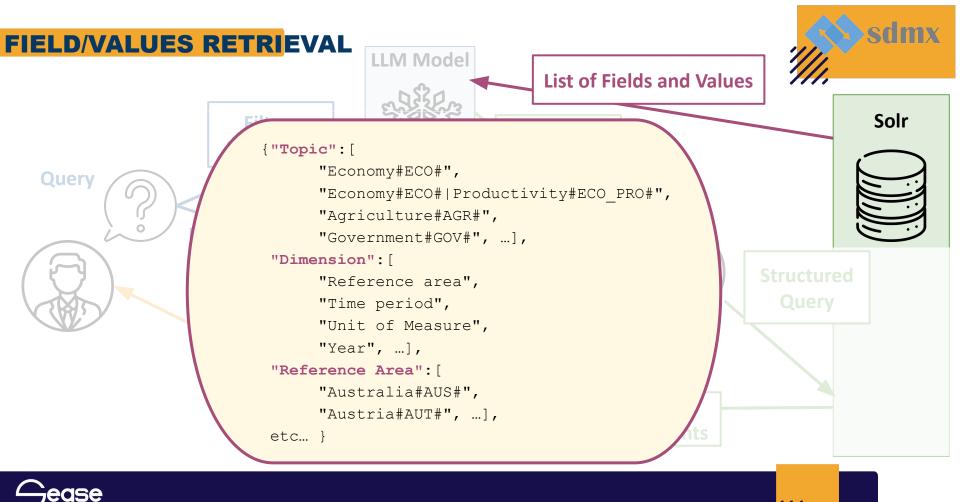
PM10 levels produced by industries in the European Community in May 2015

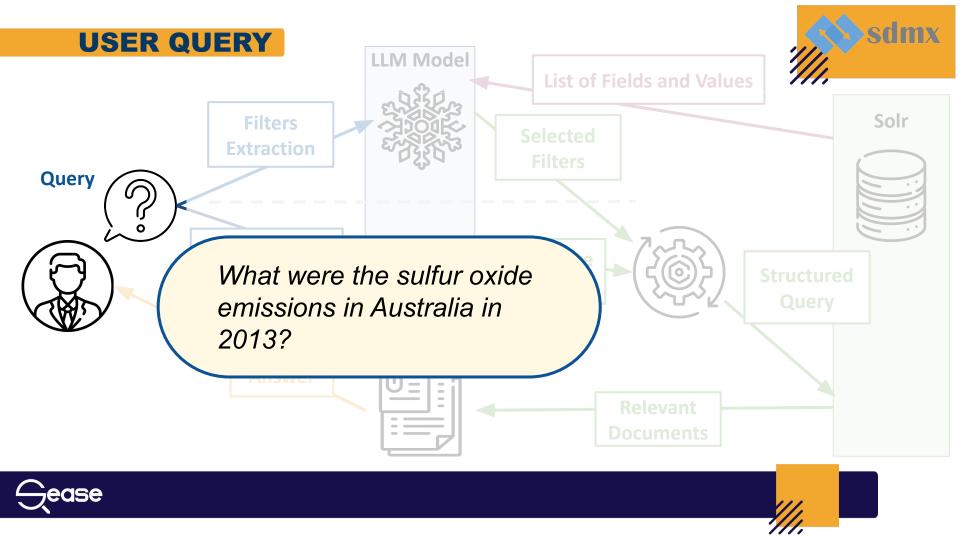


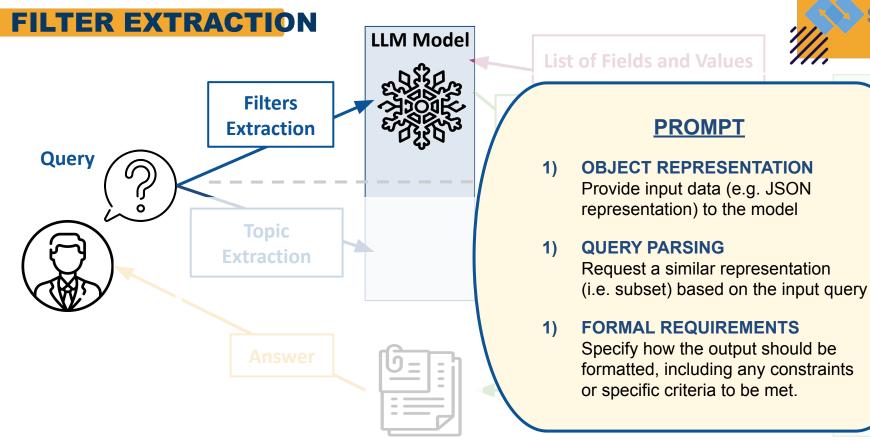
We have been working with SDMX sponsor organisations to exploit a LLM in order to:

- **Disambiguate** the meaning of a user's natural language query
- Extract the relevant information from it
- Use the extracted information to implement a structured Solr query

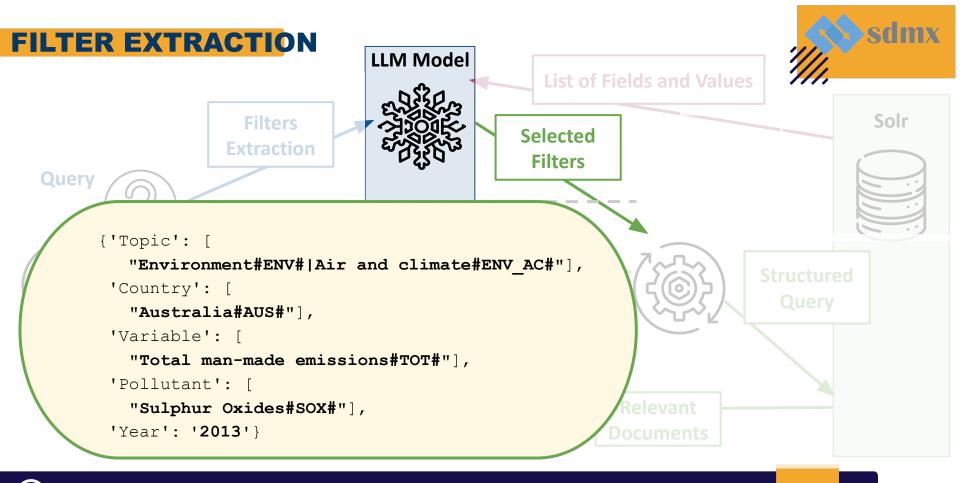






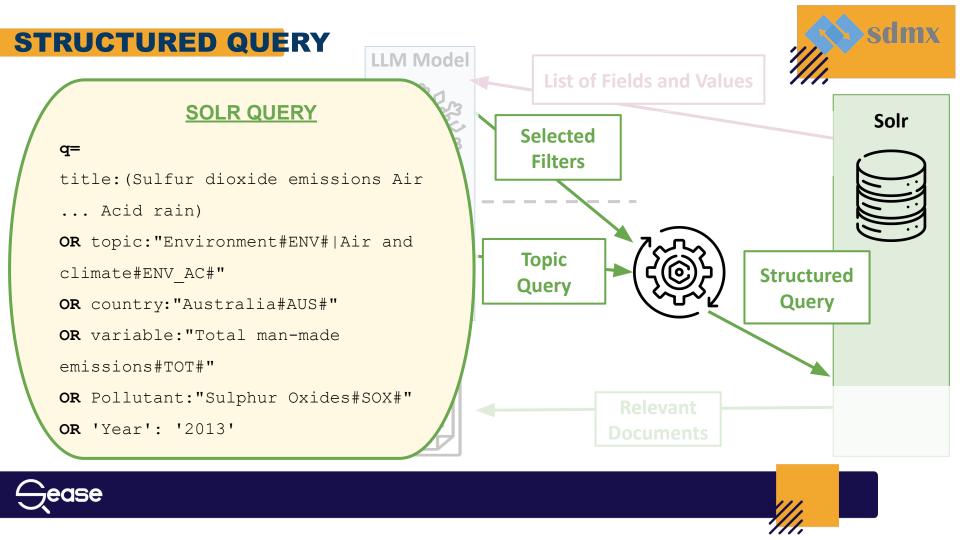


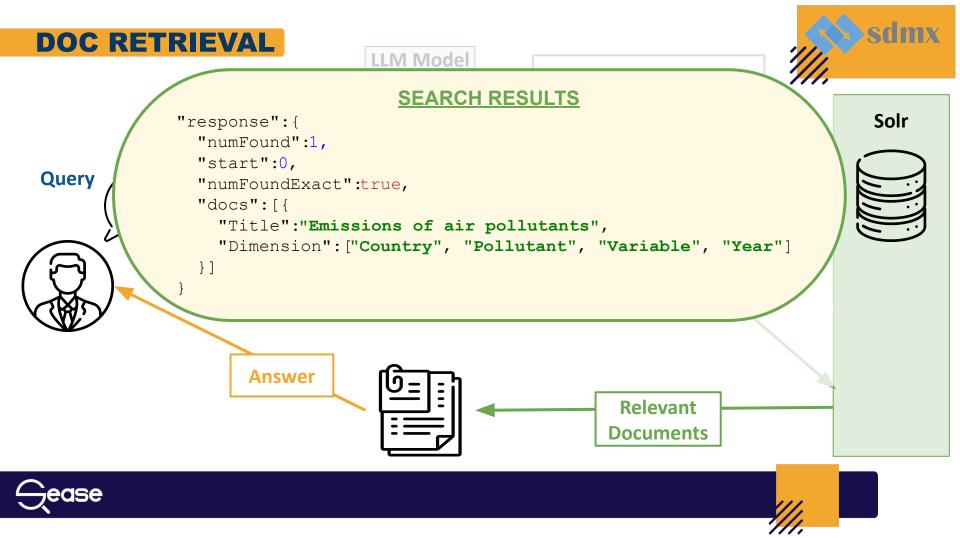
sdmx



What were the sulfur oxide emissions in Australia in 2013?

ase





MODEL CONSIDERATIONS

- [Model Selection]: <u>https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4</u>
- [Rationale for Current Choice]: No deep evaluations or comparisons with alternative models happened in the POC
- [Future Works]:
 - Explore, analyze and compare generalist models
 - Potentially undertake **our own fine-tuning** for the specific extractive task

• Overcome the lexical matching

land of kangaroos \rightarrow [Country] AUSTRALIAtobacco consumption \rightarrow [Topic] SMOKING/RISK FACTORS FOR HEALTH

Explainability for selected filters

Analyze input text: "cost per square meter for family houses in italy"

cost per square meter \rightarrow pricing or valuation \rightarrow 'Priced unit' or 'Value'

 \rightarrow type of property \rightarrow 'Real estate type'

italy

. . .

family houses

 \rightarrow location

 \rightarrow 'Reference area' or 'Borrowers' country'

We need to identify which dimensions and their corresponding values are most relevant to the input text **"cost per square meter for family houses in italy"**. To do this, we will look for dimensions that are directly related to real estate, housing, or geographic location, specifically within Italy.

Explainability for selected filter

Analyze input text: "cost per squar

cost per square meter \rightarrow pricing o

family houses

 \rightarrow type of p

italy

 \rightarrow location

Integrate as an "Assistant" feature

IDEA!

to guide users in choosing the most suitable filters

- Promising potential in early results (POCs):
 - good **results** (using a commercial out-of-the-box model!)
 - **straightforward** implementation for such a challenging and **complex task**
 - model's **adaptability** to the context

LIMITATIONS

LLM weaknesses in the language/query semantic comprehension

LLM weaknesses in complying with:

- the problem definition
- the required output format

THE ROAD TO PRODUCTION

• [UX] Design the user experience

- Filtering assistance?
- Transparent query parsing?
- [LLM] Select the best model to date
 - Can we fine-tune promising models specifically for the task?
- [LLM] Refine the prompts according to the model
 - Can we reduce functional and formal errors?

THE ROAD TO PRODUCTION

- [LLM] Implement integration tests with the most common failures \rightarrow LLM/prompt engineering to solve them
- [LLM] Study additional libraries to make the prompt more "programmed" and "automatically tuned" and less "trial-and-error"
 - Highly depend on the LLM available
- [Performance] Stress test the solution
- [Quality] Set up queries/expected documents

THANK YOU!

SCAN ME

Μ

