
Disclaimer: Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or Eurostat. Neither the European Union nor the
granting authority can be held responsible for them.

Smart Survey Implementat ion

G r a n t A g r e e m e n t N u m b e r : 1 0 1 1 1 9 5 9 4 (2 0 2 3 - N L - S S I)

Work package 3

Developing Smart Data Microserv ices

Del iverable 3 .2 : Smart base l ine s tage report
Version 1.2, 2024-06-27

ESSnet co-ordinator:

Work package Leader:

Joeri Minnen (hbits, Belgium)

e-mail address : Joeri.Minnen@hbits.io
mobile phone : +32 (0)497 189503

Prepared by:

Joeri Minnen (hbits, Belgium)
Pieter Beyens (hbits, Belgium)
Ken Peersman (hbits, Belgium)

Enak Cortebeeck (hbits, Belgium)
Jonas Klingwort (CBS, Netherlands)

Tim de Jong (CBS, Netherlands)
Tom Oerlemans (CBS, Netherlands)
Jerome Olsen (Destatis, Germany)

Joël Van Hoorde (Destatis, Germany)
Adrian Montag (Destatis, Germany)
Miriam Engel (Destatis, Germany)

Fabrizio De Fausti (ISTAT, Italy)
Claudia De Vitiis (ISTAT, Italy)
Marco Terribili (ISTAT, Italy)

Francesca Inglese (ISTAT, Italy)

Ref. Ares(2024)4663658 - 28/06/2024

2

Index

Index ... 2

1. General introduction .. 4

Objectives of WP3 .. 4

Documentation strategy .. 5

Git repository and used open-source libraries ... 5

Demonstrations .. 5

2. Timeline .. 7

3. Microservice software architecture ... 10

Views .. 10

Perspectives ... 16

4. Functional and non-functional requirements of the Receipt Scanning Microservice 18

Business requirements ... 18

Functional requirements .. 21

Non-functional requirements ... 25

5. OCR microservice (Receipt Scanning Microservice – part 1) .. 28

Design ... 28

Implementation .. 37

Integration .. 37

Test ... 43

6. COICOP classification microservice (Receipt Scanning Microservice – part 2) 44

Design ... 44

Current state of work and outlook ... 46

Implementation .. 47

Integration .. 47

Test ... 47

7. Functional and non-functional requirements of the GeoService Microservice 48

Business requirements ... 48

Functional requirements .. 50

Non-functional requirements ... 54

8. Geolocation microservice determining stop-track clusters (GeoService Microservice – part 1) . 56

Design ... 56

Implementation .. 58

Integration .. 58

3

Test ... 58

9. Geolocation microservice detecting the mode of transport (GeoService Microservice – part 1) 59

Design ... 59

Implementation .. 60

Integration .. 61

Test ... 61

10. HETUS classification Microservice (GeoService Microservice – part 2) .. 62

Design ... 62

Implementation .. 65

Integration .. 65

Test ... 65

11. MOTUS architecture ... 66

12. CBS architecture ... 68

4

1. General introduction

This document serves as the smart baseline report and provides a second overview of the work done
in work package 3 of the SSI project.

The main goal of this work package is to develop microservices and to arrive to the overall goal ‘to
develop, implement and demonstrate the concept of Trusted Smart Surveys, realizing a proof of
concept for the complete, end-to-end data collection process and demonstration of a solution’.
Work package 3 is situated at the Development level, where the microservices are being developed
as platform-independent components.

Three different microservices have been indicated to be developed. Throughout the project it has
been decided to create per microservice two underlying microservices, as listed below. Each time a
non-domain specific part and a domain specific part is built. The non-domain specific part can be
used in various statistical domains, whereas the domain specific part is linked to one specific
statistical domain and has often country and language requirements:

• Receipt Scanning Microservice
o OCR Microservice – non-domain specific
o COICOP classification Microservice – HBS + country/language restrictions

• GeoService Microservice
o Geolocation microservice – non-domain specific1
o HETUS classification Microservice – TUS + country/language restrictions

• Energy Microservice
o To be defined

WP3 is responsible to develop the non-domain specific microservices as shareable environments to
the SSI/ESS, and to integrate them into the end-to-end data collection process. WP3 has a close
relation to WP2 which defines the AI/ML models for WP3 to be (further) developed and integrated
into microservices. WP3 also provides support to integrate the microservices with the data collection
platforms. After integration WP3 can test the microservices in interaction with the users to close the
end-to-end process.

Every microservice can hold various models or algorithms that together combine to a process flow
within a microservice. One or more microservices integrated to a data collection platform define a
process flow to collect and process statistical data.

Objectives of WP3
The main objectives of WP3 are:

• Develop the selected microservices
• Develop the APIs between the microservices and the core platforms
• Setup and perform development tests to support the development of the microservices and

APIs, in an interactive and iterative manner
• Document the microservices and APIs
• Support platforms and NSIs to include the microservices in the core platforms

1 The underlying models/algorithms to define stop/track clusters and to derive a mode of transport on the track clusters are
discussed in a different chapter.

5

• Perform a pentest
• Perform a stress test (load performance of eg. geolocation data)
• Containerise the microservices
• Describe the architecture of the core platforms
• Describe the architecture of the (developed) microservices
• Describe and execute the deployment strategy for both the core and microservices
• Write PDCA-cycles
• Keep and maintain a public Git repository
• Coordinate with the participating countries
• Provide support to WP1, WP2, WP4 and WP5

Documentation strategy
This report is the result of the writing of the technical documentation. At first the general
architecture for microservices is presented. Next the within WP3 (to be) developed microservices
are documented.

For each microservice the same approach is followed. First the business, functional and non-
functional requirements of each microservice are discussed as they are the blueprint of the work
that follows. Every microservice has a non-domain and a domain specific part. Non-domain means
that that part can be integrated in a different data collection process than the HBS and TUS process
that is envisioned within the SSI project. The second part of the microservice then links to specifically
the HBS/COICOP and TUS/HETUS guidelines. Despite this split each part of the microservice has the
same subsections: design, implementation, integration and test.

The document ends with providing more information about the data collection platforms to which
the microservices are integrated. These platforms are the @CBS platform (CBS) and the MOTUS data
collection platform (hbits).

Git repository and used open-source libraries
WP3s output is only partially represented by the written documentation. The goal of WP3 is to
develop the three microservices. Therefore, the most impactful output is available in the Git
repository that will be made available at the end of the project. This Git repository not only hosts the
by WP3 generated code but also contains more and specific information for the NSI that are willing
to know more about the microservices on a technical level in order to integrate these environments
into their own end-to-end data collection process.

The Git repository is available at [TODO], and entrance during the SSI project is granted upon
request.

WP3 by themselves makes use of open-source libraries and AI/ML algorithms, as components and
which still need to be configured and trained. In this documentation we will refer to these sources so
the reader can easily find this information.

Demonstrations
During the SSI-project multiple demonstrations were given. These demonstrations are recorded and
are made available via OpenSocial:

6

- First Informational meeting SSI on October 20th 2023:

Presentation of the status of three separate models for the OCR microservice. The presentation
discusses the strategy to combine the models in a sequence of actions, and to relate/integrate the
OCR microservice to the respective platforms.

• Demonstration given by hbits and CBS: https://cros.ec.europa.eu/book-page/information-
session-october-2023

• PowerPoint: https://cros.ec.europa.eu/book-page/information-session-october-2023

- Second Informational meeting on March 22nd 2024:

Presentation of the operational OCR microservice, and the integration of the service to an
independent data collection platform, starting from a theoretical end-to-end data flow. Both the
OCR and the COICOP microservice are presented. See data flow below.

The presentations accordingly discuss all components, the integration to the platforms and the
training strategy.

• Demonstration: https://cros.ec.europa.eu/book-page/information-session-march-2024-wp3
o Demonstration 1 – Integration of OCR microservice given by hbits
o Demonstration 2 – Training of AI/ML OCR and document understanding model given

by Destatis
o Demonstration 3 – Status of COICOP classification and presentation of search tag

strategy given by Destatis and CBS. This demonstration was given in collaboration
with WP2 as the responsible work package for the COICOP classification
microservice.

• PowerPoint: https://cros.ec.europa.eu/book-page/information-session-march-2024-wp3

7

2. Timeline

Looking to the timeline, the first important task was to develop a general approach to design a
microservice software architecture. In doing so the SSI-develop microservices are developed
according to a vast set of runtime functional elements that can variate depending on the needs but
nonetheless give structure to the development of these microservices. The SSI consortium suggests
to the ESS to use this structure for newly build microservices within NSIs. It also holds the suggestion
to containerise the microservices as being documented.

The runtime functional elements provide the building blocks for each of the planned microservices.
The first (overall; see introduction for the explanation) microservice to be developed is the Receipt
Scanning Microservice, followed by the GeoService Microservice and the Energy Microservice.

The work on the Receipt Scanning Microservice (OCR and COICOP microservice together) started in
May 2023 with the description of the functional and non-functional requirements. Accordingly, the
development of the microservice started. The progress was shown to the consortium by means of
two demonstrations. The first demonstration in October 2023 showed 3 separate AI/ML models
being part of the OCR microservice. The first model focuses on how a ticket (contour, orientation)
has been prepared, the second model deals with how text from a ticket is extracted and placed into
position boxes, and the last model connects the boxed text to standardised labels holding relevant
elements that (can) appear on a ticket.

The second demonstration in April 2024 showed improvements in all three models and most
importantly the developed AI/ML models were bounded in a sequence of actions. This means that
upon arriving of a ticket to the microservice the ticket has automatically been processed sequentially
model by model and the derived information is made available in the microservice database. Via an
API this information becomes available to other environments. This setup also makes it possible to
place this microservice in an end-to-end data collection process within an NSI.

It is important to notice that the OCR Microservice has the assumption to be non-language, non-
country and (even) non-shop specific. In order to achieve this the separate models have to be
trained, and for this a PDCA model has to be specified. The second presentation showed a solution
on how to annotate these tickets following a standardised procedure of attaching labels to content
on the ticket.

The development work on the OCR Microservice ended March 2024. This intermediary report holds
the vast amount of written knowledge that has been created during the SSI project, while the
developed code is available in the Git repository. The development of the COICOP classification
microservice keeps running in WP2, with support from WP3.

From April 2024 onwards hbits and CBS have the knowledge and code available to integrate the OCR
Microservice into their data collection platform, respectively MOTUS and @CBS. The integration is in
view of the HBS. This integration should hold the entire process starting from a user/respondent
taking or uploading an (e-)ticket via the MOTUS and @CBS app, sending it over to the OCR
Microservice in order to be processed through the developed models and where this derived
information then is showed as tentative data back into the used application and available to the
user/respondent to be edited in order to commit the ticket/data. Depending on the integration

8

strategy used these steps are supplemented with passings through the platforms’ core
environments, e.g. to achieve a higher privacy and security in the exchange of data between the
environments.

Once the integration is done, and technically tested, WP2 can start to test the integration in small
scale tests and large-scale pilots in interaction with the user.

An important output of the OCR Microservice are the product descriptions (next to the price of the
purchases and other contexts like some product metrics or reductions). The product descriptions
need to be classified to a COICOP code. This connection of the production description to a COICOP
code is done by WP2.3 and leads to the development of the COICOP microservice. When this
COICOP microservice is functional and well described it can be integrated into the end-to-end
process accordingly.

The second microservice is the GeoService Microservice, starting in November 2023 with the same
approach as the Receipt Scanning Microservice. First phase is the writing of the documentation on
the functional and the non-functional requirements. Next phase is the development of the
microservice. Likewise, the Receipt Scanning Microservice the development is split in a non-domain
specific (Geolocation Microservice) and a domain specific part (HETUS classification Microservice),
where the first part delivers a microservice that can be used in any end-to-end production flow that
is willing to make use of geolocation points, and the second part is related to the specific use within
the HETUS data collections.

The main objective of the Geolocation Microservice is to derive information on stop points (clusters)
and link a transport mode to the track clusters. These stop points are found, after pre-processing,
through the use of an AI/ML model that takes into account spatial and temporal parameters. The
contextualisation is done by connecting these stop points to a third-party POI/places database, be it
OSM or Google places. This work is foreseen to be completed end of June 2024. Again, to be made
available to the data collection platforms, the microservice needs to be integrated into the end-to-
end process of a data collection platform that holds the productive application which the
users/respondents employ to register Time Use Survey data based on the HETUS guidelines. The
integration runs until October 2024 and is accordingly used for pilot testing via WP2. To date no
demonstration was given, mainly due to a lack of (training) data.

Just as for HBS there is a specific development for TUS. WP2.2 will use the output of the Geolocation
Microservice to prognose the motivational context of the transport activity within the HETUS
classification Microservice. To achieve this goal, WP2.2 will also incline social and work-related
background characteristics in the developed model. To realise this requirement and to achieve
privacy and security the data collection platform needs to stand between the Geolocation
Microservice and the HETUS classification Microservice.

The last and third microservice is the Energy Microservice. The preliminary meetings have taken
place.

A specific topic coming to the surface during the SSI project is the need for (nearly) real-time data
processing. In interaction with users, the output of the microservice is presented to the user in
order to be edited and submitted as committed data. Therefore, for the SSI, ticket and geolocation

9

data needs to be performantly processed to output data (variables). In the course of developing
AI/ML models it became clear that not all program languages were fitting towards to need of real-
time processing (eg. R has a slow performance in comparison to C++).

The underlying report builds upon the previous report, and besides adding new knowledge it also
retakes information (as mainly is the case for Chapter 3 and 4). This and new work have been
discussed during online meetings and during physical workshops organised by CBS (Heerlen),
Destatis (Bonn) and hbits (Brussels). Accordingly, the chapters are reviewed by the work package
leaders. After an in-depth review also the countries and the experts related to WP3 have been
provided the opportunity to reflect upon the documents.

The work is technical of nature, and is written towards the staff of NSIs that will need/are invited to
integrate the microservice into their end-to-end data collection process.

Complementary to this work also belongs the given demonstrations and the available code in the Git
repository.

10

3. Microservice software architecture

This chapter describes a generic architecture for data processing microservices.

The structure of this chapter is based on views and perspectives. Views illustrate the structural
aspects of an architecture (e.g. where is data stored?), while perspectives consider the quality
properties (e.g. scalability) of the architecture across a number of views.

A microservice is seen as an independent environment and, is in that respect, not coupled to a
specific data collection platform.

Views
Context view
The diagram below shows how microservices (as a black box) fit into a general data collection
platform architecture.

It is important to mention that:

• there is no direct link between the respondent and the microservices: the data collection
platform has full control over microservice usage (who/when).

• there is no direct link between the microservices and the main database. This means that
the data collection platform has full control over which data is delivered to the
microservices. The exact mechanism which guarantees privacy will be explained in the
“Regulation perspective” section.

11

Functional view
This diagram describes the different runtime functional elements of the microservice. Typically, each
runtime element is deployed as a container (see Deployment View).

Main elements and their responsibilities are:

Message bus
The message bus allows for asynchronous communication between the data collection platform and
the microservice.

Rationale:

• avoid blocking calls e.g. the platform must be able to quickly forward data (scanned receipt
information, geolocation point) to the microservice without being blocked for too long. The
message bus is able to fulfil this requirement by putting the data in a queue without any
processing. In addition, by putting the message bus on the same server, networking issues
between platform and bus are being avoided.

• notification service e.g. the DataProcessor can send a message that (some) data is
processed. The platform can then take appropriate action.

Chosen technology: RabbitMQ (https://www.rabbitmq.com/)

API and GUI
The API and GUI are the synchronous interfaces of the microservice.

The API is used by the platform to fetch microservice data, request processed data results etc.

The GUI is used by a researcher or operator to:
• browse and inspect the results of the DataProcessor in the processor result DB
• browse, inspect and edit the data of the microservice DB

12

• possibly other functions e.g. add a scanned receipt and test the outcome

Because microservices have different functionalities, the (optional) GUIs are microservice-
dependent. The GUIs are typically built with web technology and preferably share the same web
framework than the API part.

Preferably, the GUI is integrated in the platform UI/backoffice in order to get an integrated user
experience. This also avoids possible data inconsistencies between microservice database and
platform database (e.g. a researcher edits the microservice DB but this change is not propagated to
the platform database).

It is possible to extend the API with a synchronous call to the DataProcessor’s internal algorithm i.e.
without doing a request to the DataProcessor container. This is a simpler but more limiting design:

• the number of parallel requests might be limited by the webserver,
• it is a synchronous interface which means the call might block for a while,
• in case of networking issues, there is no queuing of requests or messages (in contrast to the

message bus).

The synchronous call might be more practical than the asynchronous one for debugging the
algorithm e.g. because no message bus is needed.

Websocket API
The websocket provides a synchronous interface as well. It can be used though to call the
DataProcessor’s internal algorithm synchronously. See discussing above.

Added value: if deployed, it is an independent product which can be directly used via internet.

Nice to have as a test platform.

Library vs service. Proposal: take into account in architecture/design (but no development yet).

DataWriter
Receives push messages with data from the platform via the message bus. The DataWriter writes the
data in the microservice DB. Data push messages are queued in the message bus until the
DataWrites is able to accept them.

There is only one DataWriter process in order to guarantee that the received data is written to the
database in the same order as the data was pushed by the platform. This avoids (subtle) race
conditions in which a DataProcessor start processing data with missing in-between data (e.g. a
tracking point is missing in the DB between the first and the last tracking point).

Because the DataWriter only writes data to the database and doesn’t process data (no CPU time), it
is expected that it will be fast enough to always empty the queue. If this is not the case, platform
design (and not microservice design) must be reconsidered e.g. by limiting the number of messages
sent to the message bus.

13

DataProcessor
Does the real work of processing the data.

Starts processing when it receives a push message of what to process. Note that a single push
message is delivered to one and only one DataProcessor. Scalability is achieved by load balancing the
requests over the DataProcessors , which is a feature of the message bus. See the perspective on
performance and scalability.

Given the required processing time needed by the processors, the platform should limit the number
of messages sent to the data processors (via the message bus). In this regard, system design is
important. E.g. in case of geo tracking, the processors shouldn’t be triggered for each tracking point
to recalculate the respondent’s itinerary, rather, the tracking points should be bundled before the
recalculation is done.

Because data processors act independently, the concurrency aspect of the data processor must be
taken into account in its design. At an infrastructure level, limiting resources (e.g. in a k8s cluster)
might be necessary.

A DataProcessor pushes a message on the bus when processing is done.

Processor Result DB
This DB stores the results of the DataProcessors. Since results can be re-calculated, persistent
storage is not a strict requirement e.g. one might opt to make it a RAM only DB.

A non-sql database is probably most convenient to store the results.

It is accessed by the API/GUI element to fetch the results.

It can be consulted by DataProcessors to avoid the re-calculating of data, it therefore also act as a
cache.

Chosen technology: REDIS (https://redis.io/). It is also possible the replicate a REDIS DB over several
nodes if needed so (see perspective on performance and scalability).

Microservice DB
Used by the DataWriter to store pushed data.

Data is consulted by the DataProcessors.

GUI is able to change data if needed so.

DB scaling is achieved by replication, see perspective on performance and scalability perspective.

14

Information view
This view describes the way that the microservice stores, manipulates, manages, and distributes
information. The diagram highlights the key points.

Concurrency view
This view identifies the parts of the microservice that can execute concurrently and how this is
coordinated and controlled.

All functional runtime elements are allowed to run in parallel since their responsibilities are clear
and non-conflicting (e.g. the DataWriter writes data while the DataProcessor processes data).

The most important concurrency aspect in the microservice architecture are the different
DataProcessors which can process data in parallel.

15

Care must be taken to:

• avoid race conditions: if 2 DataProcessor calculate the same thing, then one DataProcessor
might overwrite the results of the other, also if the other’s results were more recent.

• avoid unnecessary recalculations: DataProcessors should check the database to make sure
the results for its calculation are not already there. In that sense, the processor result DB
also acts are a kind of cache. If a single result is a combination of multiple small results, then
cache optimizations might be possible by re-using the finer-grained results. E.g. suppose you
need to calculate a timelog of a day. If a day is in progress, then possibly only recalculating
the last hours is enough instead of recalculating the whole day.

Deployment view
A microservice is deployed as a collection of Docker containers: each functional runtime element is
built as a Docker container. This makes all elements (almost) independent from the host OS.

Depending on the performance and scalability requirements (see perspective), different deployment
strategies are possible. Here are some examples:

Note that the message bus should always be ready to accept messages from the platform (to avoid
the platform to be blocked). To exclude networking issues, platform and message bus are on the
same machine.

Operational view
Installation and upgrade
The microservice is a collection of Docker containers that will be managed, scaled and deployed with
a container-runtime platform (e.g. Kubernetes https://kubernetes.io/ for production environments,
docker-compose for development etc.).

Backup and recovery

https://kubernetes.io/

16

Two databases are (potentially) part of a microservice:

• processor result database: because results can be recalculated, no backup is needed here
except to speed up the recovery process. If Redis is used as technology, then persistency is
build-in. Backup/restore is the responsibility of the platform owner (and not of the
microservice).

• microservice database: backup/restore is the responsibility of the platform owner.

Note that the choice can be made to store data sent to or received from the microservice also in the
platform core database. When the microservice is disabled or not needed anymore, then the
platform core can function without the microservice (e.g. the respondent’s geo itinerary can be
retrieved without the microservice).

Perspectives
Regulation perspective
Privacy
Sensitive information must be restricted to the database of the main application. The microservice is
not allowed to pull user/respondent private information into its own databases.

The following mechanism is foreseen:

The Respondent X entry is never visible in the microservice. Platform and microservice are linked to
each other via a “microservice link”. The microservice only has knowledge of the abstract
“microservice link”, which essentially is only an id (UUID, GUID...).

If the microservice database would be shared for researchers (e.g. for postprocessing), then the
sensitive information of the respondent cannot be leaked.

Performance and scalability perspective
Depending on the application (e.g. type of research) and the type of microservice (e.g. processing
intensive vs IO intensive), performance and scaling of the microservice can be tuned as follows:

• DataProcessors can be scaled:
o by creating multiple instances
o by distributing instances over multiple machines
o see ‘concurrency view’ of how they distribute work

17

• microservice DB can be scaled:
o by DB replication
o by distributing the replication databases over multiple machines

• microservice results DB could be scaled similar to the main microservice DB. Since this is
probably not a heavily loaded database (no complicated queries, only results), scaling might
not be needed

18

4. Functional and non-functional requirements of the Receipt Scanning
Microservice

This fourth chapter addresses the functional and non-functional requirements of the Receipt
Scanning Microservice. The goal of the SSI project is to involve and engage households and citizens,
and to define and operationalize a new/modified end-to-end data collection process.

Central to the SSI project stands the use of smart devices and other connected devices to obtain the
data. NSIs and linked organizations have worked on platforms to allow households to register their
purchases online. These platforms are @HBS by CBS, MOTUS by hbits as well as the developments at
SSB and Insee.

An important criterion within the SSI project is the realization of an end-to-end data collection
process, that results in qualitative and comparable data. The definition of quality and comparability
stems from the mission of the ESS and trust upon the Principles of the European Statistics Code of
Practice, which in its latest update also takes into account the emergence of new data sources and
use of new technologies.

Within SSI, WP3 is the gateway to include smart data. The inclusion of smart data is seen as a need
to further support the participation of the respondent in studies like TUS and HBS. In WP3 the Smart
inclusion is realized by the development of microservices.

This chapter has a focus on Household Budget Survey (HBS) and the definition of requirements for
the Receipt Scanning Microservice. The microservice is seen as a middle part software that is
supportive to the household in reducing their burden to complete a consumption diary.

The microservice comprises two underlying microservices. The first (OCR microservice) is designed to
perform Optical Character Recognition (OCR) and Document Understanding. The second is tasked
with COICOP classification (COICOP classification microservice), with the objective of classifying a
product/service to a COICOP category.

Note: when we refer to ‘ticket’ we also mean receipt or invoice, note, e-tickets, etc. All of these
artefacts can be processed as an image, as long as the procedures were nationally trained for all
variations.

Business requirements
HBS collects in a large detail what households spend on goods and services. In this way, the survey
gives a picture of the living conditions and spending habits in the EU. HBS is performed by each
Member State to calculate weighted macroeconomic indicators used for national accounts and
consumer price indices. Eurostat publishes output since 1988 in intervals of 5 years. The last waves
are from 2010 and 2015. In 2026 HBS will enter the IESS agreement and HBS will become a
mandatory data delivery.

In the majority of member states, in a HBS study, (a member of) a household records tickets in a
diary. Besides information on the store itself (name, address, logo, registration number, …) a ticket
at minimum holds information on the different purchases (or product rows; consisting of product
name and product price) that are bought and the total price of the ticket. Depending on the shop

19

and product type, a ticket can also contain various different contexts to the purchase as well as
information on reductions, amounts, units, return items or even empty good claims. The design of
the diary defines the amount of detail that needs to be transferred to the diary.

This altogether creates a demanding effort from the participants to the study. Given the declining
trend in participation rates and supported by the request of the Wiesbaden Memorandum, in 2011
Eurostat and the NSIs started to develop and implement new data collection modes to call a hold to
this downward trend, and to even improve the quality of the collected data.

Initiatives of various countries, and previous EU-funded projects have translated the paper-and-
pencil method to an online data collection process, giving households the opportunity to digitally
respond to all questionnaires as well as digitalize their ticket by adding purchase by purchase in a
step-by-step manner in order to submit the entire ticket into a digital diary.

Notwithstanding the added value of these online applications, the burden on the participants
remains high, and the process is still too much error prone. The goal of WP3 is to reduce these gaps
by developing and implementing microservices that acquire, process and (can) combine data
collected from smart devices and other applications, in the case of HBS through the development of
a receipt scanning microservice. This will transform the way digital diaries have been used so far and
is aimed to result in a true added value of digitalization. Also for the (end) users.

A successful realization of the development and implementation will not entirely reduce the active
participation of households in the registration of their tickets and purchases, but will provide
support and guidance in their task to arrive to qualitative and comparable data for the ESS. It means
that besides the development of the microservice also the implementation of the service to the
platforms is important, as well as the UI/UX that presents the output of the microservice to the user,
and the ease in which the user can verify, adapt, or even delete the output.

The following objectives are essential in reaching this goal:

• Objective 1: To define an architecture of a microservice (that is also to be reused in the
other developments of WP3, being the geolocation and energy use microservices)

• Objective 2: To develop a receipt scanning microservice using OCR
• Objective 3: To implement classification solutions (string matching, machine learning, or

search algorithm based) to classify purchases to a COICOP-list
• Objective 4: To develop an API to connect to/from other environments
• Objective 5: To deploy the microservice as a containerized application in the cloud
• Objective 6: To implement/integrate specific microservice parts in the app (e.g. algorithm).

This integration should be feasible, should have an added value for the platform and/or
should improve the user experience.

The stakeholders are the NSIs and their product owners (who represent the households (citizens)).

HBS study
In this section HBS studies are being described as they provide the context in which the Receipt
Scanning Microservice operates.

In HBS studies questionnaires and a consumption diary are completed by the households. At the
moment household members arrive in the diary phase they, at the least, already have completed a

20

questionnaire. If this member is the reference person, or the head of the household also a
household questionnaire and a matrix to compose the household is part of the pre-diary tasks. All
tasks are defined in a respondent journey or study flow that shows a sequence of tasks. Since the
HBS diary setup requires an equal distribution of participation over the entire fieldwork period, and
household members are requested to keep their diaries for the same period this study flow can be
quite complex. This is without saying that different NSIs (can) make use of different data collection
strategies, and that e.g. the questionnaire and the diary can be in a different sequence or taken with
a different tool.

Central to a HBS study is the registration of tickets and purchases of goods and services in a diary.
Households keep one diary over a period of (minimum) 2 weeks/15 days. Left aside paper-and-pencil
diaries, a household member partakes in a HBS study via an application, be it via a mobile
application, be it via a web application running in a browser.

HBS diary
The diary collects at the minimum:

• a description of the products and services that are bought (some countries also include the
fixed (repeating) costs into the diary, others collect this information via a questionnaire)

• the price of each product or service, and
• the date of the purchases and periodicity of fixed costs

The registration of the products and services is linked to a COICOP-classification. COICOP stands for
Classification Of Individual Consumption by Purpose.

The matching COICOP code is selected/mapped from a list:

• a COICOP-code2

In addition, on the level of the ticket extra information is/can be gathered:

• the country of purchase
• the shop (brand/type)
• ticket reduction
• professional purchase
• payment method

As an extra, on the level of the product or service extra information is/can be gathered (depending
on national needs):

• number of items
• price per item
• quantity and metric/unit per item
• discount
• return

2 Note: NSI’s can decide to classify a product/service to a COICOP also after the data collection stage.

21

Functional requirements
The diagram gives an overview of the main functional requirements:

• functionality related to user handling is indicated by the green boxes. The respondent must
be able to submit a photo or pdf and indicate to the receipt scanner software the receipt
location in the photo/pdf and provide some receipt details for verification.

• functionality related to the microservice is indicated by the blue boxes. The essential function
is to find and provide information that the HBS diary collects in a receipt (i.e. all bullet items
in section ‘HBS Diary’).

User handling

Respondent handling (green boxes)

REQ R1a Respondent takes photo a receipt

 Select ‘take a picture’ to open the picture functionality

 Real-time camera opens:

22

• detection of contrast ticket vs background
• detection of light (good exposure)
• detection of contour of ticket starts (4 dots or polygon around receipt when

stabilized)

 App (or user) takes picture when stabilized (contour good enough)

 If the respondent is not satisfied with the photo, he/she needs to able to restart with
the photo taking process.

 Note that additional quality checks might (and probably will) be performed later by the
app software itself and/or the server-part microservice.

REQ R1b Respondent uploads an e-ticket with the application (alternative to taking a photo of a
receipt)

 Select ‘Submit e-ticket’ to select/download a file from the local filesystem

 It is unclear yet which types of e-tickets will be supported. This strongly depends on the
layout and structure of the ticket itself. Possible e-ticket formats to be supported:
image, pdf+text(+variants) or pdf+image

REQ R1c Respondent shares an e-ticket from another application (e.g. store app) to the HBS
application (alternative to taking a photo of a receipt)

 Not part of microservice. Platform-specific (app) implementation.

REQ R1d In case of a web app: scanning can be done by the browser of the smartphone and sent
over to the browser running on a computer or laptop

 Respondent is on the web app

Respondent wants to take a photo with the smartphone so that it is automatically
loaded in the web app

This requirement is a nice to have.

REQ R2 Respondent changes contour of receipt

 Respondent can change the contour (4 dots connected with lines) to define the ticket
by moving dots or the line segment (handles) between two dots (parallel movement of
two dots).

 Could be skipped if the automatic contour detection works very well.

23

Ideally, this step is not necessary (same as R3).

 Having the complete receipt is important because it contains more info than only the
product/service rows. Extra info on the receipt includes: store logo, store details,
payment info etc.

REQ R3 Respondent selects other details of the receipt

 Selection of product/service rows. Helps the OCR process.

 Could be skipped if automatic product/service row detection works very well.

 Although extra work for the respondent, this step ensures the software knows the
most relevant part of the ticket i.e. the product/service rows. Also, the positional data
could be used later for ML training.

Ideally, this step is not necessary (same as R2).

 This step does not involve a crop of the image, so at submission, the whole image will
be sent to the microservice.

REQ R4 Respondent answers some questions about the ticket (questionnaire)

 The following questions will be asked:

• Country
• Shop
• Language
• Date
• Total price

 Depending on the specific-platform UI, it must be possible to skip this step. Note
however that the output of this step is very interesting for internal quality checks in the
OCR process.

Furthermore, knowing the store might/will be important for the COICOP classification.

REQ R5 Respondent submits ticket image

 A button allows the respondent to submit the ticket image, the change the contour hint
and other selected areas (such as expense items).

 Different UI implementations are possible:

• the image is uploaded in the background and the respondent gets a notification
when it is done, or

24

• a dialog should run to show the continuation of the upload.
• Or, user settings whether he/she wants to send real-time or in background; or,

via mobile or only wifi

 Communication of success, or failure which has to be accepted by the user by pressing
OK.

In case of failure, the action that needs to be undertaken is UI/platform-dependent.
E.g. one could wait for a wifi connection before trying to upload the image again. The
decision what needs to be done is platform-specific.

Temporally note: the above diagram was the initial functional view. The current state of the Receipt
Scanning Microservice lowers the number of respondent tasks in comparison to what is listed in the
diagram. For example, the user/respondent does not have to mark the contour of the ticket as the
current version is very reliable in finding the correct contour and orientation via the first AI/ML
model. Furthermore and in line with the first developments and tests, a well-trained document
understanding model should be able to achieve a high hit rate of detecting the store, date and total
price on the ticket, as well as the product rows.

It is important to mention though that an AI model never provides guarantees. If certain input (e.g.
shop name) is required or essential, then a respondent’s input or correction is necessary.

Microservice

Microservice (blue boxes)

REQ M1 Microservice collects receipt information

 The service is best effort and should try to collect the following receipt information:

• date of the purchases
• a description and price of the products and services that are bought
• the country of purchase
• the shop (brand/type)
• ticket reductions
• payment method

Then, at the level of a product or service:

• number of items
• price per item
• amount and metric/unit per item e.g. 1,5 L
• discount
• return or not

 Information retrieved from the user in step (e.g. R2, R3 and R4) could be used as a

25

verification step. E.g. the total price as answered by the respondent should match the
total price as derived from the image. If not, the user’s input has priority (esp. in the UI
as we don’t want to overrule user’s input).

 Depending on the performance and quality of M1, the number of respondent actions in
the UI (more specifically, R2, R3 and R4) might change (e.g. if the service is almost
always able to retrieve the product/service rows then step R3 is probably not needed
anymore).

 Because the output (receipt information) might contain several text mistakes, it might
be desirable to let the user correct those mistakes before the receipt information is
handed over to the COICOP classification algorithm. Whether or not user correction is
desirable strongly depends on the input requirements of the COICOP classification
algorithm.

REQ M2 Microservice performs COICOP classification on detected products and services

 The model (algorithm + training) classifies the product/service description to a COICOP.

 Integration of the COICOP Microservice together with the OCR Microservice.

 Support for different COICOP classifications (the code should not hard-code one
specific COICOP classification since NSIs are free to extend the 5-digit demanded
classification).

REQ M3 Microservice sends notifications when results are available

 So that a pop-up in the app can inform the respondent that the scanned ticket is added
to the overview on the day of the purchases.

 In case of multiple submitted receipts, the microservice will generate a notification for
each receipt. It is up to the app (platform-specific) how to handle multiple notifications.

REQ M4 Microservice provides a service to retrieve results

 The output of the microservice can be requested by platform to e.g. include the user
into quality control.

Non-functional requirements
Non-functional requirements

REQ N1 The microservice should be independent from any specific HBS platform.

26

 The microservice has no dependency to other environments, and has an independent
operation.

REQ N2 It must be possible to connect and communicate with the microservice from any HBS
platform.

 The microservice receives input, and provides output making use of APIs.

REQ N3 The microservice must have a design in which algorithms (computer vision, AI, ML)
can be easily improved/updated.

REQ N4 The service must be deployable at any institute/NSI (shareability).

 The microservices are provided as software packages in containers, which can be
easily shared and deployed. Docker is a software that can host containers.
Kubernetes is often used as software to orchestrate various containers.

REQ N5 The service must be scalable with the number of receipts it needs to handle.

 Kubernetes is a software used to orchestrate containers. By this Kubernetes allows to
horizontally scale the containerised microservice depending to the number of
receipts received.

REQ N6 Security by design

 Using the container technology barriers are created between various components
used in the study setup, which deliver better privacy, security and maintainability,
scalability and high availability.

Communication between the platforms runs through APIs and https communication.

REQ N7 Privacy by design

 Using the container technology barriers are created between various components
used in the study setup, which deliver better privacy, security and maintainability,
scalability and high availability.

Communication between the platforms runs through APIs and via UUIDs to avoid
transferring personal information.

REQ N8 Support for localization

 Algorithms being applied by the microservice should be configurable or trainable (in
case of ML) to support localization, which includes different languages, different
currencies, date formats, dots vs commas etc. This is required to make the

27

microservice shareable.

REQ N9 Offline vs online support (app)

 Parts of the microservice are/can be selected to be developed in a Library to run
offline in an application. The library must take into account platform-dependency
(Angular, ionic, Flutter …) to function.

28

5. OCR microservice (Receipt Scanning Microservice – part 1)

The Receipt Scanning Microservice is supported by two microservices: the OCR Microservice (part 1)
and the COICOP Microservice (part 2).

Chapter 5 deals with the OCR Microservice holding three AI/ML models. This part is non-domain
specific. In this chapter the software design, software implementation, and platform integration of
the OCR Microservice are discussed. Software design and implementation explain the inner workings
of the microservice, while platform integration explains how the microservice should be integrated
technically in a platform. The responsibility for platform adaptations and UI elements lies with the
platform developers and is not part of the SSI scope. Currently, the integration of the OCR
microservice by hbits (MOTUS) and CBS (@CBS) is taking shape. INSEE and SSB are asked to look into
the documentation and will report on the feasibility to integrate the microservice into their
production environment. Other countries are invited to request information on how to integrate this
shareable component into their platforms.

Code is to be found in the Git repository under the file [TODO next DL].

Demonstrations that were given are available on OpenSocial via https://cros.ec.europa.eu/book-
page/information-session-march-2024-wp3.

As a last point this chapter will discuss test information.

Design
The core of the microservice is the OCR pipeline which takes a receipt in the form of:

• a set of images (typically only one image), or
• a (pdf) e-ticket (which accordingly is processed as an image)

Once the receipt has arrived it goes automatically and sequentially through 3 steps:

• Pre-OCR: pre-processing the received image or pdf
• OCR: optical character recognition
• Post-OCR

o document (receipt) understanding, and
o final post-processing which has as an output a json file.

The OCR Microservice returns all available information, so that that information can be used by the
platform (and its UI/mobile and web application) and or/accordingly to the COICOP Microservice.
For example, if a product row cannot be parsed (e.g. price cannot be found), it returns the whole
(unparsed) row.

29

The letters (A-D) indicate a pre-OCR processing function/block in the whole chain. E.g. a noise
removal function, an receipt detection function, etc. The letters O-Q are similar but then for post-
OCR e.g. document understanding, combining detected rows, validating the total price etc.

Pre-OCR
The main responsibilities of pre-OCR step are receipt detection, orientation correction and image
cropping. Other techniques like noise removal were listed in a MOSCOW analysis and were taken in
consideration but did not improve the results and are therefore not taken on board.

The input is a single receipt in the form of:

• a set of images (this means that the microservice can deal with multiple images), or
• an e-ticket (pdf). The pdf is converted into a set of images which then follows the same flow

as normal images.
• Optionally: contour coordinates

The output of the pre-OCR step is a correctly oriented, cropped receipt image.

For receipt detection3, two methods have been deployed:

• semantic segmentation, and
• object detection

3 For these processes use have been made of open-source code and models. This is also true for PaddleOCR. PaddleOCR stands as an
open-source optical character recognition (OCR) solution crafted by PaddlePaddle, the deep learning platform nurtured by Baidu. Its
primary objective is precise text extraction from images, boasting proficiency across diverse languages and font types. Employing cutting-
edge deep learning architectures, PaddleOCR excels in both text detection and recognition tasks. Its adaptability shines through the
provision of several pre-trained models, each tailored for distinct scenarios like scene text, ID card, and table structure recognition.
Offering standalone models and end-to-end OCR pipelines, it accommodates various use cases and deployment settings. Appreciated for
its user-friendly interface, robust performance, and comprehensive documentation, PaddleOCR has garnered favor within research and
developer circles. Its utility spans document digitization, image text extraction, and intelligent document processing. Furthermore, its
open-source nature fosters community engagement, permitting customization to suit specific language or application needs.

30

Semanantic segmentation
 TODO next DL

1. The pre-ocr pipeline takes as input an image of a receipt.
2. It then segments the image. Which means that it labels each pixel of the receipt as belonging

to the receipt or not.
3. It then draws the smallest possible bounding rectangle around the pixels classified as

belonging to the receipt.
4. It uses heuristics to try and correctly orient the receipt, such that it is upright.
5. It crops the receipt using the bounding rectangle.
6. It then adjusts the orientation again slightly, using paddle_ocr to fine tune the orientation.

Model training
TODO next DL

Object detection
An alternative method is to use object detection for receipt detection. In this case a rectangular box
is drawn around the receipt in the image. The detection is very accurate but less fine-grained than
semantic segmentation. Furthermore, it requires quite some processing to correct the receipt
orientation. The orientation of the image is corrected by sequentially applying PaddleOCR to derive
text orientation.

The used AI model for object detection is YOLOS. For more information please visit this link:
https://huggingface.co/docs/transformers/model_doc/yolos

Model training
The training of the object detection model holds 4 steps:

• Collect images and divide them into 3 subsets: train, test and validation.
o Train: for training the YOLOS model,
o Test: for testing the YOLOS model while it is being trained,
o Validation: for validating the final YOLOS output (which is not used by YOLOS itself).

• Rotate all images: This step is needed to make the crop of the receipt as tight as possible.
• Annotate and create Coco output: Use a tool to add bounding boxes for object detection to

the images (e.g. Label Studio), export in Coco format (note: validation images should not be
annotated because they are not being used in YOLOS training).

• Train and retrain

More detailed description can be found in the Git repo: [TODO next DL].

OCR
TODO next DL

Model training
TODO next DL

Post-OCR
The output of the OCR step includes text and text locations (bounding boxes). That information is
used:

31

• to understand the receipt i.e. trying to give a meaning to the recognized text (by OCR),
• to correct OCR mistakes (TODO next DL - date, time corrections etc.),
• to produce a final json output which contains all receipt details (and some metadata).

Receipt understanding
In order to understand the receipts, the pipeline applies a fine-tuned model of LiLT. See also here for
more information: https://arxiv.org/abs/2202.13669.

LiLT combines text and layout (text position) information to label a text box. A variety of labels were
defined within the SSI project to arrive to standardisation, ranging from store address to tax price:

Id Label Description

0 O ignore

1 I-date_text date string e.g. Date

2 I-date_value date e.g. 10/9/23, Thursday 3 aug 2019

3 I-time_text time string e.g. Time

4 I-time_value time value e.g. 10:29

5 I-datetime
combination of date and time (because combined by OCR) e.g. 3-12-
2021 15:04

6 I-heading

Main heading of the ticket, typically between store details and products
e.g. Receipt, Account, rekening, klantenbon etc., to distinguish from
item.header

7 I-unused8

8 I-unused7

9 I-unused6

10 I-tax.header tax table: header e.g. Tax, Incl., Excl.

11 I-tax.description tax table: typically percentage or total e.g. 10%, total

12 I-tax.price tax table: tax price e.g. 9 EUR (which is 10% of 90 EUR)

13 I-tax.price_excl tax table: total price excluding tax i.e. total cost without tax e.g. 90 EUR

14 I-tax.price_incl
tax table: total price including tax i.e. what the customer had to pay e.g.
99 EUR

15 I-unused5

16 I-unused4

32

17 I-unused3

18 I-unused2

19 I-unused1

20 I-store.name name of the store e.g. lidl, Coopcentrum Bert Stuut

21 I-store.address address e.g. 9693 AE Bad Nieuweschans, Hoofdstraat 41

22 I-store.phone phone e.g. Tel:0597-621678

23 I-store.email email e.g. Email:stk@jumbo.com

24 I-store.website website e.g. WWW.KWANTUM.NL

25 I-store.tax_id tax identification number e.g. B0840.591.904

26 I-store.unused3

27 I-store.unused2

28 I-store.unused1

29 I-store.etc
belongs to store but combination of several items e.g. Rotterdam 010
414 46 98 (which is part of address and tel. nr)

30 I-item.header product table: header e.g. EUR, TOT, Price, Description

31 I-item.quantity
product table: quantity, how many items of this product e.g. 2 OR
wieght e.g. 0.213kg

32 I-item.description product table: description e.g. tomatos

33 I-item.unit_price product table: unit price e.g. 1.00, 1.02 EUR/kg

34 I-item.price
product table: total price of this item row e.g. 2.00 (which is 2x 1.00 in
this example)

35 I-item.id
product table: number, code or id of item e.g. 2751338001839, Article
20470047

36 I-item.discount_description product table: kind of discount e.g. set 2 for 9.99, DISCOUNT

37 I-item.discount_price product table: discount price e.g. -1,31, 1.31

38 I-item.etc
product table: sometimes contains non-product items e.g. BONUS CARD,
Parking ticket etc.

39 I-item.unused11

40 I-item.unused10 reserved for e.g. multi-line support

33

41 I-item.unused9

42 I-item.unused8

43 I-item.unused7

44 I-item.unused6

45 I-item.unused5

46 I-item.unused4

47 I-item.unused3

48 I-item.unused2

49 I-item.unused1

50 I-sub_total.text subtotal string e.g. SUBTOTAL

51 I-sub_total.price subtotal price e.g. 95

52 I-sub_total.discount_text receipt discount string e.g. DISCOUNT, KORTING

53 I-sub_total.discount_price receipt discount price e.g. -3,99

54
I-
sub_total.discount_item_text

discount item table (overview of discounts, similar to product items but
then for discounts): text e.g. discount

55
I-
sub_total.discount_item_price dicount item table: price e.g. -45,6 EUR

56 I-sub_total.tax_text tax text (not from the tax table! see line 10-14) e.g. TAX

57 I-sub_total.tax_price tax price e.g. 9 EUR

58 I-sub_total.tax_excl_text total price excluding tax (string) e.g. Ex TAX

59 I-sub_total.tax_excl_price total price excluding tax (price) e.g. 90

60 I-sub_total.tax_incl_text total price including tax (string) e.g. TOTAL incl TAX

61 I-sub_total.tax_incl_price total price including tax (price) e.g. 99

62 I-sub_total.service_text service text e.g. SERVICE 3%

63 I-sub_total.service_price service price e.g. 3 EUR

64 I-sub_total.item_rows_text total number of item rows (string) e.g. ? (remove?)

65 I-sub_total.item_rows_value total number of item rows (value) e.g. 10 (remove?)

34

66 I-sub_total.quantity_text total number of items (value) e.g. ITEM COUNT

67 I-sub_total.quantity_value total number of items (value) e.g. 20

68 I-sub_total.etc_text related to subtotal (string) e.g. ROUNDING

69 I-sub_total.etc_price related to subtotal (price) e.g. 0,00

70 I-total.text total string e.g. TOTAL, TOTAAL

71 I-total.price total price (typically incl tax) e.g. 99,7

72 I-total.rounded_text
rounded total (in case cash cannot be paid in certain amounts) e.g.
ROUNDED TOTAL

73 I-total.rounded_price rounded total price e.g. 100

74 I-total.unused4

75 I-total.unused3

76 I-total.unused2

77 I-total.unused1

78 I-total.etc_text related to total but no other correct label (remove?)

79 I-total.etc_price related to total but no other correct label (remove?)

80 I-payment.cash_text string which indicates payment in cash e.g. CASH

81 I-payment.cash_price value of cash payment e.g. 100

82 I-payment.change_text change string e.g. CHANGE

83 I-payment.change_price amount of change e.g. 1.00

84 I-payment.other_text other payment type e.g. CARD, MEASTRO

85 I-payment.other_price other payment price e.g. 99

86 I-payment.details_total_text
payment details (esp credit card details on the receipt) can also contain
the total price e.g. total

87 I-payment.details_total_price
payment details (esp credit card details on the receipt) can also contain
the total price e.g. 100,00

88 I-payment.etc_text related to payment but no other correct label (remove?)

89 I-payment.etc_price related to payment but no other correct label (remove?)

35

Model training
The training of the receipt understanding model holds 4 steps:

• Collect receipts: Images need to be correctly oriented and cropped. Collect receipts in 3 sets:
o train: for training the LiLT model,
o test: for testing the LiLT model while it is being trained,
o validation: for validation after the LiLT has been trained. The validation set does not

need to be annotated (except if needed for automatic regression testing).
• Apply OCR to get boxes with text: Tools: e.g. PaddleOCR.
• Annotate and compose the dataset. Every OCR detected text box must get a label (see table

of labels in previous section, and please mention the O label, first row). Tools: e.g. Excel.
• Train and retrain.

More detailed description can be found in the Git repository:
ocr_mircoservice/src/ocr_microservice/model_training/lilt/README.md.

Corrections
[TODO next DL]

Final post-processing
Given the output of receipt understanding and its corrections, a json output is being generated
which contains all found information as well as metadata (i.e. where the information came from).

The json output has the following fields (for explanation please view the aforementioned label list):

• date
• time
• tax_table which has rows with following fields:

o description
o price:
o price_excl
o price_incl

• store which has next fields
o name
o address
o phone
o email
o website
o tax_id
o etc

• item_table which has rows with following fields:
o quantity
o description
o unit_price
o price
o id
o discount_description
o discount_price
o etc

36

• sub_total
o price
o discount_price
o discount_item_text
o discount_item_price
o tax_price
o tax_excl_price
o tax_incl_price
o service_price
o item_rows
o quantity
o etc_price

• total
o price
o rounded_price
o etc_price

• payment
o cash_price
o change_price
o other_price
o details_total_price
o etc_price

Simplified example of a json output:

{

 “receipt”: {

 “date”: {

 “text”: “23-04-2024”,

 “corrected”: “2024-04-23”,

 “bbox”: [[422, 2253, 574, 2280],[422, 2253, 574, 2280]],

 “ocr_confidence”: 0.9,

 “du_confidence”: 1.0

 },

 ...

 }

}

Explanation of fields:

• text: text as recognized by the OCR engine
• corrected: post-processed text e.g. normalized date
• bbox: bounding box as detected by the OCR engine
• ocr_confidence: OCR engine confidence score

37

• du_confidence: document understanding confidence score

Implementation
The OCR pipeline is a python runtime. The code is available in a Git repository. The code also
includes an example Docker file for integration into a platform as is discussed in the next section.

Integration
Depending on the platform, the python runtime can be deployed as a (containerized) microservice in
various ways. In the following sections, the data collection platform builders discuss their specific
integration. In sequential order these are the platform of hbits, CBS, Insee and SSB.

hbits MOTUS platform
MOTUS is developed by hbits, as a spin-off of the Vrije Universiteit Brussel. How the integration of
the OCR microservice is viewed on the user side can be seen in the demonstration videos (see xxx)
provide a view on how the MOTUS application presents, user side, the output of the OCR
microservice. Further information becomes available via the user tests in WP2.

Below the integration of the OCR microservice in MOTUS is discussed, as well as how MOTUS
communicates via its API.

Integration in MOTUS
The integration in MOTUS discusses the views as explained in Chapter 3 of the Microservice software
architecture.

Context view

38

Functional view

Component Functionalities

Mobile app receipt
scanning functionality

• Camera view (take photo)
• Gallery view (select image from gallery)
• Pdf view (select pdf from local phone storage)
• Photo view + contour editing
• Pre-process image: decrease resolution
• Send photo + coordinate data to backend

Web app receipt scanning
functionality

• Scanning functionality is not (yet) foreseen. The output of the
OCR microservice is nevertheless available via the web app.

Receipt Scanning
Microservice

• From receipt photo + coordinate data to receipt information
(store, total, product/service rows, etc.)

Component Functionalities

Mobile app receipt
scanning functionality

• Camera view (take photo)
• Gallery view (select image from gallery)
• Pdf view (select pdf from local phone storage)
• Photo view + contour editing
• Pre-process image: decrease resolution

39

Send photo + coordinate data to backend

Web app receipt scanning
functionality

Scanning functionality is not (yet) foreseen. The output of the OCR
microservice is nevertheless available via the web app.

Receipt Scanning
Microservice

From receipt photo + coordinate data to receipt information (store,
total, product/service rows, etc.)

Backoffice functionality Researcher can review respondent receipt

Respondent functionality Respondent receive tentative data via the mobile and/or web app,
can edit the ticket to commit the ticket

The diagram below shows the functional view of the receipt scanning microservice itself:

The components have the following functionalities:

• Sftp server: makes receipt images available to the microservice

40

• Rabbitmq message bus: used for asynchronous communication between backend and
microservice. Messages are requests for processing and notifications when processing is
finished

• Mariadb microservice database: stores scanners (which can be coupled to respondents in
the backend)

• Redis result database: stores processing results
• Receiptscanner-processor: downloads a receipt from the sftp server, processing it (pre-OCR,

OCR and post-OCR), publishes the results in the redis database and notifies the backend via
rabbitmq

• Receiptscanner-api: used by the backend to manage scanners (which can be coupled to
respondents in the backend) and to retrieve results

Information view

The diagram below shows the informational view of the receipt scanner microservice itself:

41

Flow:

• Backend requests the receiptscanner-api to create a scanner entry for a respondent (if
Receipt Scanning Microservice is allowed and activated for that respondent via the
backoffice configuration)

• When the backend receives a receipt image
o it saves the image on the sftp server. Files are organized by scanner-UUID directories.

Filenames are date and UUID based.
o it sends an asynchronous message (receipt.process) on the rabbitmq bus to process the

receipt image.
• Receiptscanner-processor

o reads the processing request message from rabbitmq
o fetches the receipt image via sftp
o processes the image
o puts the results in the redis db
o notifies the backend that processing is done via a rabbitmq asynchronous message

(receipt.processed)
• Backend

o reads the notification message
o requests the results from the receiptscanner-api
o returns the results to the respondent when requested by the mobile/web app.

Concurrency view
In mobile/web app is respondent identification via authentication used to isolate backend requests
from each other.

42

The platform backend and microservices are able to handle multiple requests concurrently. The
generic microservice architecture (see chapter 3) supports concurrent and parallel handling of
requests by queuing requests and scaling data processors.

Deployment view

The components are

• Mobile app: via app stores
• Web app: loaded via browser from the web server which is part of the platform backend
• Microservices: as pointed out in the generic microservice architecture, a microservice is a

collection of Docker containers. The receiptscanner containers are deployed on the MOTUS
Kubernetes cluster platform (except for COICOP Microservice -- see later).

API
The asynchronous interface consists of 2 rabbitmq messages:

• The microservice listens for a ProcessReceipt message with format:
o scanner_uuid: the scanner (~ mapping of respondent)
o receipt_uuid: identification of the receipt
o receipt_filename: name of the receipt on the ftp server
o timestamp of format ‘Y-m-d\TH:i:sP'
o user_selection: optional array of x,y coordinates indicating the corner points which were

assigned by the respondent

43

• When processing is finished the microservice pushes a ReceiptProcessed message on the
bus:
o scanner_uuid: the scanner
o receipt_uuid: identification of the receipt

The MOTUS backend can then fetch the results via the synchronous REST interface, which has the
following functions:

• GET scanners: returns the list of scanners
• POST scanners: create a new scanner
• DELETE scanners: delete a scanner-uuid
• GET scanners/{scanner_uuid}: show a specific scanner-uuid
• GET scanners/{scanner_uuid}/receipts: get receipts of a specific scanner-uuid
• GET scanners/{scanner_uuid}/receipts/{receipt_uuid}: get specific receipt of specific scanner
• DELETE scanners/{scanner_uuid}/receipts/{receipt_uuid}: delete specific receipt

CBS platform
[TODO next DL: integration & API]

Insee
[TODO next DL]

SSB
[TODO next DL]

Test
[TODO next DL]

44

6. COICOP classification microservice (Receipt Scanning Microservice – part
2)

The Receipt Scanning Microservice is supported by two microservices: the OCR Microservice (part 1)
and the COICOP Microservice (part 2).

This section describes the COICOP Microservice, which has the task of assigning a 5-digit COICOP
code to each product row that has been extracted from a receipt using the OCR Microservice. Hence,
the COICOP Microservice is a classical text to classification task, integrated into the Receipt Scanning
Microservice. The scope of the SSI project is to develop the technical possibility to integrate one or
multiple different COICOP classification techniques into the Receipt Scanning Microservice.

This means that NSI-specific models will have to be developed by each NSI and training is not part of
the SSI. Yet, different modelling techniques and methodological considerations will be outlined to
inform data scientists and methodologists who want to deploy their own NSI specific model into the
OCR Microservice.

Additionally, it is important to note that the use of the COICOP Microservice is methodologically
recommended but technically not strictly necessary. The Receipt Scanning Microservice could also
be used without the COICOP Microservice. This would then result in the need to manually or
automatically (but independently from the Receipt Scanning Microservice in a separate system)
classify each product row to COICOP in a later step. One reason could be that a given NSI might not
have access to the required training data to develop their own COICOP classification model for
receipt data. In essence, the Receipt Scanning Microservice would then turn into a mere data
collection tool, still reducing the participation burden, but not using its full potential.

The following section will describe the current state of developments and conceptual ideas. Data
from CBS and Destatis have been used to inform the use case. All considerations have been
described in the most general way possible. Yet, one limitation is that receipt structures and data
availabilities (e.g., CPI scanner data) vary fundamentally between various member countries.

Design
For the COICOP classification process, three distinct techniques are available: (1) automatic string
matching, (2) machine learning, and (3) manual string searching. These techniques can utilize
different training/source materials, which include: (A) gathered receipt data, (B) price statistics
scanner data, and (C) manually curated tag lists. For some stores, there might be overlap between
sources A and B where scanner data contain text information that is equivalent to the receipt texts.

Automatic string matching, machine learning, and manual string searching can all be used to link a
receipt text row to a COICOP code. Automatic string matching (1) involves directly comparing receipt
text to given source materials, offering simplicity and efficiency. This technique is straightforward to
implement; however, it struggles with variations in spelling, abbreviations, and typos. Machine
learning (2), on the other hand, uses models trained on the source materials, i.e., the receipt texts
and the corresponding COICOP labels. As a result, the model learns to recognizes more generic
patterns and structures with which it can classify previously unseen receipt texts to a certain degree.
The downside is the significant initial effort required for setting up a training dataset and a training
pipeline as well as the need for substantial computational resources, especially if there is a need to

45

train multiple models (see below). Finally, manual string searching (3) involves the respondent in the
coding process. In this solution, each product row of the receipt is entered into a search algorithm
and the respondent selects the best-fitting COICOP category. This method is the most burdensome
for the participant but can be highly precise since it leverages the respondent’s expertise on their
own private purchases. Also, the respondent could change the search string if the receipt text itself
is not diagnostic enough. All three techniques heavily rely on the comprehensiveness of
training/source materials and require continuous updates and refinements as new data becomes
available, thereby adapting to changes in product listings.

The training/source materials (training data) that can be used with all three techniques can be
gathered from three different sources. First, gathered receipt data consists of transaction records
collected directly from consumers or retailers. A crucial step in this process is the hand coding of all
extracted products to COICOP categories prior to using the data with any of the three techniques.
This data source can be representative of the most consumed goods, but it is nearly impossible to
capture all products this way. Second, price statistics scanner data, on the other hand, is collected
from retail scanners at points of sale, typically used for compiling national price indices. This data is
comprehensive and systematically collected but often limited to specific product categories like food
and near-food items, which can constrain its applicability across various retail sectors. In most NSIs,
automated COICOP classification systems are already in place, resulting in pre-coded training data.
Last, manually curated tag lists are databases of product names and descriptions created and
maintained by experts within the NSI. These lists require continuous updates and may not cover the
full range of products found in dynamic and varied receipt data. Each of these data sources offers
unique advantages and challenges, influencing their effectiveness in COICOP classification processes.

Regardless of the actual technique used, the training data must be similar or equal to the receipt
texts extracted from the ticket. It is also essential to ensure that the training data covers product
information on the store types that are allowed to be used with the microservice. For instance, if
training data is only available for food and near-food products, receipts from hardware and home
improvement stores should not be forwarded to the COICOP step 2 microservice. Ultimately, one
maximization strategy could be to combine as many data sources as are available in a given NSI. Yet,
whether combining data sources is effective should be carefully evaluated.

If a given NSI has the training data and technical resources, WP3 recommends using all three
techniques in sequence. The process can be divided into five sub-steps within the COICOP
classification microservice, where each subsequent sub-step is initiated only if the current one does
not yield a satisfactory result for a given product row. Note that the criteria for such thresholds are
country-specific.

• Sub-step 1: If specific data for a given store is available, attempt automatic string matching
on the training data of this selected store.

• Sub-step 2: Attempt automatic string matching on the full data.
• Sub-step 3: If specific data for a given store is available, apply the store-specific machine

learning model to find the highest scoring COICOP match.
• Sub-step 4: Apply the machine learning model trained on the full data to find the highest

scoring COICOP match.
• Sub-step 5: Allow the user to manually search within the full data, with the option to alter

the search string.

46

If none of these sub-steps yields a satisfactory result, the product row must be manually coded
during post-processing within the NSI.

Current state of work and outlook
WP3 is currently developing and testing the different sub-steps using Dutch and German data. CBS is
mainly involved in setting up the machine learning based sub-steps, while Destatis is developing
different automatic string matching approaches. To quantify the success of each sub-step, several
analyses have been performed.

The annotation of scanned receipts is the first way of quantifying the success of some sub-steps.
Destatis is currently annotating multiple thousand receipts to create a sufficiently large test corpus.
The goal of this annotation task is first, and foremost, carried out to build a test corpus that can be
used as a means to validate and test the developed classification pipeline. The classification pipeline
is a combination of two modules, the OCR microservice and the COICOP classification microservice.
Errors from the OCR microservice may influence the success of the COICOP classification
microservice. Collected receipts help to estimate to what extent this may be the case. However, the
annotated receipts can be in addition be used as training material for the OCR microservice, in
particular for the training of the OCR and document understanding models. Moreover, scanned
receipts can be used as (additional) training data for the COICOP classification.

Analyzing product inventory and dynamics of the available store data, is the second way of
quantifying the success of some sub-steps. Both CBS and Destatis have analyzed and compared the
product inventory of different supermarkets. On the one hand, the analysis was aimed at identifying
the overlap (and difference) between the product inventories of the supermarkets. This overlap was
measures using product identifiers used by the supermarkets, like for example GTINs, and using the
receipt texts directly. The main purpose of analyzing product inventory was estimating the possibility
of using data from one supermarket for COICOP classifications of products from another
supermarket. On the other hand, the analysis was aimed at the product dynamics of a store. Product
dynamics describe the development of a store’s product inventory over time. Analyzing the product
dynamics therefore gives an impression of how well a classification method will keep performing
over time. Additionally, it will give an indication of how fast the corpus of receipt texts will need to
be updated.

Analyzing classifier performance is the third way of quantifying the success of some sub-steps. For
the string matching approach this means evaluating its performance using a corpus of scanned
receipts. Very preliminary results for a single supermarket in Germany indicates a success rate of
around 70%. Such analyses will be intensified in the upcoming months. For the machine learning
approach this means evaluating the machine learning pipeline for it generalizing capabilities. This
means the evaluation and comparison of different feature extraction methods and machine learning
models on chosen performance metrics. In detail, this means measuring performance on a hold-out
dataset of data to estimate generalization to unseen data. In addition, it means measuring
performance from period to period to estimate real-world performance and model performance
decay. Moreover, cross-store performance is another aspect of performance that estimates
performance on store data that is not part of the training data. For the manual search approach the
quantification is difficult given that the respondent can choose between different offered COICOP
categories. Preliminary data from the national HBS 2023 in Germany suggests that respondents

47

using a well-maintained search algorithm are able to classify 87% to the targeted COICOP category.
The remaining 13% are placed into a miscellaneous category and are coded during post-processing
by Destatis. Last, the chain of the OCR microservice and the classification microservice should be
tested to see how errors propagated from the OCR microservice affect the classification
performance of the classification microservice. CBS has already been working on several of these
analyses.

Implementation
Hbits has developed the technical solution to host both Python as well as R classification techniques
for the classification task within the microservice.

Integration
[TODO next DL]

Test
[TODO next DL]

48

7. Functional and non-functional requirements of the GeoService
Microservice

Just like in chapter 4, chapter 7 has the focus on better involving and engaging households and
citizens by defining and operationalizing a new/modified end-to-end data collection process. This
time the focus is on making use of geolocation points to support the Time Use Survey.

To collect these geolocation points the use of internal sensors of smart devices is needed. NSIs and
linked organizations have worked on platforms to allow households to register their time spending
in an online diary. The past few years a multitude of applications were developed to collect time use
data, and those related to the ESS have developed these applications in light of the HETUS
guidelines. In the SSI project the CBS, hbits, Insee and SSB represent this focus on official (time use)
statistics.

The general idea is to provide to the users/respondents a framework of places (stops) and travels
(tracks) and the mode of transportation in order to support them in keeping their timeline up-to-
date. Within WP3 the GeoService Microservice is developed as middle part software that processes
the sensory data in order to provide tentative input to the timeline of the diary.

The main models are based on Stop-Track prediction, on Transport Mode prediction, and on the
connection of tracks to transport motivations following the HETUS guidelines to gain TUS relevant
information.

Business requirements
TUS gathers information on the daily activities’ household members perform. Typical to a TUS is that
these activities are being collected with their temporal, spatial and social context. TUS is harmonized
via the HETUS-guidelines with the first edition being published in 2000, and recently received its
third update with the 2018-guidelines. Member States have the option to collect TUS data.
Currently the third data collection is running. Methodological variations between countries apply. In
2030 TUS will enter the IESS agreement on an optional level.

Just like HBS is TUS a household study. In TUS all eligible household members are invited to keep a 2-
day diary, on the same moment to be able to study the intra-household allocation of time. Following
the HETUS-guidelines, one diary day contains 24 hours running from 4 am until 4 am the next day.
Each activity is reported verbatim, both for the main and (possible) parallel activity. The same counts
for information on the location or the mode of transport. The use of an electronic device is
answered with a tick-box (yes when checked). The social environment is also captured with through
tick-boxes collecting information on whether the activity was done alone or together with someone
known. A distinction is made between social partners within (partner, parent, child up to 17 years
old, other household member) and outside the household. A new episode starts when either an
activity and/or one of the contexts change. Every diary day is ended with a small questionnaire
asking about the level of satisfaction during the reported day.

Under the wings of the process of modernization, and also under the auspices of EUROSTAT, TUS
underwent a mode shift to an online data collection strategy making use of web and mobile
supported applications to collect time use data. Initiatives were taken by various Member States and

49

are inventoried on the EUROSTATS’ wiki page:
https://webgate.ec.europa.eu/fpfis/wikis/display/ISTLCS/TUS+TOOLS+MENU.

Taking all developments into account, one of the main thresholds for TUS comes from the detailed
reporting of activities in a the time-space framework. An important indicator to picture this
threshold is the time between the actual action and the reporting of the activity. Studies show that
the quality of reporting remains good upon a reporting delay of at maximum 24 hours (see
Yesterday reporting). It is however expected that the burden to reconstruct the day turns higher the
longer the actual activity has been performed. Depending the detail of the activity (i.e. more
activities on the detailed level) an extra impact expected.

The goal of WP3 is to reduce these gaps by developing and implementing microservices that acquire,
process and (can) combine data collected from smart devices and other applications, in the case of
TUS through the development of a geolocation microservice that through sensor activation captures
geolocation points to derive information on the trip, mode of transport and the stops. Related to the
stops, extra context can be added through the connection of third-party databases, and a
classification algorithm would be able to link a HETUS code activity (or list of activities) to the stop.

A successful realization of the development and implementation will not entirely reduce the active
participation of household members in the registration of their daily activities and context, but will
provide support and guidance in their task to arrive to qualitative and comparable data for the ESS.
It means that besides the development of the microservice also the implementation of the service to
the platforms is important, as well as the UI/UX that presents the output of the microservice to the
user, and the easiness in which the user can verify, adapt, or even delete the output.

This project will focus on the smartphone as (1) the device to install the mobile application on, and
used by the user as interface to partake to the study, as well as (2) being the motion tracker to
collect the movements of the respondent/user, as a proxy of the person itself.

The following objectives are essential in reaching this goal:

• Objective 1: To define an architecture of a microservice (that is also to be reused in the
other development of WP3)

• Objective 2: To develop a geolocation microservice to predict trips and stops
• Objective 3: To implement classification solutions (machine learning, string matching, or

search algorithm based) to classify stop to the HETUS-classification
• Objective 4: To develop an API to connect to/from other environments
• Objective 5: To deploy the microservice as a containerized application in the cloud
• Objective 6: To implement/integrate specific microservice parts in the app (e.g. algorithm).

This integration should be feasible, should have an added value for the platform and/or
should improve the user experience.

The stakeholders are the NSIs and their product owners, and the households (citizens).

TUS study
In this section TUS studies are being described as they provide the context in which the geolocation
microservice operates.

https://webgate.ec.europa.eu/fpfis/wikis/display/ISTLCS/TUS+TOOLS+MENU

50

In TUS studies questionnaires and a time diary are completed by the households. At the moment
household members arrive to the diary phase they, at the least, already have completed a
questionnaire. If this member is the reference person, or the head of the household also a
household questionnaire and a matrix to compose the household is part of the pre-diary tasks. All
tasks are defined in a respondent journey or study flow that shows a sequence of tasks. Since the
TUS diary setup requires an equal distribution of participation over the entire fieldwork period, and
household members are requested to keep their diaries for the same period this study flow can be
quite complex.

Central to a TUS study is the registration of activities in a diary. All eligible household members keep
a diary for the same 2 days, one weekday and one weekend day. Left aside paper-and-pencil diaries,
a household member partakes to a TUS study via an application, be it via a mobile application, be it
via a web application running in a browser.

TUS diary
The diary collects at the minimum episode information, where an episode is defined by a beginning
and ending time and a change of:

• A main activity as defined in the HETUS Activity Classification List (ACL)
• (If any) a secondary activity as defined in the HETUS Activity Classification List (ACL)
• The place of the activity or a mode of transport when moving
• The use of an electronic device, and
• The social context

The registration of the products and services is linked to the HETUS Activity Classification List (ACL),
and is demanded to be delivered on 3 digits. NSIs often use more digits to aggregate to a higher
level. The HETUS guidelines further describes the other contexts: place 2 digits, electronic device 1
digit, and social context 1 digit.

In addition, extra context can be added to the online diary, an example is motivation.

Every diary day collects extra information through a small questionnaire, it relates to:

• When the diary was completed
• What the most pleasant activity was
• What the most unpleasant activity was
• What the most stressful activity was
• The overall appreciation of the day
• Whether the day was ordinary or unusual
• Whether a trip within the country or abroad was made, and how far the trip was

Functional requirements
The diagram gives an overview of the main functional requirements:

• functionality related to user handling is indicated by the green boxes. The respondent must
be able to switch on the sensors to track the movement of the smartphone. After processing
by the microservices, the respondent can view/edit/manage her or his activities.

51

• functionality related to the app is indicated by the yellow boxes. The app is responsible for
GPS tracking, display of information and communication with the platform core.

• functionality related to the microservices is indicated by the blue boxes. The function is to
derive essential information on trips, mode of transport, stops, context of stops and activity
classification. Only the blue boxes are in scope of WP3.

User handling

Respondent handling (green boxes)

REQ R1 The respondent allows for GPS tracking by the mobile app

 Technically, the mobile phone OS needs permission to enable GPS tracking for the
mobile app.

 Formally, a user consent is required.

52

REQ R2 The respondent manages her/his activity data

 A possibility (~MOTUS) is to present the activity list to the respondent as tentative
data. The respondent is then able to edit this list before it becomes final.

App

App (yellow boxes)

REQ A1 Mobile app collects GPS geotracking points

 Does not require an internet connection.

 Battery management is important: a balance between battery lifetime and frequency
of measurements.

REQ A2 Mobile app submits geotracking points via internet to the platform core

 Battery management: a balance between battery lifetime and frequency of sending
results to the platform core.

REQ A3 App gets notifications and retrieves/displays activity data.

 App and platform core communicate with each other to exchange activity data. The
data has been processed by the platform and its microservices.

Microservice

53

Microservice (blue boxes)

REQ G1 Geotracker microservice collects geotracking points

 Geotracker (regularly) receives (new) tracking points from the platform.

 An internal database stores all tracking points

REQ G2 Geotracker microservice derives motion/stop

 An algorithm processes the tracking points in order to find a timeline of motions
(transport) and stops.

 The algorithm could use external sources such as openstreetmap in order to improve
the results.

 Support for user-specific locations (home, work etc.) is required as well.

REQ G3 Geotracker microservice adds context to motion/stops

 External sources can be consulted to add context. E.g. for stops, a list of nearby
places/shops could be added.

REQ A1 Activity microservice assigns scores to POIs

 A score (POI-score) is assigned to each POI inside an adaptive radius around the stop
centre location, based on the weighted median of the distances calculated between
each POI and all GPS points of the stop, weighting by the accuracy of GPS points.

 A short list of POIs is identified using the elbow criterion on the POI scores.
Categories of place are assigned to each POI

REQ A2 Activity microservice associates activities to categories of places

 Through a Bayesian decomposition, for each POI of the short list the conditional
probability of HETUS activities are calculated starting from the distribution observed in
TUS data. The variables considered (duration and time of the day, HETUS place
category, occupational status, age classes) in the decomposition are linked with the
corresponding variables observed in the stop and for the specific respondent.

 A rank of the HETUS activities is assigned to the stop, based on a final score calculated
aggregating the probabilities of the activity weighted by the POI-score associated with
the activity for each POI in the shortlist.

54

Non-functional requirements
Non-functional requirements

REQ N1 A microservice should be independent from any specific HBS platform.

 A microservice has no dependency to other environments, and has an independent
operation.

REQ N2 It must be possible to connect and communicate with a microservice from any HBS
platform.

 A microservice receives input, and provides output making use of APIs.

REQ N3 A microservice must have a design in which algorithms (computer vision, AI, ML) can
be easily improved/updated.

REQ N4 The service must be deployable at any institute/NSI (shareability).

 Microservices are provided as software packages in containers, which can be easily
shared and deployed. Docker is a software that can host containers. Kubernetes is
often used as software to orchestrate various containers.

REQ N5 The service must be scalable with the number of receipts it needs to handle.

 Kubernetes is a software used to orchestrate containers. By this Kubernetes allows to
horizontally scale the containerised microservice depending to the number of
receipts received.

REQ N6 Security by design

 Using the container technology barriers are created between various components
used in the study setup, which deliver better privacy, security and maintainability,
scalability and high availability.

Communication between the platforms runs through APIs and https communication.

REQ N7 Privacy by design

 Using the container technology barriers are created between various components
used in the study setup, which deliver better privacy, security and maintainability,
scalability and high availability.

Communication between the platforms runs through APIs and via UUIDs to avoid
transferring personal information.

55

REQ N8 Support for localization

 Algorithms being applied by the microservice should be configurable or trainable (in
case of ML) to support localization, which includes different languages, different
currencies, date formats, dots vs commas etc. This is required to make the
microservice shareable.

REQ N9 Offline vs online support (app)

 Parts of the microservice are/can be selected to be developed in a Library to run
offline in an application. The library must take into account platform-dependency
(Angular, ionic, Flutter …) to function.

56

8. Geolocation microservice determining stop-track clusters (GeoService
Microservice – part 1)

The GeoService Microservice is supported by two microservices: the Geolocation Microservice (part
1) and the HETUS classification Microservice (part 2).

The design of the Geolocation Microservice holds two important elements: the definition of the
stop-track clusters and the prediction of the travel mode upon the track clusters. These elements
will be discussed in 2 chapters but finally result in one microservice, the Geolocation Microservice.

This chapter discusses the algorithm to derive the stop and track clusters.

Design
After the Geolocation Microservice gets the geolocation points the stop-track part starts with the
stop detection algorithm which takes into account 4 steps:

• Filter GPS points based on accuracy,
• Determine which GPS points are significant stop points
• Cluster the stop points, and
• Post-processing

o reduce number of clusters (merging)
o guarantee stops and tracks alternately

The required input parameters are timestamp, longitude, latitude and accuracy. The list of
geolocation points needs to be time-ordered.

In an extra step, also, extra information can be attached to the stop clusters by connecting to a POI
or places API:

• Point-of-interest: find places inside or nearby stop clusters (e.g. OpenStreetMap, Google
Places)

The output of the algorithm is a list of alternating stop and track clusters. Stop clusters will have
extra information regarding nearby places (e.g. shops).

Pre-processing
Filter GPS points
Filter GPS point which has good enough accuracy. Currently, the algorithm requires an accuracy of
100m, but this value is configurable.

57

Determine significant stops and clusters
Private locations
When a GPS point falls in a private location (home, work etc.) then it is always regarded as a stop. A
private location is defined as a circle (lon, lat, radius).

ATS to determine significant stops
The algorithm for stop detection is implemented from the paper “Individual and collective stop-
based adaptive trajectory segmentation” from Agnese Bonavita, Riccardo Guidotti and Mirco Nanni,
as published in Geoinformation (2022) 26:451-477. From this paper, only the individual stop-based
adaptive trajectory segmentation (ATS) has been implemented.

Essentially, the algorithm decides that a GPS point is a stop point when more than t seconds is spent
between the current GPS point and the next GPS point that is more than x meters away.

The algorithm can be tuned by changing the temporal and/or spatial parameters. By default, the
implementation used 50m as spatial parameter (as advised in the paper) and 180s for the temporal
parameter.

Note that deriving the temporal parameter from the GPS data by means of a Thompson tau statistic
is also supported by the algorithm. The description can be found in the paper.

58

Cluster stop points
Once the stop points have been determined, the next step is to cluster the stop point in order to get
stop clusters. In order to achieve this, the project decided to use the well-known OPTICS algorithm
(derived from DBSCAN), which applies a density-based technique on spatial data
(https://en.wikipedia.org/wiki/OPTICS_algorithm).

Because OPTICS does not take into account the time aspect of the data, the results are further
processed to split the spatial clusters based on time as well.

Post-processing
Finally, in order to deliver a clean output, merging of stop clusters is done after which track clusters
are added between the stops.

Point-Of-Interest (POI)
[TODO next DL Google Places]

[TODO next DL OSM]

Implementation
An R implementation with bindings to C++ is made and available in git. Currently, the private
locations and nearby places are not implemented yet.

Integration
[TODO next DL]

Test
[TODO next DL]

59

9. Geolocation microservice detecting the mode of transport (GeoService
Microservice – part 1)

The GeoService Microservice is supported by two microservices: the Geolocation Microservice (part
1) and the HETUS classification Microservice (part 2).

The design of the Geolocation Microservice holds two important elements: the definition of the
stop-track clusters and the prediction of the travel mode upon the track clusters. These elements
will be discussed in 2 chapters but finally result in one microservice, the Geolocation Microservice.

This chapter discusses the detection of the mode of transport upon the track clusters.

Design
After classifying the geolocations into stop and track clusters, the track clusters are fed into the
transport mode prediction algorithm. The main principle behind the described method is the match
of these track clusters to the infrastructure of a range of transport modes. The more points within a
cluster match with a transport mode, the higher the proportion that is assigned to this transport mode.

Input data
The algorithm is written in R and required the following input data.

Classified clusters
The algorithm requires the clustered geolocations of the users in the following format:

user_id cluster_id timestamp coordinate accuracy classification

integer integer (POSIXct) (lat, lon) integer track | stop

An example data set is:

user_id cluster_id timestamp coordinate accuracy classification
1 1 28-03-2024 – 09:43:01 (lat, lon) 1 Stop
1 1 28-03-2024 – 09:43:03 (lat, lon) 2 Stop
1 1 28-03-2024 – 09:43:05 (lat, lon) 3 Stop
1 1 28-03-2024 – 09:48:01 (lat, lon) 4 Stop
1 2 28-03-2024 – 09:48:05 (lat, lon) 5 Track
1 2 28-03-2024 – 09:52:01 (lat, lon) 6 Track
1 2 28-03-2024 – 09:55:01 (lat, lon) 7 Track
1 2 28-03-2024 – 09:57:01 (lat, lon) 8 Track
1 2 28-03-2024 – 09:58:01 (lat, lon) 9 Track
2 1 29-03-2024 – 09:42:04 (lat, lon) 10 Track
2 1 29-03-2024 – 10:42:05 (lat, lon) 11 Track
2 1 29-03-2024 – 10:42:07 (lat, lon) 12 Track
2 1 29-03-2024 – 10:45:04 (lat, lon) 13 Track
2 1 29-03-2024 – 10:48:08 (lat, lon) 14 Track
2 2 29-03-2024 – 10:49:01 (lat, lon) 15 Stop
2 2 29-03-2024 – 10:55:04 (lat, lon) 16 Stop
2 2 29-03-2024 – 10:59:01 (lat, lon) 17 Stop

60

Travel mode data points
The transport modes used are: motorized vehicles on roads, train, tram, bus, subway, bicycle, by foot.
For each mode and for a specified region (e.g. the Netherlands), a dataset is extracted from OSM. This
is a static copy of OSM that needs to be updated at a certain frequency in time. The number of subway
and tram location points is relatively small, whereas roads, cycling paths and sidewalks are very large.

The algorithm
For each track cluster, the algorithm performs the following steps:

1. A geographical box (parameterized and could be changed) is made around each users’ geolo-
cation

2. A sub selection of all travel mode data points that fall within this geographical box is made in
order to reduce the dataset and thus computation times.

3. Per transport mode:
a. The minimum distance between the geolocation of the user and the travel mode data

points in the sub selection is determined.
b. It is verified whether the minimum distance is smaller than the accuracy of the user

geolocation
4. Steps 1, 2 and 3 are performed iteratively for each individual data point of each user.
5. The number of location data points that are identified in Step 3b are counted separately for

each transport mode.
6. The number of points per transport mode is divided by the total number of points in the clus-

ter to get proportions for each transport mode.
7. The transport mode with the highest proportion is chosen.

This results in one or multiple transport modes for each track cluster. A few remarks are in place:
• The method will return proportions for all travel modes in the cluster. The travel mode with the

highest proportion is selected as transport mode for the cluster, independent on the height of the
proportion. Even if only very few user geolocations could be linked to one of the transport mode,
this mode could become the selected mode.

• Currently, there is no implemented strategy on how to handle equal proportions of clusters. Both
transport modes are returned.

• The method assumes that each cluster is unimodal. No strategy is implemented to determine
whether multiple transport modes were used within one track cluster. Therefore, the proposed
method quickly loses accuracy when a cluster consists of different travel modes.

• The performance will highly depend on the quality, in particular the density, of the dataset per
transport mode.

• The travel mode prediction was developed on data gathered a specific sensor configuration, as-
suming an ongoing data stream of high-frequent geolocation data, and a specific clustering algo-
rithm, resulting in relatively small track clusters. Applying the algorithm on data gathered with a
different sensor configuration and clustered using a different clustering algorithm is likely to re-
duce validity and performance.

Implementation
[TODO next DL, the algorithm is currently implemented in R]

61

Integration
[TODO next DL]

Test
[TODO next DL]

62

10. HETUS classification Microservice (GeoService Microservice – part 2)

The GeoService Microservice is supported by two microservices: the Geolocation Microservice (part
1) and the HETUS classification Microservice (part 2).

The second part of the GeoService Microservices aims to provide information about the most likely
activity carried out by the user during a stop. For the activity taxonomy, we refer to HETUS,
"Harmonised European Time Use Survey". To predict the activity performed by the user at a stop, we
can leverage the spatiotemporal characteristics of the stop, the types of points of interest near the
stop such as restaurants, shops, cinemas, schools, theaters; the socio-demographic characteristics of
the user like age group or employment status.

These important pieces of information (spatiotemporal, description of nearby points of interest, and
user characteristics) are the input of the algorithm and must be provided in the request to the
service, specifically the spatiotemporal characteristics of the stop and the list of nearby points of
interest, which are produced in the Geolocation Microservice part 1 described in Chapter 8.

Since we cannot directly have a labeled dataset that associates the input variables described (X) with
the activity carried out according to the HETUS classification (Y), the algorithm underlying this
microservice exploits the data collected in the TUS surveys of national statistical institutes.

Design
We describe the Activity Classification of a stop as detected by the ATS_OPTICS algorithm.

Input Structure Description
For a stop, the algorithm expects an input consisting of a data structure with:

- For each GPS points of the stop:
o GPS Longitude
o GPS Latitude
o GPS Accuracy
o GPS Timestamp

- For each Point of Interest (POI) inside the radius of the stop:
o POI Longitude
o POI Latitude
o Tag (textual description provided by MapService)

- Profile of the user
o Age class
o Condition (employed, student, other)

The textual description depends on the map service used. In Google Maps, we use the name and type
of the place. In Open Street Maps, the name of the place and the values of tags such as Amenity, Shop,
Office, Leisure, etc., are used.Depending on the research and privacy rules, it may not be possible to
use the respondent's information (age class, condition). In this case, the prediction will be made with
the other available information. The impact of this lack of information on the quality of the HETUS
activity prevision will be measured in subsequent assessment tests.

The start time, end time, duration, and centroid of a stop are calculated from the set of GPS points of
the stop.

63

.

In the figure above, we show some information about the input to the microservice. The blue points
are the POIs around the stop, the green points are a sample of the GPS points belonging to the stop,
and the pink point is the centroid of the stop. For a POI, we display the tag provided by the OSM map
service.

Shortlist of Points of Interest
In this initial phase, the goal is to have a shortlist of the most probable points of interest where the
user is likely to have carried out their activity. This is a challenging task due to the uncertainty of the
GPS sensor and errors in segmenting the GPS points.

For each point of interest, we calculate a score based on the median distance of the POI from the GPS
points belonging to the stop, weighted by the accuracy, according to the following formula:

𝑆𝑐𝑜𝑟𝑒𝑃𝑂𝐼! = 𝑚𝑒𝑑𝑖𝑎𝑛"
#_%&'(

1
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒3𝐺𝑃𝑆" , 𝑃𝑂𝐼!6𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦"⬚

)

We then select a shortlist of POIs with the highest POI scores. The selection is made by identifying
where the slope of the POI Score curve changes significantly, using the elbow algorithm.

64

Classification of Points of Interest
Each point of interest on the shortlist is classified according to the Italian Time Use Survey classification
of the places (TUS place) where the user's activity takes place. The TUS place classification is a specific
classification of locations used internally at the statistical institute that provides TUS data. In
particular, in the developed prototype, we used data from the Italian TUS survey.

In the following table, we show an extraction from the TUS places table which categorizes a number
of 25 places for activities that are more detailed compared to the HETUS classification of places.

The association is made through the search for keywords and regular expressions.

Statistical model to predict stop activity with respect to a POI
For each POI on the shortlist, the probability of performing an activity according to the HETUS
classification with respect to a POI is calculated. This probability is decomposed using a Bayesian
approach, as outlined in the following formula:

where 𝐴! is the HETUS activity, x is the tuple (user's condition, user's age class, TUS PLACE of the POI)
and t is the duration of the stop, while 𝜇),+! and 𝜎),+! are respectively the mean and standard deviation
associated with an activity for a user's condition, user's age class, and TUS PLACE of the POI.

In accordance with the chosen approach, we estimate the model parameters 𝜇),+! and 𝜎),+! and the
probabilities 𝑃(𝑥 ∨ 𝐴!) and 𝑃(𝐴!) using aggregated counts from the TUS survey data.

TUS place Description HETUS Place
04 Hotel and similar EU17
05 Place of work EU13
06 School, university EU13
07 Library EU19
08 Study center EU19

65

For clarification, we present an example showing the data in the table with aggregated TUS counts.
The table shows that in the TUS survey, the HETUS activity 031 'Washing and dressing' performed by
employed respondents (condition=1), aged 15-24 years (age class=1), carried out at their own
residence (TUS place=1), was recorded 1837 times with an average duration of 16 minutes and a
standard deviation of 12 minutes.

Prediction of the stop activity

Finally a rank (ActivityScore) of the HETUS activities is assigned to the stop, based on a final score
calculated aggregating the probabilities of the activity weighted by the POI-score associated with the
activity for each POI in the shortlist.

this paragraph describe how the algorithm returns to the platform a score related of the most likely
HETUS activities given the spatiotemporal characteristics of the stop, the user's characteristics, and
the type of POIs around the stop.

Implementation
An implementation in Python has been created and will be available on Git [TODO next DL].
Modifications to the model are planned with the addition of input features useful for identifying the
activity, such as the start time of the stop or the day of the week. This implies a modification to the
formula for calculating the model based on the aggregated TUS data.

Integration
[TODO next DL]

Test
[TODO next DL]

condition age class TUS place HETUS COUNT DURM SD
1 1 1 31 1837 00:16 00:12

66

11. MOTUS architecture

The figure shows the platform architecture of MOTUS. The MOTUS data collection platform consists
of a front office as well as a back office. The front office relates to the collection tool or application,
with which the users can interact via a user interface (UI) and which delivers, through its
functionalities, a user experience (UX). The MOTUS application is available as a web version for
browsers (https://app.motusresearch.io) and in iOS and Android mobile versions for smartphones
and tablets. The purpose of the application is to make it easier for the respondent to carry out all
tasks of a (time use or other) survey.

The back office serves to build a study, to facilitate data collection and monitoring, and to process
the data. To this end, the back office, which is accessible via a web environment, contains several
builders. Both the front office and back office connect to the MOTUS core (“the core”) through
Application Programming Interfaces (APIs). The core holds the database with all information
required to build a study and collect data. A separate analysis server holds a replica of the database
from the core and facilitates the processing of information in the back office. The back-up server is a
replica of the core and analysis server. Adapter APIs serve to adapt external information so that it
can be processed in the core, thereby allowing the ingestion of, for example, passive data gathered
via integrated sensors or connected devices, administrative/secondary data available via external
data sources, or other processed data. For reasons of optimization, data security and privacy, these
data are handled and organised in an anonymized way in stand-alone microservices. All input
provided by the user is sent encrypted via an https communication to the server and is immediately
propagated to all devices of the user via the respondent API. As a result, the MOTUS web and mobile
applications can be used interchangeably.

67

Although MOTUS can be deployed in various ways, the advice is to follow a cloud-based deployment
strategy in which all MOTUS components (core, backoffice...) but microservices as well run in their
own container. The benefits of a containerized environment is better scalability, improved
application monitoring and decoupling from the underlying infrastructure. Several container
management and container orchestration applications exist from commercial to open-source
solutions, from simple to complex orchestration platforms. Examples are: docker compose,
kubernetes, rancher, redhat openshift.

68

12. CBS architecture

[TODO next DL]

69

Glossary

AI Artificial Intelligence

API Application Programming Interface

CBS Centraal Bureau voor de Statistiek,
Netherlands

COICOP Classification Of Individual Consumption
According to Purpose

DB Database

Destatis Statistisches Bundesamt, Germany

ESS European Statistical System

hbits Spin-off company, Belgium

HBS Household Budget Survey

HETUS Harmonised European Time Use Survey

INSEE National Institute of Statistics and Economic
Studies

ISTAT Italian National Institute of Statistics

ML Machine Learning

MOTUS Modular Online Time Use Survey

NSI National Statistical Institute

OCR Optical Character Recognition

PDCA Plan Do Check Act

SSB Statistics Norway

SSI Smart Survey Implementation

TUS Time Use Survey

UI User Interface

UX User Experience

WP Work Package

