
Lessons learned from
Eurostat's Deduplication

Challenge

Yves-Laurent Benichou, Insee
Antoine Palazzolo, Insee

Who are we?

• Yves-Laurent Benichou
• Senior Data Scientist at Insee

• Team Spub.Fr
• Collaboration between Insee and

Dares
• Ranked 5th on accuracy

• Antoine Palazzolo
• Data Scientist in the innovation lab

of Insee
• Member of the WP4 of the WIN

• Team Nins
• 2nd prize for reproducibility
• Ranked 4th on accuracy

Plan of the webinar

• I. The challenge
• Context of the competition
• Presentation of the task

• II. Deduplication techniques
• Data processing
• MinHash-based solution
• Embeddings-based solutions
• Putting it all together

• III. Examples of coding best practices
• The Onyxia Datalab
• The Kedro framework

I. Eurostat’s
Deduplication Challenge

Deduplication of online job advertisements (OJA)

What is the context of this challenge?

• Series of competitions by the European Statistics Awards Program
• 2 rounds of nowcasting challenges
• 1 round for web intelligence: the deduplication challenge

• Open to all, with the goal of “unveiling innovative methodologies and
valuable data resources that could improve the production of
European statistics”

• The deduplication challenge:
• Started in December 2022
• Ended in April 2023

What is the goal of this challenge?

• 200 millions job advertisements scraped from the Web and classified
since July 2018 for statistical purposes (OJA project)

• However, the same offer can be posted:
• On different websites (LinkedIn, Indeed, own website, etc.)
• In different languages or with different phrasings
• By different companies (ex: recruitments groups)
• …

• Need to deduplicate them in order to publish unbiased statistics!

What do the job offers look like?

• 112k anonymized online job advertisements (OJA), retrieved from
around 400 websites, with:

• A job title
• A description of the job
• A location, extracted automatically from the job description
• A company name, extracted from the description as well
• The advertisement retrieval date (by the bots of the WIH)

What kinds of duplicates were to identify?

• Full duplicates
• Same job title and description

• Semantic duplicates
• Same job position advertised
• Same content in terms of the job characteristics (ex: required skills or education) but

expressed differently

• Temporal duplicates
• Semantic duplicates with varying advertisement retrieval dates

• Partial duplicates
• Describe the same job position but do not contain the same characteristics

Now that you know all about the challenge,
let’s dive in!

• How to approach the issue? What methods exist?
• Although studied through the prism of job advertisements, what follows can

be generalized to broader deduplication problems

• Main difficulties:
• Multilingual dataset
• Distinction between the different kinds of duplicates

• Ex: After what threshold is a semantic duplicate considered as partial?

• Limited trials to check performances
• No annotated test set is furnished

• F1-score chosen as the challenge metric
• Meaning that both precision and recall need to be optimized

II. Deduplication
techniques

How to identify duplicates in multilingual datasets?

Data processing

First off, let’s do some cleaning!

• Web scraped data is sometimes messy:
• Remaining HTML tags or special characters such as “\n”
• Trailing or double spaces
• …

• In NLP, some preprocessing operations are often necessary:
• Standardization of texts

• Removing accents and punctuation
• Lowercase text

• Lemmatization of texts : breaking down words to their root meanings
• Went  Be / Better  Good

• Removing stop words
• Ex: the, but, and, …

Regex operations for a first data cleaning

Via regex we can remove:

- All html tags and \n, \r, …
- Special white spaces
- Punctuation
- Extra spaces (possibly created by

previous operations)

Depending on the approach, the
preprocessing can stop here or include for
instance lemmatization and stop words
removal if we know the language of the
offers.

More uses for Regex

• Identifying and removing scraped advertisements that actually do not
refer to a job offer

• In our dataset, 3198 instances like this one, in different languages:
111761,Technologist | VisiDarbi.lv,"We use cookies to ensure a full website experience. By using our website, you agree to the terms of use of cookies. Agree Looking for employees?
Publish vacancy 1 Saved vacancies Log in Register Vacancies All vacancies Work in Riga Work in Vidzeme Work in Zemgale Work in Kurzeme Work in Latgale Work abroad Job ads
with salary Vacancies by company Vacancies by e-mail Blog Advice for job seekers Remote work Great 11541 job opportunities from 15 sources Looking for employees? Publish a
vacancy Vacancies All vacancies Work in Riga Work in Vidzeme Work in Zemgale Work in Kurzeme Work in Latgale Work abroad Job ads with salary Vacancies by companies
Vacancies in e-mail Blog Tips for job seekers Remote work 1 Saved vacancies Enter Register LV RU EN Save Print Share: Send Send! Similar vacancies Save Print Share: Send Send!
Up About us Advertising Terms of use for job seekers Contacts CV-Online Latvia Lithuania Estonia Contacts: E-mail: ***************** Phone: ****** *** ***** Developed and maintained Log
in to your profile Login to the system failed! Please check if the e-mail and password are correct. E-mail Password Forgot password | Register With social networks Registration for a job
seeker Registration for an employer Register with social networks: First name, last name Email Phone Password Repeat password I would like to receive Visidarbi.lv news in my e-mail I
have read and agree to the Terms of Use Register Thank you! Registration is successful. A confirmation link was sent to the specified e-mail address. Company name. Registration
number. Address. First name, last name. Phone. Registration is successful. A confirmation link was sent to the specified e-mail address Benefits of a registered job seeker Ordering new
relevant vacancies by e-mail Search history of advertisements Reviewing saved advertisements Adding a CV to a profile Managing applications Benefits of a registered employer Quick
and convenient purchase of services Publishing and managing advertisements Processing of received applications in the Job system creating a donor profile Technical support and
consultations Password renewal E-mail Thank you! Please check your e-mail and complete the password change Send e-mail Your e-mail Recipient's e-mail Message Thank you!
Close Close",,LV,,2021-04-08

Data processing: computing
more information

• Detect language, with fastText language detection library (here)
• 2 columns added: “lang” and “score”, for the confidence of the language
• Here low scores or errors do not matter much, as similar advertisements will be

detected in the same language anyway, whether it is the right one or not

• Compute lengths of job titles and descriptions
• Also compute their MinHashes, see later

• Named Entity Recognition (NER)
• Using HuggingFace models specialized in multilingual datasets such as

Davlan/distilbert-base-multilingual-cased-ner-hrl
• Focus on ORG and LOC objects to try and detect company names and locations

within the job titles and descriptions

https://fasttext.cc/docs/en/language-identification.html

Data processing: always
possible to go one step further

• Filtering out the most frequent words that appear per language
• They will likely not bring any meaningful information
• Ex: job, application, profile, etc.

• Filtering out poorly described offers
• Some descriptions are generic per company and do not necessarily refer to the same

offers and thus may need to be treated differently
• Some offers that contain too few non-empty fields may need special treatment

• Creating splits of the advertisements’ contents for faster processing
• Multiprocessing is already key in all of our operations because of the volume of the

data

Identifying duplicates

Finding duplicates:
starting intuitively

• Before jumping into big models, why not start the easy way?
• Allows to at least spell the situation out without too much computing

• Try and find matches based on subsets of fields:
• All columns for full duplicates
• For other kinds of duplicates:

• Title & description
• Title, company name & location
• Company name, location & retrieval date for companies known to be international from

the available data (catches many multilingual duplicates)
• ORG and LOC obtained from NER computation earlier

• The obtained pairs can then be re-checked later to avoid mistakes

Finding duplicates:
starting intuitively

• Once exact matches are found on subsets of fields, can we look for
close matches?

• If two offers are exactly the same besides 1 character, can we pair them?

• In order to do that, we need to measure distances between offers
• How to measure similarity between two texts?
• Once distances are computed, we can also catch pairs of offers whose

similarity is above a given threshold, with possible extra filters, such as limiting
the difference of days between the retrieval dates of the offers

• We used two metrics:
• The Jaccard distance & the Jaro-Winkler similarity

Finding duplicates:
the Jaccard distance

• Out of all the words present in the union of two texts, how many are
also included in their intersection?

• How close are the vocabularies of the two texts we compare?

• Several limitations: word frequencies not included, very sensitive to
synonyms or to multiple languages

Finding duplicates:
bringing out the big guns

• Intuitive approaches are generally not enough, so we offer two other main
categories of solutions.

• MinHash-based solutions
• Fast to implement, very efficient on ‘big’ datasets, but will not help finding multilingual

pairs
• Global idea: check similarity on shingles of characters (words, ngrams of words &

characters)
• For this specific use case, we use shingles of 4 characters
• Record Linkage Toolkit to put it all together

• Embedding-based solutions
• Different models can be used to produce embeddings of the advertisements as vectors:

TF-IDF, Transformers or other pre-trained models
• We can then compare the embeddings through cosine similarity

MinHash algorithm

More about MinHash here

http://infolab.stanford.edu/~ullman/mmds/ch3n.pdf

The MinHash algorithm

• MinHash is a probabilistic algorithm used to estimate similarity between two sets
• Invented by Andrei Broder (1997) and initially used in the AltaVista search engine to detect

duplicate web pages and eliminate them from search results (more here)

• It works by representing a set of data as a ‘signature’.
• The signature is a hash value that capture the properties of the data set

• We apply several non-cryptographic hash functions and select the minimum hash value for
that set

• The probability of two sets having the same signature is proportional to their Jaccard
similarity

• MinHash is an efficient and robust technique that is well-suited to large and high
dimensional data sets

• Common Issue : high estimation error when set sizes differ by a lot

https://en.wikipedia.org/wiki/Andrei_Broder
https://en.wikipedia.org/wiki/MinHash#CITEREFBroder1997
https://en.wikipedia.org/wiki/AltaVista
https://cs.brown.edu/courses/cs253/papers/nearduplicate.pdf
https://github.com/ekzhu/datasketch/issues/85

The MinHash algorithm: Zoom

The MinHash algorithm: in Python

• To compute MinHashes on titles and descriptions, we use
the datasketch minhash library

• We choose Murmur3 hash function from the mmh3 lib

http://ekzhu.com/datasketch/minhash.html
http://ekzhu.com/datasketch/minhash.html
https://pypi.org/project/mmh3/

The Record Linkage toolkit

• An open-source Python library for linking records in data
sources, available here

• Offers a range of methods for linking records, including deterministic
matching, probabilistic matching, and machine learning-based
approaches

• We also integrate a vectorized function to compute Jaccard distance
on MinHashes

https://recordlinkage.readthedocs.io/en/latest/

The MinHash algorithm:
putting it all together!

• For deduplication tasks such as ours, we use Record Linkage between the dataset and
itself

• Record Linkage first computes ‘all’ candidate pairs, but without any filter on the features it
would represent more than 12 000 000 000 pairs here!!

• So we decide to filter on the detected language

• We also cut the main dataset into 5 subsets, based on the description lengths ({]0, 700],
[400,1300], [1000,2000], [1700, 3000], [2600, +[})

• Record Linkage will then compute:

• The MinHash similarity for job titles and descriptions

• Jaro-Winkler distance on company names and locations

• Of course exact matches on all fields

Embedding-based
approaches

What makes the task difficult?

• Identifying job offers looking similarly is one thing, but how about:
• Synonyms and different formulations
• Advertisements available in several languages
• Partial duplicates with very different description lengths

• We need to represent the offers based on the meaning of their content, not
based on their form

• We want to pair duplicates based on the content that discriminates them
from other advertisements, such as characteristic words

• A solution: representing texts with vectors instead!

Source

https://medium.com/@cmukesh8688/tf-idf-vectorizer-scikit-learn-dbc0244a911a

TF-IDF as one way to tokenize the data

• Each dimension of the embedding corresponds to a word
• For a given job offer, the value for dimension j will be the TF-IDF score of the

word j in the advertisement

• Embeddings of very high (too high) dimension: we need to manually
reduce the dimension without losing too much information, through:

• Truncated singular value decomposition (truncated SVD)
• Or Principal Components Analysis (PCA)

• Another (efficient) way to compare ads similarities numerically, but:
• Still sensitive to synonyms or different languages
• Does not rely on words meanings

Meaning-based embeddings

Meaning-based embeddings

• Using pre-trained (on multilingual corpus) models to embed our
job advertisements

• Retraining or finetuning big models on our own data was too costly in view of
the possible gains, but it may be an idea

• The goal is to embed our offers in a high-dimensional space (ex: 100)
where the vectors are as close as the contents’ meanings are similar

• The better the model is, the more relevant the embeddings will be

• Trade-off to find for the dimension of the embeddings

What models are we talking about?

• Transformers pre-trained on multilingual data:
• Multilingual BERT
• XLM RoBERTa
• Distiluse base multilingual (from sentence-transformers)

• The last one was the preferred option: faster and lighter
• In our case it also happened to lead to better results

• Some even bigger models could be more relevant (ex: LLMs)

• Many resources on Transformers are available online
• Example of a great explicative video here

https://www.youtube.com/watch?v=eMlx5fFNoYc

Pros and cons of transformers’ embeddings

• Advantages:
• The words are not analyzed independently, but the job advertisement is

considered as a whole, context is taken into account
• The embedding is resistant to paraphrasis as the meaning is caught

• Disadvantages:
• If the texts are too long, all the information may not be picked up by the

embedding
• Not very sensitive to differences between named entities, while this kind of

information is crucial for our use case
• As our corpus is quite specific (to the corporate lexical field), a specialization

of the models can be useful for more relevant embedding spaces

What do we do now with those embeddings?

• Cosine similarity as the similarity measure between two embeddings
• It is the cosine of the angle between the two vectors
• If the cosine similarity between two job offers exceeds a given threshold (ex:

0.99), we will consider than they are duplicates candidates

• 112k jobs offers leads to 112k*112k computations, which is A LOT
• We thus limit transformers approaches to international companies, i.e. known

to publish offers in several countries or several languages
• We do it by chunks to compute smaller cosine similarity matrixes and save

storage space
• We then parallelize the comparisons per chunk and save processing time

• This method leads to a high recall, but may lead to poor precision

Deduplication: putting it
all together!

Additional conditions to be considered as
duplicates

• Previous approaches can lead to (too) many eligible pairs. Extra
filters may be necessary to:

• Limit ourselves to the actual duplicates
• Distinguish between the different types: semantic, partial, temporal

• Possible filters:
• Duration between the retrieval dates
• Differences in lengths descriptions
• Differences in the country ID
• Levenshtein (or Jaro-Winkler) distance between company names or locations
• Comparison between named entities extracted from NER

Is the relation “A is duplicate of B” transitive?

• If A and B are semantic duplicates:
• All semantic duplicates of A are supposed to be semantic duplicates of B

• If A and B are partial duplicates:
• All semantic duplicates of A are supposed to be partial duplicates of B

• We can represent our job offers with a non-oriented graph:
• Each advertisement is a node
• An edge represents the “is semantic duplicate” relation

• If our relation is transitive (as it should), all connected
components obtained before can be converted into cliques

• This should improve our recall even more

Is the relation “A is duplicate of B” transitive?

• In practice,
• Using the semantic transitivity property led to better results
• Using the transitivity on partial duplicates led to worse results, as our

precision on this kind of duplicates was already poor, and decreased even
more when adding more edges within our connected components

• In conclusion, relying on transitivity is efficient when the
precision is high and the recall improvable

• We thus raised our similarity thresholds based on that for our previous
approaches

Specificities and limits of the approach

• Set of stackable approaches, more or less simple but overall fast
to execute, in order to identify eligible pairs

• Followed by additional layers to discard false positives and distinguish the
types of duplicates

• How could we improve the results?
• If more time and resources available, reduce the optimizations and proxies

in order to capture more duplicates
• Finetune the transformers based on our corpus
• Spend more time to finetune the parameters of the different models, for

instance with a grid search

III. Examples of coding
best practices

Ideas to achieve reproducibility

The Onyxia Datalab

Link here

https://datalab.sspcloud.fr/

The Kedro framework

​Kedro

​An open-source Python
toolbox that applies

software engineering
principles to data science
code, making it easier to

transition from prototype to
production.

​FOUNDED IN

​2017

​STATUS

​Benefits

Reduces the time spent rewriting data science experiments
so that they are fit for production.

Encourage harmonious team collaboration and improve
productivity.

Upskills all collaborators on how to apply software engineering
principles to data science code.

​+467,000
MONTHLY DOWNLOADS

​+8,200
GITHUB STARS

​+15,000,000
PIPELINE RUNS IN 2022

What is Kedro?

• Essentially, a way to structure code to optimize data science projects
• Each function is a node
• Nodes and objects articulate themselves through pipelines

• Huge help to have reproducible, maintainable and modular code

• Several useful features
• Pipeline visualization (demo here)
• Data catalog
• Various integrations

https://demo.kedro.org/

Pipeline visualization with Kedro

Other possible frameworks to use

• In Python:
• Snakemake
• Luigi
• Metaflow
• Ploomber
• …

• In R:
• Targets

Git

Why
using git?

Essential part for reproducibility: git

• A distributed version control system
• Store, archive and share code
• Work more efficiently within teams or with your future self

• Github as a platform to share open source code
• Team Spub.Fr repository available here
• Team Nins’ repository available here
• Team Nins’ reproducibility approach description available here
• Other winners’ repos and solutions available here (and congrats to them!)

https://git.lab.sspcloud.fr/ssplab/dedup-oja-final
https://github.com/antoine-palazz/deduplication
https://github.com/antoine-palazz/deduplication/blob/main/docs/reproducibility_approach_description.docx
https://statistics-awards.eu/announcements/winners-wi-1st-round

Thank you for your
attention!

Are there any questions?

	Lessons learned from Eurostat's Deduplication Challenge

Yves-L
	Who are we?
	Plan of the webinar
	I. Eurostat’s Deduplication Challenge
	What is the context of this challenge?
	What is the goal of this challenge?
	What do the job offers look like?
	What kinds of duplicates were to identify?
	Now that you know all about the challenge, let’s dive in!
	II. Deduplication techniques
	Data processing
	First off, let’s do some cleaning!
	Regex operations for a first data cleaning
	More uses for Regex
	Data processing: computing more information
	Data processing: always possible to go one step further
	Identifying duplicates
	Finding duplicates: starting intuitively
	Finding duplicates: starting intuitively (2)
	Finding duplicates: the Jaccard distance
	Finding duplicates: bringing out the big guns
	MinHash algorithm (2)
	The MinHash algorithm
	The MinHash algorithm: Zoom
	The MinHash algorithm: in Python
	The Record Linkage toolkit
	The MinHash algorithm: putting it all together!
	Embedding-based approaches
	What makes the task difficult?
	Diapo 30
	TF-IDF as one way to tokenize the data
	Meaning-based embeddings
	Meaning-based embeddings (2)
	What models are we talking about?
	Pros and cons of transformers’ embeddings
	What do we do now with those embeddings?
	Deduplication: putting it all together!
	Additional conditions to be considered as duplicates
	Is the relation “A is duplicate of B” transitive?
	Is the relation “A is duplicate of B” transitive? (2)
	Specificities and limits of the approach
	III. Examples of coding best practices
	The Onyxia Datalab
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	The Kedro framework
	Diapo 50
	What is Kedro?
	Pipeline visualization with Kedro
	Other possible frameworks to use
	Git
	Why using git?
	Essential part for reproducibility: git
	Thank you for your attention!

