
Disclaimer: Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or Eurostat. Neither the European Union nor the
granting authority can be held responsible for them.

Smart Survey Implementat ion

G r a n t A g r e e m e n t N u m b e r : 1 0 1 1 1 9 5 9 4 (2 0 2 3 - N L - S S I)

W o rk pa c ka ge 3

Deve l o pi ng S m a rt Da ta Mi c ro serv i c es

De l i vera bl e 3 . 1 : Rev i ew s ta g e repo r t

Version 1.0, 2023-10-19

ESSnet co-ordinator:

Work package Leader:

Joeri Minnen (hbits, Belgium)

e-mail address : Joeri.Minnen@hbits.io

mobile phone : +32 (0)497 189503

Prepared by:

Joeri Minnen (hbits, Belgium)
Tom Oerlemans (CBS, The Netherlands)

2

Index

Index.. 2

1. General introduction ... 3

2. Microservice software architecture .. 5

Views ... 5

Perspectives .. 11

3. Receipt scanning microservice requirements ... 13

Business requirements .. 13

Functional requirements ... 14

Non-functional requirements ... 20

3

1. General introduction

This document provides a first overview of the work done in work package 3 of the SSI project.

The main goal of this work package is to develop microservices and to arrive to the overall goal ‘to

develop, implement and demonstrate the concept of Trusted Smart Surveys, realizing a proof of

concept for the complete, end-to-end data collection process and demonstration of a solution’.

Work package 3 is situated at the Development level, where the microservices are being developed

as platform-independent components.

Three different microservices have been indicated to be developed:

 Receipt scanning microservice

 Geolocation microservice

 Energy microservice

The main objectives of WP3 are:

 Develop the selected microservices

 Develop the APIs between the microservices and the core platforms

 Setup and perform development tests to support the development of the microservices and

APIs, in an interactive and iterative manner

 Document the microservices and APIs

 Support platforms and NSIs to include the microservices in the core platforms

 Perform a pentest

 Perform a stress test (load performance of eg. geolocation data)

 Containerise the microservices

 Describe the architecture of the core platforms

 Describe the architecture of the (developed) microservices

 Describe and execute the deployment strategy for both the core and microservices

 Write PDCA-cycles

 Keep and maintain a public GitHub repository

 Coordinate with the participating countries

 Provide support to WP1, WP2, WP4 and WP5

Looking to the timeline, the first microservice to be developed is the receipt scanning microservice,

followed by the geolocation and the energy microservice.

The work on the receipt scanning microservice started in May 2023 and a first demonstration of the

work done on extracting information from a ticket, and on recognizing different parts of the ticket

has been demonstrated during the SSI informational meeting taking place on the 20th of October

2023. The work on the geolocation microservice is started in October 2023. The overall approach is

to first develop various components of the microservice. In a second stage the components are tied

together in a process flow. At that time the microservice can be tested and evaluated. During the

entire duration of the project improvements to the components can be taken into account.

While most of the objectives have been started (and the main objective is the development of the

services), this review stage report has a first focus on the Microservice software architecture. This

document is essential for developing the overall microservice architecture, but also has a relation to

4

the thematic development of the different microservices. A second focus of this report relates to the

Receipt scanning microservice, and more in particular to the business, functional, and non-functional

requirements of that service.

Both the chapters have been discussed during online meetings and during physical workshops

organised by CBS (Heerlen), Destatis (Bonn) and hbits (Brussels). Accordingly, the chapters are

reviewed multiple times by the work package leaders. After an in-depth review also the countries

and the experts related to WP3 have been provided the opportunity to reflect upon the documents.

5

2. Microservice software architecture

This chapter describes a generic architecture for data processing microservices.

The structure of this chapter is based on views and perspectives. Views illustrate the structural

aspects of an architecture (e.g. where is data stored?), while perspectives consider the quality

properties (e.g. scalability) of the architecture across a number of views.

The microservice is independent and not coupled to a specific data collection platform.

Views

Context view

Next diagram shows how microservices (as a black box) fit into a general data collection platform

architecture.

It is important to mention that:

 there is no direct link between the respondent and the microservices: the data collection

platform has full control over microservice usage (who/when).

 there is no direct link between the microservices and the main database. This means that

the data collection platform has full control over which data is delivered to the

microservices. The exact mechanism which guarantees privacy will be explained in the

“Regulation perspective” section.

6

Functional view

This diagram describes the different runtime functional elements of the microservice.

Main elements and their responsibilities are:

Message bus

The message bus allows for asynchronous communication between the data collection platform and

the microservice.

Rationale:

 avoid blocking calls e.g. the platform must be able to quickly forward data (scanned receipt

information, geotracking point) to the microservice without being blocked for too long. The

message bus is able to fulfill this requirement by putting the data in a queue without any

processing. In addition, by putting the message bus on the same server, networking issues

between platform and bus are being avoided.

 notification service e.g. the DataProcessor can send a message that (some) data is

processed. The platform can then take appropriate action.

Chosen technology: RabbitMQ (https://www.rabbitmq.com/)

API and GUI

Is the synchronous interface of the microservice.

The API is used by the platform to fetch microservice data, request processed data results etc.

The GUI is used by a researcher or operator to:

 browse and inspect the results of the DataProcessor in the processor result DB

 browse, inspect and edit the data of the microservice DB

 possibly other functions e.g. add a scanned receipt and test the outcome

7

Because microservices have different functionalities, the (optional) GUIs are microservice-

dependent. The GUIs are typically built with web technology and preferably share the same web

framework than the API part.

Preferably, the GUI is integrated in the platform UI/backoffice in order to get an integrated user

experience. This also avoids possible data inconsistencies between microservice database and

platform database (e.g. a researcher edits the microservice database but this change is not

propagated to the platform database).

It is possible to extend the API with a synchronous call to the DataProcessor’s internal algorithm i.e.

without doing a request to the DataProcessor container. This is a simpler but more limiting design:

 the number of parallel requests might be limited by the webserver,

 it is a synchronous interface which means the call might block for a while,

 in case of networking issues, there is no queuing of requests or messages (in contrast to the

message bus).

The synchronous call might be more practical than the asynchronous one for debugging the

algorithm e.g. because no message bus is needed.

Websocket API

The websocket provides a synchronous interface as well. It can be used though to call the

DataProcessor’s internal algorithm synchronously. See discussing above.

Added value: if deployed, independent product which can be directly used via internet.

Nice to have test platform.

Library vs service. Proposal: take into account in architecture/design (but no development yet).

DataWriter

Receives push messages with data from the platform via the message bus. The DataWriter writes the

data in the microservice DB. Data push messages are queued in the message bus until the

DataWrites is able to accept them.

There is only one DataWriter process in order to guarantee that the received data is written to the

database in the same order as the data was pushed by the platform. This avoids (subtle) race

conditions in which a DataProcessor start processing data with missing in-between data (e.g. a

tracking point is missing in the db between the first and the last tracking point).

Because the DataWriter only writes data to the database and doesn’t process data (no cpu time), it

is expected that it will be fast enough to always empty the queue. If this is not the case, platform

design (and not microservice design) must be reconsidered e.g. by limiting the number of message

sent to the message bus.

8

DataProcessor

Does the real work of processing the data.

Starts processing when it receives a push message of what to process. Note that a single push

message is delivered to one and only one DataProcessor. Scalability is achieved by load balancing the

requests over the DataProcessors , which is a feature of the message bus. See the perspective on

performance and scalability.

Given the required processing time needed by the processors, the platform should limit the number

of messages sent to the data processors (via the message bus). In this regard, system design is

important. E.g. in case of geo tracking, the processors shouldn’t be triggered for each tracking point

to recalculate the respondent’s itinerary, rather, the tracking points should be bundled before the

recalculation is done.

Because data processors act independently, the concurrency aspect of the data processor must be

taken into account in its design. At an infrastructure level, limiting resources (e.g. in a k8s cluster)

might be necessary.

A DataProcessor pushes a message on the bus when processing is done.

Processor Result DB

This DB stores the results of the DataProcessors. Since results can be re-calculated, persistent

storage is not a strict requirement e.g. one might opt to make it a RAM only db.

A non-sql database is probably most convenient to store the results.

It is accessed by the API/GUI element to fetch the results.

It can be consulted by DataProcessors to avoid the re-calculating of data, it therefore also act as a

cache.

Chosen technology: redis (https://redis.io/). It is also possible the replicate a redis db over several

nodes if needed so (see perspective on performance and scalability).

Microservice DB

Used by the DataWriter to store pushed data.

Data is consulted by the DataProcessors.

GUI is able to change data if needed so.

DB scaling is achieved by replication, see perspective on performance and scalability perspective.

9

Information view

This view describes the way that the microservice stores, manipulates, manages and distributes

information. The diagram highlights the key points.

Concurrency view

This view identifies the parts of the microservice that can execute concurrently and how this is

coordinated and controlled.

All functional runtime elements are allowed to run in parallel since their responsibilities are clear

and non-conflicting (e.g. the DataWriter writes data while the DataProcessor processes data).

The most important concurrency aspect in the microservice architecture are the different

DataProcessors which can process data in parallel:

10

Care must be taken to:

 avoid race conditions: if 2 DataProcessor calculate the same thing, then one DataProcessor

might overwrite the results of the other, also if the other’s results were more recent.

 avoid unnecessary recalculations: DataProcessors should check the database to make sure

the results for its calculation are not already there. In that sense, the processor result DB

also acts are a kind of cache. If a single result is a combination of multiple small results, then

cache optimizations might be possible by re-using the finer-grained results. E.g. suppose you

need to calculate a timelog of a day. If a day is in progress then possibly only recalculating

the last hours is enough instead of recalculating the whole day.

Deployment view

A microservice is deployed as a collection of Docker containers: each functional runtime element is

built as a Docker container. This makes all elements (almost) independent from the host OS.

Depending on the performance and scalability requirements (see perspective), different deployment

strategies are possible. Here are some examples:

Note that the message bus should always be ready to accept messages from the platform (to avoid

the platform to be blocked). To exclude networking issues, platform and message bus are on the

same machine.

Operational view

Installation and upgrade

The microservice is a collection of Docker containers that will be managed, scaled and deployed with

a container-runtime platform (e.g. Kubernetes https://kubernetes.io/ for production environments,

docker-compose for development etc.).

Backup and recovery

https://kubernetes.io/

11

Two databases are (potentially) part of a microservice:

 processor result database: because results can be recalculated, no backup is needed here

except to speed up the recovery process. If Redis is used as technology, then persistency is

build-in. Backup/restore is the responsibility of the platform owner (and not of the

microservice).

 microservice database: backup/restore is the responsibility of the platform owner.

Note that the choice can be made to store data sent to or received from the microservice also in the

platform core database. When the microservice is disabled or not needed anymore, then the

platform core can function without the microservice (e.g. the respondent’s geo itinerary can be

retrieved without the microservice).

Perspectives

Regulation perspective

Privacy

Sensitive information must be restricted to the database of the main application. The microservice is

not allowed to pull user/respondent private information into its own databases.

The following mechanism is foreseen:

The Respondent X entry is never visible in the microservice. Platform and microservice are linked to

each other via a “microservice link”. The microservice only has knowledge of the abstract

“microservice link”, which essentially is only an id (uuid, guid...).

If the microservice database would be shared for researchers (e.g. for postprocessing), then the

sensitive information of the respondent cannot be leaked.

Performance and scalability perspective

Depending on the application (e.g. type of research) and the type of microservice (e.g. processing

intensive vs IO intensive), performance and scaling of the microservice can be tuned as follows:

 DataProcessors can be scaled:

o by creating multiple instances

o by distributing instances over multiple machines

o see ‘concurrency view’ of how they distribute work

12

 microservice DB can be scaled:

o by db replication

o by distributing the replication databases over multiple machines

 microservice results DB could be scaled similar to the main microservice DB. Since this is

probably not a heavily loaded database (no complicated queries, only results), scaling might

not be needed

13

3. Receipt scanning microservice requirements

The goal of the SSI project is to involve and engage households and citizens, and to define and

operationalize a new/modified end-to-end data collection process. The project will take a view on all

the steps of the data collection process, from the invitation to participate until the completion of the

study and the processing of the data. The data collection process includes the use of smart devices

and smart data, while privacy is safeguarded.

Centrally stands the use of smart devices and other connected devices to obtain the data. NSIs and

linked organizations have worked on platforms to allow households to register their purchases

online. These platforms are @HBS of the CBS, MOTUS of hbits and the developments of SSB and

Insee.

The SSI project holds 5 different WPs. Whereas WP2 of the SSI has a focus on the interaction of

households and citizens with the different platforms and the underlying applications (HCI, Human

Computer Interaction) WP3 is within SSI the gateway to include Smart data. The inclusion of Smart

data is seen as a need to further support the participation of the respondent in studies like TUS and

HBS. WP5 overlooks both WPs from the viewpoint of privacy and security.

An important criterion is the realization of an end-to-end data collection process, that results in

qualitative and comparable data. The definition of quality and comparability stems from the mission

of the ESS and trust upon the Principles of the European Statistics Code of Practice, which latest

update also takes into account the emerging of new data sources and use of new technologies.

In WP3 the Smart inclusion is realized by the development of microservices. This document has a

focus on HBS and the inclusion of a microservice for receipt scanning. Through Optical Character

Recognition (OCR) HBS relevant information is gained from the ticket and is available in a digitalized

format. The microservice is seen as middle part software that is supportive to the household in

reducing their burden to complete a consumption diary.

Business requirements

HBS collects in a large detail what households spend on goods and services. In this way, the survey

gives a picture of the living conditions in the EU. HBS is performed by each Member State to

calculate weighted macroeconomic indicators used for national accounts and consumer price

indices. Eurostat publishes output since 1988 and this with intervals of 5 years. The last waves are

from 2010 and 2015. In 2026 HBS will enter the IESS agreement.

In a HBS study, (a member of) a household records tickets in a diary. Besides information on the

store itself (name, address, logo, registration number, …) a ticket at minimum holds information on

the different purchases (or product rows) that are bought and the total price of the ticket.

Depending on the shop a ticket can also contain various different contexts to the purchase, and can

also hold information on reductions, return items or even empty good claims. The design of the

diary defines the amount of detail that needs to be transferred to the diary.

This altogether creates a demanding effort from the participants to the study. Given the drop-in

participation rates and supported by the request of the Wiesbaden Memorandum in 2011 Eurostat

14

and the NSIs started to develop and implement new data collection modes to call a hold to this

downward trend, and to even improve upon the quality of the collected data.

Initiatives of various countries, and previous EU-funded projects have translated the paper-and-

pencil method to an online data collection process, giving households the opportunity to digitalize

their ticket by adding purchase by purchase in a step-by-step manner in order to submit the entire

ticket.

Notwithstanding the added value of these online applications the burden on the participants

remains high, and still too much error prone. The goal of WP3 is to reduce these gaps by developing

and implementing microservices that acquire, process and (can) combine data collected from smart

devices and other applications, in the case of HBS through the development of a receipt scanning

microservice.

A successful realization of the development and implementation will not entirely reduce the active

participation of households in the registration of their tickets and purchases, but will provide

support and guidance in their task to arrive to qualitative and comparable data for the ESS. It means

that besides the development of the microservice also the implementation of the service to the

platforms is important, as well as the UI/UX that presents the output of the microservice to the user,

and the easiness in which the user can verify, adapt, or even delete the output.

The following objectives are essential in reaching this goal:

 Objective 1: To define an architecture of a microservice (that is also to be reused in the
other developments of WP3, being the geolocation and energy use microservices)

 Objective 2: To develop a receipt scanning microservice using OCR

 Objective 3: To implement classification solutions (machine learning, string matching, or
search algorithm based) to classify purchases to a COICOP-list

 Objective 4: To develop an API to connect to/from other environments

 Objective 5: To deploy the microservice as a containerized application in the cloud

 Objective 6: To implement/integrate specific microservice parts in the app (e.g. algorithm).
This integration should be feasible, should have an added value for the platform and/or
should improve the user experience.

The stakeholders are the NSIs and their product owners, and the households (citizens).

Functional requirements

HBS study

In this section HBS studies are being described as they provide the context in which the receipt

scanner microservice operates.

In HBS studies questionnaires and a consumption diary are completed by the households. At the

moment household members arrive to the diary phase they, at the least, already have completed a

questionnaire. If this member is the reference person, or the head of the household also a

household questionnaire and a matrix to compose the household is part of the pre-diary tasks. All

tasks are defined in a respondent journey or study flow that shows a sequence of tasks. Since the

HBS diary setup requires an equal distribution of participation over the entire fieldwork period, and

household members are requested to keep their diaries for the same period this study flow can be

quite complex.

15

Central to a HBS study is the registration of tickets and purchases of goods and services in a diary.

Households keep one diary over a period of (minimum) 15 days. Left aside paper-and-pencil diaries,

a household member partakes to a HBS study via an application, be it via a mobile application, be it

via a web application running in a browser.

HBS diary

The diary collects at the minimum:

 a description of the products and services that are bought

 a description of the fixed (repeated) costs that are paid

 the price of each product or service, and

 the date of the purchases and periodicity of fixed costs

The registration of the products and services is linked to a COICOP-classification. COICOP stands for

Classification Of Individual Consumption by Purpose, and is demanded to be delivered on 5 digits as

part of HBS 2026. NSIs often use more digits to aggregate to a higher level.

The matching COICOP code is selected/mapped from a list:

 a COICOP-code

In addition, on the level of the ticket extra information is/can be gathered:

 the country of purchase

 the shop (brand/type)

 ticket reduction

 professional purchase

 payment method

As an extra, on the level of the product or service extra information is/can be gathered (depending

on national needs):

 number of items

 price per item

 quantity and metric/unit per item

 discount

 return

Functional requirements

The diagram gives an overview of the main functional requirements:

 functionality related to user handling is indicated by the green boxes. The respondent must
be able to submit a photo and indicate to the receipt scanner software the receipt location in
the photo and provide some receipt details for verification.

 functionality related to the microservice is indicated by the blue boxes. The essential function
is to find and provide information that the HBS diary collects in a receipt (i.e. all bullet items
in section ‘HBS Diary’).

16

User handling

Respondent handling (green boxes)

REQ R1a Respondent takes photo a receipt

 Select ‘take a picture’ to open the picture functionality

 Real-time camera opens:

 detection of contrast ticket vs background

 detection of light (good exposure)

 detection of contour of ticket starts (4 dots or polygon around receipt when

stabilized)

 App (or user) takes picture when stabilized (contour good enough)

17

 If the respondent is not satisfied with the photo, he/she needs to able to restart with

the photo taking process.

 Note that additional quality checks might (and probably will) be performed later by the

app software itself and/or the server-part microservice.

REQ R1b Respondent uploads an e-ticket with the application (alternative to taking a photo of a

receipt)

 Select ‘Submit e-ticket’ to select/download a file from the local filesystem

 It is unclear yet which types of e-tickets will be supported. This strongly depends on the

layout and structure of the ticket itself. Possible e-ticket formats to be supported:

image, pdf+text(+variants) or pdf+image

REQ R1c Respondent shares an e-ticket from another application (e.g. store app) to the HBS

application (alternative to taking a photo of a receipt)

 Not part of microservice. Platform-specific (app) implementation.

REQ R1d In case of a web app: scanning can be done by the browser of the smartphone and sent

over to the browser running on a computer or laptop

 Respondent is on the web app

Respondent wants to take a photo with the smartphone so that it is automatically

loaded in the web app

This requirement is a nice to have.

REQ R2 Respondent changes contour of receipt

 Respondent can change the contour (4 dots connected with lines) to define the ticket

by moving dots or the line segment (handles) between two dots (parallel movement of

two dots).

 Could be skipped if the automatic contour detection works very well.

Ideally, this step is not necessary (same as R3).

 Having the complete receipt is important because it contains more info than only the

product/service rows. Extra info on the receipt includes: store logo, store details,

payment info etc.

18

REQ R3 Respondent selects other details of the receipt

 Selection of product/service rows. Helps the OCR process.

 Could be skipped if automatic product/service row detection works very well.

 Although extra work for the respondent, this step ensures the software knows the

most relevant part of the ticket i.e. the product/service rows. Also, the positional data

could be used later for ML training.

Ideally, this step is not necessary (same as R2).

 This step does not involve a crop of the image, so at submission, the whole image will

be sent to the microservice.

REQ R4 Respondent answers some questions about the ticket (questionnaire)

 The following questions will be asked:

 Country

 Shop

 Language

 Date

 Total price

 Depending on the specific-platform UI, it must be possible to skip this step. Note

however that the output of this step is very interesting for internal quality checks in the

OCR process.

Furthermore, knowing the store might/will be important for the COICOP classification.

REQ R5 Respondent submits ticket image

 A button allows the respondent to submit the ticket image, the change the contour hint

and other selected areas (such as expense items).

 Different UI implementations are possible:

 the image is uploaded in the background and the respondent gets a notification

when it is done, or

 a dialog should run to show the continuation of the upload.

 Or, user settings whether he/she wants to send real-time or in background; or,

via mobile or only wifi

19

 Communication of success, or failure which has to be accepted by the user by pressing

OK.

In case of failure, the action that needs to be undertaken is UI/platform-dependent.

E.g. one could wait for a wifi connection before trying to upload the image again. The

decision what needs to be done is platform-specific.

Microservice

Microservice (blue boxes)

REQ M1 Microservice collects receipt information

 The service is best effort and should try to collect the following receipt information:

 date of the purchases

 a description and price of the products and services that are bought

 the country of purchase

 the shop (brand/type)

 ticket reductions

 payment method

Then, at the level of a product or service:

 number of items

 price per item

 amount and metric/unit per item e.g. 1,5 L

 discount

 return or not

 Information retrieved from the user in step (e.g. R2, R3 and R4) could be used as a

verification step. E.g. the total price as answered by the respondent should match the

total price as derived from the image. If not, the user’s input has priority (esp. in the UI

as we don’t want to overrule user’s input).

 Depending on the performance and quality of M1, the number of respondent actions in

the UI (more specifically, R2, R3 and R4) might change (e.g. if the service is almost

always able to retrieve the product/service rows then step R3 is probably not needed

anymore).

20

 Because the output (receipt information) might contain several text mistakes, it might

be desirable to let the user correct those mistakes before the receipt information is

handed over to the COICOP classification algorithm. Whether or not user correction is

desirable strongly depends on the input requirements of the COICOP classification

algorithm.

REQ M2 Microservice performs COICOP classification on detected products and services

 The model (algorithm + training) classifies the product/service description to a COICOP.

 Integration of the model with the OCR microservice.

 Support for different COICOP classifications (the code should not hard-code one

specific COICOP classification since NSIs are free to extend the 5-digit demanded

classification).

REQ M3 Microservice sends notifications when results are available

 So that a pop-up in the app can inform the respondent that the scanned ticket is added

to the overview on the day of the purchases.

 In case of multiple submitted receipts, the microservice will generate a notification for

each receipt. It is up to the app (platform-specific) how to handle multiple notifications.

REQ M4 Microservice provides a service to retrieve results

 The output of the microservice can be requested by platform to e.g. include the user

into quality control.

Non-functional requirements

Non-functional requirements

REQ N1 The microservice should be independent from any specific HBS platform.

 The microservice has no dependency to other environments, and has an independent

operation.

21

REQ N2 It must be possible to connect and communicate with the microservice from any HBS

platform.

 The microservice receives input, and provides output making use of APIs.

REQ N3 The microservice must have a design in which algorithms (computer vision, AI, ML)

can be easily improved/updated.

REQ N4 The service must be deployable at any institute/NSI (shareability).

 The microservices are provided as software packages in containers, which can be

easily shared and deployed. Docker is a software that can host containers.

Kubernetes is often used as software to orchestrate various containers.

REQ N5 The service must be scalable with the number of receipts it needs to handle.

 Kubernetes is a software used to orchestrate containers. By this Kubernetes allows to

horizontally scale the containerised microservice depending to the number of

receipts received.

REQ N6 Security by design

 Using the container technology barriers are created between various components

used in the study setup, which deliver better privacy, security and maintainability,

scalability and high availability.

Communication between the platforms runs through APIs and https communication.

REQ N7 Privacy by design

 Using the container technology barriers are created between various components

used in the study setup, which deliver better privacy, security and maintainability,

scalability and high availability.

Communication between the platforms runs through APIs and via UUIDs to avoid

transferring personal information.

REQ N8 Support for localization

 Algorithms being applied by the microservice should be configurable or trainable (in

case of ML) to support localization, which includes different languages, different

currencies, date formats, dots vs commas etc. This is required to make the

microservice shareable.

22

REQ N9 Offline vs online support (app)

 Parts of the microservice are/can be selected to be developed in a Library to run

offline in an application. The library must take into account platform-dependency

(Angular, ionic, Flutter …) to function.

