

Access to external data for the production of official statistics and personal data protection: what can we demand from *Secure Private Computing* technologies?

Fabio Ricciato Eurostat, Unit A5 Methodology; Innovation in official statistics

ISTAT Workshop sulla Protezione dei Dati Personali 23rd June 2021

Terminology

Privacy Enhancing Technologies (PET)

Input Privacy Solutions

- Secure Multi-Party Computation (SMPC)
- Trusted Execution Environment (TEE)
- Homomorphic Encryption (HE)

How to let somebody **compute the output** without letting him seeing the input?

Secure Private Computing Privacy-Preserving Computation

Output Privacy Solutions

- Differential Privacy
- Statistical Disclosure Control

How to **sanitize the output**

(after computing it, before releasing it) to prevent personal re-identification of individual input records

Why?

Europea Commis In traditional computing models data are moved \rightarrow data get **centralised** \rightarrow all players must trust the single computing party (delegation of control)

In traditional computing models data are moved \rightarrow data get **centralised** \rightarrow all players must trust the single computing party (delegation of control)

"pull data to the NSI" \rightarrow NSI as single point of trust

In traditional computing models data are moved \rightarrow data get **centralised** \rightarrow all players must trust the single computing party (delegation of control)

Trusted Third Party (TTP) external to NSI \rightarrow TTP single point of trust

From delegation to sharing of control

e: Trusted smart statistics: Motivations and principles. Statistical Journal of the IAOS 35 (2019) 589–603

Secure Multi-Party Computation (SMPC)

Trusted Execution Environment (TEE)

From delegation to sharing of control... via Secure Private Computing (SPC)

- The SPC process is designed so as to avoid "**single point of trust**" Avoid centralised control over the **data**
 - Either data are "secret shared" (sort of encryption where the cipher-text is diluted among multiple parties; computation run without de-ciphering the input data → SMPC
 - ... or data are encrypted (with some traditional scheme) and the cipher-key is diluted amo multiple parties; data are provably deleted after computation → TEE

Share control over the code - involve as many (external) controllers as needed

- Trust collectively the set of controllers & the whole process
- Ex-ante controls e.g. preliminary code approval to prevent mis-use
- Ex-post controls (e.g. detailed non-modifiable logging) to enable forensic audits → deterrer

SPC and GDPR

- SPC to "escape" GDPR ?
 - If "dilution" of input data is considered "anonymisation"
 → "diluted data" are not personal data → GDPR does not apply
 - [endorsement of this view by DPAs unlikely anyway not our view]

• SPC to strengthen GDPR implementation !

- If "dilution" of input is considered "*pseudonymisation*"
 → "diluted data" *are* personal data → GDPR does apply
- [more conservative approach, endorsement by DPAs more likely our view!]

SPC to strengthen GDPR implementation

- GDPR requires
 - Legal basis to process the data
 - A set of appropriate technical and organisational safeguards to protect the data
- GDPR principles relevant to SPC
 - purpose limitation → in a well-designed SPC solution only approved code can be executed tightest possible form of purpose specification (purpose = code)

SPC

Europea

Commis

- data minimisation → in a well-designed SPC solution only the very final result is disclosed, no other information can be leaked – tightest possible form of data minimisation
- storage limitation → a well-designed SPC solution shall include automatic deletion of secre shared data or encrypted data and related leys – tightest possible form of storage limitation
- integrity and confidentiality → a well-designed SPC solution comes with state-of-the art security functions
- [privacy by design] → inherent to SPC!

rticle 89(1) - Processing for archiving purposes in the public interest, scientific or historical research purposes or **statistical purposes**, shall be **subject** priate safeguards [...]. Those safeguards shall ensure that **technical and organisational measures are in place** in particular in order to ensure for the principle of **data minimisation**. Those measures may include **pseudonymisation** provided that those purposes can be fulfilled in that manner.

Wrap-up

- Ethical duty + legal obligation
- to protect personal data with appropriate safeguards (technical + organisational
 - (i) proportional to the risks: more detailed input data \rightarrow higher risks \rightarrow stronger safeguards
 - (ii) taking into account state-of-the-art technologies
- Well-designed solutions based on SPC technologies as "appropriate safeguards
 - Key ingredients of SPC: sharing of control (over the code, over the data), transparency, auditability
 - Reminiscent of the "checks and balances" principle underlying the democratic system
- SPC technologies are the bricks, not a magic stick --- you still need to engineer whole solution (hardware, software and ... humanware)

Thank you

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

