
Using Web Scraped Data to
Enhance the Quality of the

Statistical Business Register

Manveer Mangat, Heidi Kühnemann,
Arnout van Delden, Johannes Gussenbauer

Outline

•Webscraping

•URL-Finding

•Link web scraped 3rd party data to the SBR

•NACE Code Classification

• Introduction & Case Study Statistics Netherlands

• Case Study Statistics Austria

• Lessons Learned

Webscraping

Heidi Kühnemann

Statistics Hesse

Web scraping

• Definition: Automated gathering of data from the world wide web

• Examples for web data sources
• Search engines

• Online Shops

• Hotel booking platforms

• Enterprise websites

• Social media

• News websites

• Personal blogs

• Wikipedia

Official Statistics

mostly focusses

on these

What we see

vs. What we
scrape

Specifc vs. Generic web scraping

Specific web scraping Generic web scraping

Website structure is known Website structure is not known

Extraction of specific elements in HTML

code (eg. with XPATH, css selectors)

Text mining, regular expressions, etc. to

extract information

Extracted data usually contains the

information of interest

Extracted data by itself is often not very

meaningful, but is input for further

models

This is what we focus on today

URL-Finding

Heidi Kühnemann

Statistics Hesse

Enterprise URLs: Why and How?

Why?

• Freely available enterprise information on various topics

• Potential to reduce response burden in some areas

• Potential to update statistical business register (SBR) with additional
data source

How?

• Obtain data from registers and surveys (not always possible!)

• Data purchases → Topic 3

• Automated procedure to search for URLs

URL finding overview

Search
enterprises
in search
engine

Search term,
eg. name +
municipality

URL patterns to
include/exclude
in API settings

Exclusion of
some file types
in search term

Scrape
URLs

Scraped are eg.:

Google URL

Landing page of
domain

Imprint/contact
page

Feature
Extraction

Features:
• Name
• Address
• Tax/business

register IDs
• Search

position
Some text
processing steps

ML /
Deterministic
rules

Needs training
data!

Manually
classified or
obtained
through other
means

Search engines

% domains matched GOOGLE GOOGLE API BING YAHOO DUCK

Italian sample 74.8 66.7 64.7 63.6 57.6

Hessian sample 89 87 62 59 NA

Criteria to consider when selecting a search engine:

• Can a SE identify the correct URLs?

• Limits in the number of requests

• Costs of requests

Comparison of SE results for ca. 100 Italian and Hessian enterprises

API or Search Engine Scraping?

API:

✓ Many configuration options

✓ High frequency of requests possible

 Only small number of requests are free

Search Engine Scraping:

✓ Requests are free

✓Obtain results like a human being

 Potential violation of terms of use

 Scrapers might get blocked

Scraping

• By far the most cumbersome step: scrape all result URLs

• Each search produces ca. 10-30 URLs to be scraped (result URLs,
contact pages, imprint, landing,…)

• URLs are very diverse: different technologies, sometimes large
contents

• Information is sometimes hidden in Javascript → Javascript rendering
software is advisable (automated browser)

• Headless browsers: Selenium or Splash are in use within ESS

• But: Javascript rendering increases the amount of downloaded data
and bandwidth usage

• Massive scraping needs special infrastructure

Feature Extraction

• Preprocessing steps, eg.
• remove css styles and javascript code

• remove duplicate whitespaces

• lowercasing words and letters

• Compare enterprise data from SBR with scraped data, eg.
• Name is on website

• VAT ID is on websites,

• …

• Features are created with exact string matching or regular
expressions

• String similarity for comparison of short texts with enterprise data (eg.
name and HTML title)

Machine Learning / Deterministic Rules

• When do we accept a URL as correct?

• Deterministic rules:
• eg. VAT ID on website → website correct

• Easy to build and interprete

• What if enterprise data is missing in the SBR or on the website?

• What if other website mentions data of different enterprises?

• Validation data necessary to measure classification performance

• Machine Learning:
• Training & validation data necessary

• Model decides which features have which weight

• Reduced interpretability

URL finder software

• Python (Statistics Netherlands):
https://github.com/SNStatComp/urlfinding

• Python (Statistics Bulgaria):
https://github.com/EnterpriseCharacteristicsESSnetBigData/StarterKit
/tree/master/URLsFinder

• Java (Istat):
https://github.com/EnterpriseCharacteristicsESSnetBigData/UrlSearc
her

• R (Statistics Hesse): Not yet published

https://github.com/SNStatComp/urlfinding
https://github.com/EnterpriseCharacteristicsESSnetBigData/StarterKit/tree/master/URLsFinder
https://github.com/EnterpriseCharacteristicsESSnetBigData/StarterKit/tree/master/URLsFinder
https://github.com/EnterpriseCharacteristicsESSnetBigData/UrlSearcher
https://github.com/EnterpriseCharacteristicsESSnetBigData/UrlSearcher

WIN Report on URL finding methodology

(https://ec.europa.eu/eurostat/cros/system/files/20220131_url_finding_met

hodology.pdf)

Delden, Arnout van; Windmeijer, Dick; Bosch, Olav ten (2019): Searching

for business websites. CBS (Discussion Paper). https://www.cbs.nl/en-

gb/background/2020/01/searching-for-business-websites.

Barcaroli, Giulio; Scannapieco, Monica; Summa, Donato (2016): On the

Use of Internet as a Data Source for Official Statistics: a Strategy for

Identifying Enterprises on the Web. In: Italian Review of Economics,

Demography and Statistics 4 (70), S. 25–41.

http://www.sieds.it/listing/RePEc/journl/2016LXX_N4_RIEDS_25-

41_Scannapieco.pdf.

Literature / Further reading

https://ec.europa.eu/eurostat/cros/system/files/20220131_url_finding_methodology.pdf
https://ec.europa.eu/eurostat/cros/system/files/20220131_url_finding_methodology.pdf

How to link web scraped
3rd party data to the
business register

Arnout van Delden, Nick de Wolf
Statistics Netherlands

Introduction

• Third parties web scraped business data:

URL, economic activity, phone number, keywords website text, …

• Aim to link URL to ‘businesses’ in Statistical Business Register

• SBR: legal units (LUs) are building blocks

• Therefore it is practical to link URLs to LUs

• Often LU – website links are 1:1

• Sometimes multiple URLs link to a LU (e.g. different products)

• Sometimes a URL links to multiple LU’s (enterprise group).

Example SN: building a linkage approach

• 3rd party data: Dataprovider (DP)

• What identification keys are in both sources?

(*) when a LU registers at Chamber of Commerce it may mention the URL. That is sent
to Statistics Netherlands.

(**) hostname: dashboards.cbs.nl, domain name: cbs.nl

Key Type of key Reliable?

Hostname (*)(**) Unique High

Domain name (**) Unique High

LU–ID Unique High

Email Non-unique Medium

Zip-code Non-unique Medium / Low

Phone Non-unique Medium / Low

Analysis: missing information

• Considerable part of the
identifying information
is missing

(counted in Oct 2020)

Analysis: missing information

• Considerable part of the
identifying information
is missing

(counted in Oct 2020)

Linkage approach

Development of linkage protocol:

1. Stepwise linkage procedure with qualitative score function (2016)(*)

2. More generic linkage approach based on agreement of linkage
keys with approximate linkage probability based on points (2019)

3. As 2, but now the linkage probability is based more advanced
regression model and evaluation of linkage quality (2022-2023)

(*) see Oostrom, L. et al. (2016). Measuring the internet economy in The
Netherlands: a big data analysis. CBS Discussion paper 2016-14 (publicly
available)

2 Linkage using linkage points (2019)

• Agreement per variable is given certain linkage points

• Points based on 2016 protocol and trial and error

• 20 links checked per “total number of points”-category to estimate
linkage probability: 47.5*LN(points) – 234, with min = 0, max = 1.

DataProvider Legal unit Points

Hostname Website 500

Domain Website 500

LU-ID LU-ID 500

Email Email 200

ZipCode ZipCode 200

Phonenumber Phonenumber 100

Total number of

points

Linkage probability

100-300 0

400 50

500-900 75

1000 95

1100 97

>=1200 100

3 Linkage probability (2022-2023)

• Sample of potential matches is evaluated (400 per group):
• linkage probability < 50

• Linkage probability >=50

• 3rd party hostnames not linked

• SBR LUs not linked

• Estimate a (weighted) logistic regression model with probability of a
match (yes/no) as a function of agreement (yes/no) per variable1

• Results on non-matched records may lead to more variables that are
used as linkage keys.

1 Tuoto (2016). New proposal for linkage error estimation. Statistical journal of IAOS 32
(2016) 413–420

Results (2020): type of linkage

• One URL may link to multiple legal units:
• e.g. website of an air plane company that refers to enterprise group

• A legal unit may link to multiple URLs:
• e.g. different products on different websites

• At 75% linkage probability:

ULRs

LU’s 2+ (n) 1 0 Total

2+ (m) 4 863 27 935
3 957 354 4 630 836

1 111 904 528 780

0 5 057 922 X X

Introduction on how to apply
automatic prediction of
NACE codes from web

scraped texts

Arnout van Delden, Nick de Wolf
Statistics Netherlands

Approach

• There is no standard recipe for NACE prediction using website texts

• Situations per country differ in many ways (purpose, language,)

Therefore:

• Purpose is to inspire and to share lessons learned.

• We like to learn from you when you have tried it yourself

• We will share experiences from Statistics Netherlands and Austria

• We show different steps of the process and choices that we made…

Elements to consider

Input, feature extractor

Input

• URL, headers, Main body, subpages (about us, contact page)

Extract features

• to extract useful text parts, remove HTML (Justext)

• keep only texts of language(s) of interest (Langdetect)

• drop uninformative websites: HTML-errors and texts like ‘this domain is
reserved’ or ‘this domain is unavailable’

Actual features

1. Pre-processing: downcasing, stopword removal, stemming or
lemmatisation

2. Selection of tokens: Knowledge-based features, use of global
feature importance

3. Weighting of tokens: Tf-idf weighting, BM25 weighting

4. Adding context via word-embeddings: (Fasttext, doc2vec)

Machine learning algorithms

1. Many different algorithms are available: classical textmining /
neural-net algorithms

2. Hierarchical versus direct prediction the NACE code at the
level of interest

3. Hyperparameter tuning very important

Labels, train and test set

1. What NACE level and what which spectrum of codes?

2. How can you obtain a (nearly) error-free data set?
• Erroneous labels are learned by the ML model, so should be avoided

3. Balancedness of the train set:
• With unbalanced set more difficult to achieve an accurately trained model

4. Is your test set representative of the targeted population?
• Ideally, one has inclusion weights with respect to the population

Evaluate model performance

1. What kind of predictions are you interested in?
• A single label per unit, multiple labels and / or a probability per label

2. Where do you use the predictions for?
• Support manual editing or automatically predict new labels?

3. Performance per record or per NACE most important?

4. Do not forget the confusion matrix

Case study Stats Netherlands

Aim: Predict main activity of legal units

Data: 35 733 URLs in NACE section R, homepage, `About us', `Contact' or
`Terms and Conditions' page, plus up to 10 underlying pages

Knowlegde based features: concept words (C-words; car) and descriptive
words (D-words; station wagon, four-wheel drive, …)

Experiments: different feature sets, classifiers, pre-processing steps , direct v.s.
hierarchical classification

Performance: F1, accuracy, MCC score, macro-average weighted by # URLs per
NACE code.

Case Study

Case Study

Main results:

• Differences among pre-processing settings were very small (not shown)

• The support vector machine models best

• Hierarchical classification performed slightly worse than the direct classification

• Limited effect of feature types but full + D-words & Full + C-words performed
best.

• Best model had a weighted F1 score of 0.712 (top 1 prediction) and 0.849 (top3
prediction)

NACE Code
Classification

Johannes Gussenbauer, Manveer Mangat, Alexander Kowarik
Statistics Austria

Case Study Statistics Austria

Aim: Predict main activity of legal units
• Eventually use predictions to help with editing NACE codes in BR

Data: URL pairs found while scraping for ICT Survey (2019 – 2021)
• Deterministic URL-linking

• Models trained on ICT Survey (2019-2021) – results presented for ICT Survey 2021

Pre-processing of scraped text

• Text on the landing page and sub-pages containing certain key-words in the link
are scraped

• Only text elements are kept and further processed (removal of digits and
punctuations, removal/replacement of characters not part of the German
dictionary, etc)

• Currently apply

1. “German morphological lexicon” (http://www.danielnaber.de/morphologie/)

2. Lemmetization

3. Stemming

http://www.danielnaber.de/morphologie/

Feature selection:

• After pre-processing scraped text contains >1Mio distinct words

• Idea: use the words and descriptions for NACE classification used by STAT
(~ 20 000 words) as features→ Problem: 34% of these words did not appear
in our web scraped texts

• Solution: combine a global and a local feature selection score function to
select a balanced set of features (“An Improved Global Feature Selection
Scheme for Text Classification.” Uysal (2016))

• selection strategy is applied to all the training data to select 200 and 500
words for each NACE2 code, W-200, W-500, respectively

Model specification

• Model 1:

consists of feedforward layers and has as input the one-hot encoded W-200 words from
the webpages weighted by the term frequency-inverse document frequency
transformation (Wide)

• Model 2: consists of the first one with an additional structure (Wide + Deep):

a) W-500 transformed using pre-trained word embeddings from fastText
b) additional structure consists of multiple convolutional filters applied to the word

embeddings
c) results from the feed forward and convolutional layers are concatenated in an

penultimate layer
d) then supplied to a final softmax layer
e) R-Package keras, see Allaire and Chollet (2019), and the tensorflow software Abadi et

al. (2015) used

• Model 3 (Wide + Deep +Hierarchy):

• refers to applying the cross-validation first for predicting the NACE 1 level and using the
predicted probabilities for the NACE 1 category as predictors for predicting the NACE 2
level

Results

• 40 cross-validation runs: training (80%), validation (10%), test (10%)

→ hardly any differences between the model settings and feature selection
score

Results
• Average accuracy (y-axis) by NACE 2 digits (codes) (x-axis) for each model specification and feature

selection score. The panels split the NACE 2 codes by number of enterprises available in the training
data:

Results

• Average accuracy (y-axis) by company size (~employed persons) for each model specification and
feature selection score.

More in depth reading

• Deliverable 3.1: WP3 1st Interim
technical report (internal)

https://ec.europa.eu/eurostat/cros/content/url-finding-methodology_en

• Report: URL finding methodology
(public on Cros portal)

https://ec.europa.eu/eurostat/cros/content/url-finding-methodology_en

Lessons Learned

Arnout van Delden, Johannes Gussenbauer

Train- test set construction

Issues:

• Not always a 1:1 link between website and enterprise

• Enterprises often have multiple activities: predict more labels

• Difficult to obtain error-free training material

• Website texts over report certain activities (sales, quality) and under
report others (production)

Some options to deal with the issues:

• Drop the uncertain cases from the train-test set

• Use a large train set

• Use a more robust ML algorithm to deal with noise

Features

• Texts from which part of the website?
• Landing page, about us page, contact page.

• Feature derivation – how to get rid of (some) noise? Points to
consider:

• Knowledge-intensive or not?

• Context or not?

• Language-specific standardisation

• Different phrasing on websites than in NACE classification definitions

• Properly processing inputs can be more important than choice of
algorithm (“rubbish in rubbish out”)

Algorithms

• Some models have large difference between train and test
performance: check for overfitting in the CV procedure

• Confidences can be calibrated into probabilities: a good calibration set
is needed

• Splitting data and training multiple models also makes sense when
putting procedure in production -> smooth predictions

Classes to predict

• High level NACE codes are heterogeneous: more training examples

• Class ‘Other’ very difficult to predict

• Rare classes: less training material and also not so interesting to
automate

Options:

• Predict in different rounds? From more to less certain/ easy classes

• Skip rare and more difficult classes

Performance scores

• Think carefully what you want to achieve
• Automatic coding / generating predictions / derive estimates from predicted

probabilities/ …

• When every NACE code is equally important, use a macro score

• If you predict multiple labels for a website and only one has to be true,
then adjust your performance measure to that situation

• Can be very useful to study which errors the model makes and to
which factors they relate

	Slide 1: Using Web Scraped Data to Enhance the Quality of the Statistical Business Register Manveer Mangat, Heidi Kühnemann, Arnout van Delden, Johannes Gussenbauer
	Slide 2: Outline
	Slide 3: Webscraping
	Slide 4: Web scraping
	Slide 5: What we see
	Slide 6
	Slide 7: Specifc vs. Generic web scraping
	Slide 8: URL-Finding
	Slide 9: Enterprise URLs: Why and How?
	Slide 10: URL finding overview
	Slide 11: Search engines
	Slide 12: API or Search Engine Scraping?
	Slide 13: Scraping
	Slide 14: Feature Extraction
	Slide 15: Machine Learning / Deterministic Rules
	Slide 16: URL finder software
	Slide 17: Literature / Further reading
	Slide 18: How to link web scraped 3rd party data to the business register
	Slide 19: Introduction
	Slide 20: Example SN: building a linkage approach
	Slide 21: Analysis: missing information
	Slide 22: Analysis: missing information
	Slide 23: Linkage approach
	Slide 24: 2 Linkage using linkage points (2019)
	Slide 25: 3 Linkage probability (2022-2023)
	Slide 26: Results (2020): type of linkage
	Slide 27: Introduction on how to apply automatic prediction of NACE codes from web scraped texts
	Slide 28: Approach
	Slide 29: Elements to consider
	Slide 30: Input, feature extractor
	Slide 31: Actual features
	Slide 32: Machine learning algorithms
	Slide 33: Labels, train and test set
	Slide 34: Evaluate model performance
	Slide 35: Case study Stats Netherlands
	Slide 36: Case Study
	Slide 37: Case Study
	Slide 38: NACE Code Classification
	Slide 39: Case Study Statistics Austria
	Slide 40: Pre-processing of scraped text
	Slide 41: Feature selection:
	Slide 42: Model specification
	Slide 43
	Slide 44: Results
	Slide 45: Results
	Slide 46: Results
	Slide 47: More in depth reading
	Slide 48: Lessons Learned
	Slide 49: Train- test set construction
	Slide 50: Features
	Slide 51: Algorithms
	Slide 52: Classes to predict
	Slide 53: Performance scores

