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Web scraping

• Definition: Automated gathering of data from the world wide web

• Examples for web data sources
• Search engines

• Online Shops

• Hotel booking platforms

• Enterprise websites

• Social media

• News websites

• Personal blogs

• Wikipedia

Official Statistics 

mostly focusses 

on these



What we see



vs. What we 
scrape



Specifc vs. Generic web scraping

Specific web scraping Generic web scraping

Website structure is known Website structure is not known

Extraction of specific elements in HTML 

code (eg. with XPATH, css selectors)

Text mining, regular expressions, etc. to 

extract information

Extracted data usually contains the 

information of interest

Extracted data by itself is often not very 

meaningful, but is input for further 

models

This is what we focus on today
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Enterprise URLs: Why and How?

Why?

• Freely available enterprise information on various topics

• Potential to reduce response burden in some areas

• Potential to update statistical business register (SBR) with additional 
data source

How?

• Obtain data from registers and surveys (not always possible!)

• Data purchases → Topic 3

• Automated procedure to search for URLs



URL finding overview

Search 
enterprises 
in search 
engine

Search term, 
eg. name + 
municipality

URL patterns to 
include/exclude 
in API settings

Exclusion of 
some file types 
in search term

Scrape 
URLs

Scraped are eg.:

Google URL

Landing page of 
domain

Imprint/contact
page

Feature 
Extraction

Features:
• Name
• Address
• Tax/business 

register IDs
• Search 

position
Some text 
processing steps

ML / 
Deterministic 
rules

Needs training 
data!

Manually 
classified or 
obtained 
through other 
means



Search engines

% domains matched GOOGLE GOOGLE API BING YAHOO DUCK

Italian sample 74.8 66.7 64.7 63.6 57.6

Hessian sample 89 87 62 59 NA

Criteria to consider when selecting a search engine:

• Can a SE identify the correct URLs?

• Limits in the number of requests

• Costs of requests

Comparison of SE results for ca. 100 Italian and Hessian enterprises



API or Search Engine Scraping?

API:

✓ Many configuration options

✓ High frequency of requests possible

 Only small number of requests are free

Search Engine Scraping:

✓ Requests are free

✓Obtain results like a human being

 Potential violation of terms of use

 Scrapers might get blocked



Scraping

• By far the most cumbersome step: scrape all result URLs

• Each search produces ca. 10-30 URLs to be scraped (result URLs, 
contact pages, imprint, landing,…)

• URLs are very diverse: different technologies, sometimes large 
contents

• Information is sometimes hidden in Javascript → Javascript rendering 
software is advisable (automated browser)

• Headless browsers: Selenium or Splash are in use within ESS

• But: Javascript rendering increases the amount of downloaded data 
and bandwidth usage

• Massive scraping needs special infrastructure



Feature Extraction

• Preprocessing steps, eg.
• remove css styles and javascript code

• remove duplicate whitespaces

• lowercasing words and letters

• Compare enterprise data from SBR with scraped data, eg.
• Name is on website

• VAT ID is on websites,

• …

• Features are created with exact string matching or regular 
expressions

• String similarity for comparison of short texts with enterprise data (eg. 
name and HTML title)



Machine Learning / Deterministic Rules

• When do we accept a URL as correct?

• Deterministic rules: 
• eg. VAT ID on website → website correct

• Easy to build and interprete

• What if enterprise data is missing in the SBR or on the website?

• What if other website mentions data of different enterprises?

• Validation data necessary to measure classification performance

• Machine Learning:
• Training & validation data necessary

• Model decides which features have which weight

• Reduced interpretability



URL finder software

• Python (Statistics Netherlands): 
https://github.com/SNStatComp/urlfinding

• Python (Statistics Bulgaria): 
https://github.com/EnterpriseCharacteristicsESSnetBigData/StarterKit
/tree/master/URLsFinder

• Java (Istat): 
https://github.com/EnterpriseCharacteristicsESSnetBigData/UrlSearc
her

• R (Statistics Hesse): Not yet published

https://github.com/SNStatComp/urlfinding
https://github.com/EnterpriseCharacteristicsESSnetBigData/StarterKit/tree/master/URLsFinder
https://github.com/EnterpriseCharacteristicsESSnetBigData/StarterKit/tree/master/URLsFinder
https://github.com/EnterpriseCharacteristicsESSnetBigData/UrlSearcher
https://github.com/EnterpriseCharacteristicsESSnetBigData/UrlSearcher


WIN Report on URL finding methodology 

(https://ec.europa.eu/eurostat/cros/system/files/20220131_url_finding_met

hodology.pdf)

Delden, Arnout van; Windmeijer, Dick; Bosch, Olav ten (2019): Searching 

for business websites. CBS (Discussion Paper). https://www.cbs.nl/en-

gb/background/2020/01/searching-for-business-websites.

Barcaroli, Giulio; Scannapieco, Monica; Summa, Donato (2016): On the 

Use of Internet as a Data Source for Official Statistics: a Strategy for 

Identifying Enterprises on the Web. In: Italian Review of Economics, 

Demography and Statistics 4 (70), S. 25–41. 

http://www.sieds.it/listing/RePEc/journl/2016LXX_N4_RIEDS_25-

41_Scannapieco.pdf.

Literature / Further reading

https://ec.europa.eu/eurostat/cros/system/files/20220131_url_finding_methodology.pdf
https://ec.europa.eu/eurostat/cros/system/files/20220131_url_finding_methodology.pdf
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Introduction

• Third parties web scraped business data:

URL, economic activity, phone number, keywords website text, …  

• Aim to link URL to ‘businesses’ in Statistical Business Register 

• SBR: legal units (LUs) are building blocks

• Therefore it is practical to link URLs to LUs

• Often LU – website links are 1:1

• Sometimes multiple URLs link to a LU (e.g. different products)

• Sometimes a URL links to multiple LU’s (enterprise group).



Example SN: building a linkage approach

• 3rd party data: Dataprovider (DP)

• What identification keys are in both sources?

(*) when a LU registers at Chamber of Commerce it may mention the URL. That is sent 
to Statistics Netherlands. 

(**) hostname: dashboards.cbs.nl, domain name: cbs.nl

Key Type of key Reliable?

Hostname (*)(**) Unique High

Domain name (**) Unique High

LU–ID Unique High

Email Non-unique Medium

Zip-code Non-unique Medium / Low

Phone Non-unique Medium / Low



Analysis: missing information

• Considerable part of the 
identifying information 
is missing 

(counted in Oct 2020)



Analysis: missing information

• Considerable part of the 
identifying information 
is missing 

(counted in Oct 2020)



Linkage approach

Development of linkage protocol:

1. Stepwise linkage procedure with qualitative score function (2016)(*)

2. More generic linkage approach based on agreement of linkage 
keys with approximate linkage probability based on points (2019)

3. As 2, but now the linkage probability is based more advanced 
regression model and evaluation of linkage quality (2022-2023)

(*) see Oostrom, L. et al. (2016). Measuring the internet economy in The 
Netherlands: a big data analysis. CBS Discussion paper 2016-14 (publicly 
available)



2 Linkage using linkage points (2019)

• Agreement per variable is given certain linkage points

• Points based on 2016 protocol and trial and error

• 20 links checked per “total number of points”-category to estimate 
linkage probability: 47.5*LN(points) – 234, with min = 0, max = 1.

DataProvider Legal unit Points

Hostname Website 500

Domain Website 500

LU-ID LU-ID 500

Email Email 200

ZipCode ZipCode 200

Phonenumber Phonenumber 100

Total number of 

points

Linkage probability

100-300 0

400 50

500-900 75

1000 95

1100 97

>=1200 100



3 Linkage probability (2022-2023)

• Sample of potential matches is evaluated (400 per group):
• linkage probability < 50

• Linkage probability >=50

• 3rd party hostnames not linked

• SBR LUs not linked

• Estimate a (weighted) logistic regression model with probability of a 
match (yes/no) as a function of agreement (yes/no) per variable1

• Results on non-matched records may lead to more variables that are 
used as linkage keys.

1 Tuoto (2016). New proposal for linkage error estimation. Statistical journal of IAOS 32 
(2016) 413–420



Results (2020): type of linkage

• One URL may link to multiple legal units: 
• e.g. website of an air plane company that refers to enterprise group

• A legal unit may link to multiple URLs:
• e.g. different products on different websites

• At 75% linkage probability:

# ULRs

# LU’s 2+ (n) 1 0 Total

2+ (m) 4 863 27 935
3 957 354 4 630 836

1 111 904 528 780

0 5 057 922 X X
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Approach

• There is no standard recipe for NACE prediction using website texts

• Situations per country differ in many ways (purpose, language, )

Therefore:

• Purpose is to inspire and to share lessons learned. 

• We like to learn from you when you have tried it yourself

• We will share experiences from Statistics Netherlands and Austria

• We show different steps of the process and choices that we made…



Elements to consider



Input, feature extractor

Input

• URL, headers, Main body, subpages (about us, contact page)

Extract features

• to extract useful text parts, remove HTML (Justext)

• keep only texts of language(s) of interest (Langdetect)

• drop uninformative websites: HTML-errors and texts like ‘this domain is 
reserved’ or ‘this domain is unavailable’



Actual features

1. Pre-processing: downcasing, stopword removal, stemming or 
lemmatisation

2. Selection of tokens: Knowledge-based features, use of global 
feature importance

3. Weighting of tokens: Tf-idf weighting, BM25 weighting

4. Adding context via word-embeddings: (Fasttext, doc2vec)



Machine learning algorithms

1. Many different algorithms are available: classical textmining / 
neural-net algorithms

2. Hierarchical versus direct prediction the NACE code at the 
level of interest

3. Hyperparameter tuning very important



Labels, train and test set

1. What NACE level and what which spectrum of codes?

2. How can you obtain a (nearly) error-free data set?
• Erroneous labels are learned by the ML model, so should be avoided

3. Balancedness of the train set:
• With unbalanced set more difficult to achieve an accurately trained model

4. Is your test set representative of the targeted population?
• Ideally, one has inclusion weights with respect to the population



Evaluate model performance

1. What kind of predictions are you interested in?
• A single label per unit, multiple labels and / or a probability per label

2. Where do you use the predictions for?
• Support manual editing or automatically predict new labels?

3. Performance per record or per NACE most important?

4. Do not forget the confusion matrix



Case study Stats Netherlands

Aim: Predict main activity of legal units

Data: 35 733 URLs in NACE section R, homepage, `About us', `Contact' or 
`Terms and Conditions' page, plus up to 10 underlying pages

Knowlegde based features: concept words (C-words; car) and descriptive 
words (D-words; station wagon, four-wheel drive, …) 

Experiments: different feature sets, classifiers, pre-processing steps , direct v.s. 
hierarchical classification

Performance: F1, accuracy, MCC score, macro-average weighted by # URLs per  
NACE code. 



Case Study



Case Study

Main results: 

• Differences among pre-processing settings were very small (not shown)

• The support vector machine models best

• Hierarchical classification performed slightly worse than the direct classification

• Limited effect of feature types but full + D-words & Full + C-words performed 
best. 

• Best model had a weighted F1 score of 0.712 (top 1 prediction) and 0.849 (top3 
prediction)



NACE Code 
Classification

Johannes Gussenbauer, Manveer Mangat, Alexander Kowarik
Statistics Austria



Case Study Statistics Austria

Aim: Predict main activity of legal units
• Eventually use predictions to help with editing NACE codes in BR

Data: URL pairs found while scraping for ICT Survey (2019 – 2021)
• Deterministic URL-linking

• Models trained on ICT Survey (2019-2021) – results presented for ICT Survey 2021



Pre-processing of scraped text

• Text on the landing page and sub-pages containing certain key-words in the link 
are scraped

• Only text elements are kept and further processed (removal of digits and 
punctuations, removal/replacement of characters not part of the German 
dictionary, etc)

• Currently apply 

1. “German morphological lexicon” (http://www.danielnaber.de/morphologie/)

2. Lemmetization

3. Stemming

http://www.danielnaber.de/morphologie/


Feature selection:

• After pre-processing scraped text contains >1Mio distinct words

• Idea: use the words and descriptions for NACE classification used by STAT 
(~ 20 000 words) as features→ Problem: 34% of these words did not  appear 
in our web scraped texts

• Solution: combine a global and a local feature selection score function to 
select a balanced set of features (“An Improved Global Feature Selection 
Scheme for Text Classification.” Uysal (2016))

• selection strategy is applied to all the training data to select 200 and 500 
words for each NACE2 code, W-200, W-500, respectively



Model specification

• Model 1: 

consists of feedforward layers and has as input the one-hot encoded W-200 words from 
the webpages weighted by the term frequency-inverse document frequency 
transformation (Wide)

• Model 2: consists of the first one with an additional structure (Wide + Deep):

a) W-500 transformed using pre-trained word embeddings from fastText
b) additional structure consists of multiple convolutional filters applied to the word 

embeddings
c) results from the feed forward and convolutional layers are concatenated in an 

penultimate layer 
d) then supplied to a final softmax layer
e) R-Package keras, see Allaire and Chollet (2019), and the tensorflow software Abadi et 

al. (2015) used 

• Model 3 (Wide + Deep +Hierarchy): 

• refers to applying the cross-validation first for predicting the NACE 1 level and using the 
predicted probabilities for the NACE 1 category as predictors for predicting the NACE 2 
level





Results

• 40 cross-validation runs: training (80%), validation (10%), test (10%) 

→ hardly any differences between the model settings and feature selection 
score



Results
• Average accuracy (y-axis) by NACE 2 digits (codes) (x-axis) for each model specification and feature 

selection score. The panels split the NACE 2 codes by number of enterprises available in the training 
data:



Results

• Average accuracy (y-axis) by company size (~employed persons) for each model specification and 
feature selection score. 



More in depth reading

• Deliverable 3.1: WP3 1st Interim 
technical report (internal)

https://ec.europa.eu/eurostat/cros/content/url-finding-methodology_en

• Report: URL finding methodology 
(public on Cros portal)

https://ec.europa.eu/eurostat/cros/content/url-finding-methodology_en


Lessons Learned
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Train- test set construction

Issues:

• Not always a 1:1 link between website and enterprise

• Enterprises often have multiple activities: predict more labels

• Difficult to obtain error-free training material

• Website texts over report certain activities (sales, quality) and under 
report others (production)

Some options to deal with the issues:

• Drop the uncertain cases from the train-test set

• Use a large train set

• Use a more robust ML algorithm to deal with noise



Features

• Texts from which part of the website? 
• Landing page, about us page, contact page.

• Feature derivation – how to get rid of (some) noise? Points to 
consider: 

• Knowledge-intensive or not? 

• Context or not?  

• Language-specific standardisation

• Different phrasing on websites than in NACE classification definitions

• Properly processing inputs can be more important than choice of 
algorithm (“rubbish in rubbish out”)



Algorithms

• Some models have large difference between train and test 
performance: check for overfitting in the CV procedure

• Confidences can be calibrated into probabilities: a good calibration set 
is needed

• Splitting data and training multiple models also makes sense when 
putting procedure in production -> smooth predictions



Classes to predict

• High level NACE codes are heterogeneous: more training examples

• Class ‘Other’ very difficult to predict

• Rare classes: less training material and also not so interesting to 
automate

Options: 

• Predict in different rounds? From more to less certain/ easy classes

• Skip rare and more difficult classes



Performance scores

• Think carefully what you want to achieve
• Automatic coding / generating predictions / derive estimates from predicted 

probabilities/ … 

• When every NACE code is equally important, use a macro score

• If you predict multiple labels for a website and only one has to be true, 
then adjust your performance measure to that situation

• Can be very useful to study which errors the model makes and to 
which factors they relate
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