Using Web Scraped Data to Enhance the Quality of the Statistical Business Register

Manveer Mangat, Heidi Kühnemann, Arnout van Delden, Johannes Gussenbauer

Trusted Smart Statistics – Web Intelligence Network Grant Agreement: 101035829

Outline

- Webscraping
- URL-Finding
- Link web scraped 3rd party data to the SBR
- NACE Code Classification
 - Introduction & Case Study Statistics Netherlands
 - Case Study Statistics Austria
 - Lessons Learned

Webscraping

Heidi Kühnemann Statistics Hesse

Web scraping

- Definition: Automated gathering of data from the world wide web
- Examples for web data sources
 - Search engines
 - Online Shops
 - Hotel booking platforms
 - Enterprise websites
 - Social media
 - News websites
 - Personal blogs
 - Wikipedia

Official Statistics mostly focusses on these

Web Intelligence Network

What we see

	C E	xample D	omain		×	+	
\leftarrow	\rightarrow	С	ଲ	4	Nicht siche	er	example.com

 \square

— c

A™ ⊕ tô t≞ 🦉

Example Domain

This domain is for use in illustrative examples in documents. You may use this domain in literature without prior coordination or asking for permission.

More information...

Web Intelligence Network

□ C Example Domain x view-source:example.com x +

Zeilenumbruch 🗌 1 <!doctype html> 2 <html> <head> 3 <title>Example Domain</title> 4 5 <meta charset="utf-8" /> 6 <meta 7 <meta name="viewport" content="width=device-width, initial-scale=1" /> 8 <style type="text/css"> 9 10 body { background-color: #f0f0f2; 11 12 margin: 0; 13 padding: 0; font-family: -apple-system, system-ui, BlinkMacSystemFont, "Segoe UI", "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif; 14 15 16 } div { 17 18 width: 600px; margin: 5em auto; 19 20 padding: 2em; 21 background-color: #fdfdff; 22 border-radius: 0.5em; vs. What we box-shadow: 2px 3px 7px 2px rgba(0,0,0,0.02); 24 } a:link, a:visited { 25 scrape 26 color: #38488f; text-decoration: none; 27 28 @media (max-width: 700px) { 29 30 div { margin: 0 auto; 31 32 width: auto; 33 3 34 35 </style> 36 </head> 37 <body> 38 <div> 39 40 <h1>Example Domain</h1> This domain is for use in illustrative examples in documents. You may use this 41 domain in literature without prior coordination or asking for permission. 42 43 More information... 44 </div> 45 </body>

- 46 </html>
- 47

Specifc vs. Generic web scraping

Specific web scraping	Generic web scraping
Website structure is known	Website structure is not known
Extraction of specific elements in HTML code (eg. with XPATH, css selectors)	Text mining, regular expressions, etc. to extract information
Extracted data usually contains the information of interest	Extracted data by itself is often not very meaningful, but is input for further models

This is what we focus on today

URL-Finding

Heidi Kühnemann Statistics Hesse

Enterprise URLs: Why and How?

Why?

- Freely available enterprise information on various topics
- Potential to reduce response burden in some areas
- Potential to update statistical business register (SBR) with additional data source

How?

- Obtain data from registers and surveys (not always possible!)
- Data purchases → Topic 3
- Automated procedure to search for URLs

URL finding overview

Web Intelligence Network

Search engines

Criteria to consider when selecting a search engine:

- Can a SE identify the correct URLs?
- Limits in the number of requests
- Costs of requests

o/ 1					DUOV
% domains matched	GOOGLE	GOOGLE API	BING	YAHOO	DUCK
Italian sample	74.8	66.7	64.7	63.6	57.6
Hessian sample	89	87	62	59	NA

Comparison of SE results for ca. 100 Italian and Hessian enterprises

API or Search Engine Scraping?

API:

- ✓ Many configuration options
- ✓ High frequency of requests possible
- × Only small number of requests are free

Search Engine Scraping:

- ✓ Requests are free
- ✓Obtain results like a human being
- × Potential violation of terms of use
- × Scrapers might get blocked

Scraping

- By far the most cumbersome step: scrape all result URLs
- Each search produces ca. 10-30 URLs to be scraped (result URLs, contact pages, imprint, landing,...)
- URLs are very diverse: different technologies, sometimes large contents
- Information is sometimes hidden in Javascript → Javascript rendering software is advisable (automated browser)
- Headless browsers: Selenium or Splash are in use within ESS
- But: Javascript rendering increases the amount of downloaded data and bandwidth usage
- Massive scraping needs special infrastructure

Feature Extraction

- Preprocessing steps, eg.
 - remove css styles and javascript code
 - remove duplicate whitespaces
 - lowercasing words and letters
- Compare enterprise data from SBR with scraped data, eg.
 - Name is on website
 - VAT ID is on websites,
 - ...
- Features are created with exact string matching or regular expressions
- String similarity for comparison of short texts with enterprise data (eg. name and HTML title)

Machine Learning / Deterministic Rules

- When do we accept a URL as correct?
- Deterministic rules:
 - eg. VAT ID on website \rightarrow website correct
 - Easy to build and interprete
 - What if enterprise data is missing in the SBR or on the website?
 - What if other website mentions data of different enterprises?
 - Validation data necessary to measure classification performance
- Machine Learning:
 - Training & validation data necessary
 - Model decides which features have which weight
 - Reduced interpretability

URL finder software

- Python (Statistics Netherlands): <u>https://github.com/SNStatComp/urlfinding</u>
- Python (Statistics Bulgaria): <u>https://github.com/EnterpriseCharacteristicsESSnetBigData/StarterKit</u> <u>/tree/master/URLsFinder</u>
- Java (Istat):
 <u>https://github.com/EnterpriseCharacteristicsESSnetBigData/UrlSearcher</u>
- R (Statistics Hesse): Not yet published

Funded by

the European Union

Literature / Further reading

WIN Report on URL finding methodology (<u>https://ec.europa.eu/eurostat/cros/system/files/20220131_url_finding_met</u> hodology.pdf)

Delden, Arnout van; Windmeijer, Dick; Bosch, Olav ten (2019): Searching for business websites. CBS (Discussion Paper). https://www.cbs.nl/en-gb/background/2020/01/searching-for-business-websites.

Barcaroli, Giulio; Scannapieco, Monica; Summa, Donato (2016): On the Use of Internet as a Data Source for Official Statistics: a Strategy for Identifying Enterprises on the Web. In: Italian Review of Economics, Demography and Statistics 4 (70), S. 25–41. http://www.sieds.it/listing/RePEc/journl/2016LXX_N4_RIEDS_25-41_Scannapieco.pdf.

How to link web scraped 3rd party data to the business register

> Arnout van Delden, Nick de Wolf Statistics Netherlands

Introduction

- Third parties web scraped business data: URL, economic activity, phone number, keywords website text, ...
- Aim to link URL to 'businesses' in Statistical Business Register
- SBR: legal units (LUs) are building blocks
- Therefore it is practical to link URLs to LUs
- Often LU website links are 1:1
- Sometimes multiple URLs link to a LU (e.g. different products)
- Sometimes a URL links to multiple LU's (enterprise group).

Example SN: building a linkage approach

- 3rd party data: Dataprovider (DP)
- What identification keys are in both sources?

Кеу	Type of key	Reliable?
Hostname (*)(**)	Unique	High
Domain name (**)	Unique	High
LU–ID	Unique	High
Email	Non-unique	Medium
Zip-code	Non-unique	Medium / Low
Phone	Non-unique	Medium / Low

(*) when a LU registers at Chamber of Commerce it may mention the URL. That is sent to Statistics Netherlands.

(**) hostname: dashboards.cbs.nl, domain name: cbs.nl

Analysis: missing information

 Considerable part of the identifying information is missing

(counted in Oct 2020)

Analysis: missing information

 Considerable part of the identifying information is missing

(counted in Oct 2020)

Linkage approach

Development of linkage protocol:

- 1. Stepwise linkage procedure with qualitative score function (2016)(*)
- 2. More generic linkage approach based on agreement of linkage keys with approximate linkage probability based on points (2019)
- 3. As 2, but now the linkage probability is based more advanced regression model and evaluation of linkage quality (2022-2023)

(*) see Oostrom, L. et al. (2016). Measuring the internet economy in The Netherlands: a big data analysis. CBS Discussion paper 2016-14 (publicly available)

2 Linkage using linkage points (2019)

- Agreement per variable is given certain linkage points
- Points based on 2016 protocol and trial and error
- 20 links checked per "total number of points"-category to estimate linkage probability: 47.5*LN(points) – 234, with min = 0, max = 1.

DataProvider	Legal unit	Points
Hostname	Website	500
Domain	Website	500
LU-ID	LU-ID	500
Email	Email	200
ZipCode	ZipCode	200
Phonenumber	Phonenumber	100

Total number of points	Linkage probability
100-300	0
400	50
500-900	75
1000	95
1100	97
>=1200	100

Funded by

the European Union

3 Linkage probability (2022-2023)

- Sample of potential matches is evaluated (400 per group):
 - linkage probability < 50
 - Linkage probability >=50
 - 3rd party hostnames not linked
 - SBR LUs not linked
- Estimate a (weighted) logistic regression model with probability of a match (yes/no) as a function of agreement (yes/no) per variable¹
- Results on non-matched records may lead to more variables that are used as linkage keys.

¹ Tuoto (2016). New proposal for linkage error estimation. Statistical journal of IAOS 32 (2016) 413–420

Results (2020): type of linkage

• One URL may link to multiple legal units:

- e.g. website of an air plane company that refers to enterprise group
- A legal unit may link to multiple URLs:
 - e.g. different products on different websites
- At 75% linkage probability:

		# ULRs		
# LU's	2+ (n)	1	0	Total
2+ (m)	4 863	27 935	2 057 254	4 620 926
1	111 904	528 780	3 957 354	4 030 830
0	5 057 922		x	X

Introduction on how to apply automatic prediction of NACE codes from web scraped texts

> Arnout van Delden, Nick de Wolf Statistics Netherlands

Approach

- There is no standard recipe for NACE prediction using website texts
- Situations per country differ in many ways (purpose, language,)

Therefore:

- Purpose is to inspire and to share lessons learned.
- We like to learn from you when you have tried it yourself
- We will share experiences from Statistics Netherlands and Austria
- We show different steps of the process and choices that we made...

Elements to consider

Input, feature extractor

Input

• URL, headers, Main body, subpages (about us, contact page)

Extract features

- to extract useful text parts, remove HTML (Justext)
- keep only texts of language(s) of interest (Langdetect)
- drop uninformative websites: HTML-errors and texts like 'this domain is reserved' or 'this domain is unavailable'

Actual features

- 1. Pre-processing: downcasing, stopword removal, stemming or lemmatisation
- 2. Selection of tokens: Knowledge-based features, use of global feature importance

Funded by

the European Union

- 3. Weighting of tokens: Tf-idf weighting, BM25 weighting
- 4. Adding context via word-embeddings: (Fasttext, doc2vec)

Machine learning algorithms

- Many different algorithms are available: classical textmining / neural-net algorithms
- 2. Hierarchical versus direct prediction the NACE code at the level of interest
- 3. Hyperparameter tuning very important

Labels, train and test set

- 1. What NACE level and what which spectrum of codes?
- 2. How can you obtain a (nearly) error-free data set?
 - Erroneous labels are learned by the ML model, so should be avoided
- 3. Balancedness of the train set:
 - With unbalanced set more difficult to achieve an accurately trained model
- 4. Is your test set representative of the targeted population?
 - Ideally, one has inclusion weights with respect to the population

Evaluate model performance

- 1. What kind of predictions are you interested in?
 - A single label per unit, multiple labels and / or a probability per label
- 2. Where do you use the predictions for?
 - Support manual editing or automatically predict new labels?
- 3. Performance per record or per NACE most important?
- 4. Do not forget the confusion matrix

Case study Stats Netherlands

Aim: Predict main activity of legal units

Data: 35 733 URLs in NACE section R, homepage, `About us', `Contact' or `Terms and Conditions' page, plus up to 10 underlying pages

Knowlegde based features: *concept words* (C-words; car) and *descriptive words* (D-words; station wagon, four-wheel drive, ...)

Experiments: different feature sets, classifiers, pre-processing steps, direct v.s. hierarchical classification

Performance: F1, accuracy, MCC score, macro-average weighted by # URLs per NACE code.

Case Study

Case Study

Main results:

- Differences among pre-processing settings were very small (not shown)
- The support vector machine models best
- Hierarchical classification performed slightly worse than the direct classification
- Limited effect of feature types but full + D-words & Full + C-words performed best.
- Best model had a weighted F1 score of 0.712 (top 1 prediction) and 0.849 (top3 prediction)

Funded by

the European Union

NACE Code Classification

Johannes Gussenbauer, Manveer Mangat, Alexander Kowarik Statistics Austria

Web Intelligence

Case Study Statistics Austria

Aim: Predict main activity of legal units

• Eventually use predictions to help with editing NACE codes in BR

Data: URL pairs found while scraping for ICT Survey (2019 – 2021)

- Deterministic URL-linking
- Models trained on ICT Survey (2019-2021) results presented for ICT Survey 2021

Pre-processing of scraped text

 Text on the landing page and sub-pages containing certain key-words in the link are scraped

 Only text elements are kept and further processed (removal of digits and punctuations, removal/replacement of characters not part of the German dictionary, etc)

- Currently apply
 - 1. "German morphological lexicon" (http://www.danielnaber.de/morphologie/)
 - 2. Lemmetization
 - 3. Stemming

Web Intelligence Network

Feature selection:

- After pre-processing scraped text contains >1Mio distinct words
- <u>Idea</u>: use the words and descriptions for NACE classification used by STAT (~ 20 000 words) as features→ <u>Problem</u>: 34% of these words did not appear in our web scraped texts
- <u>Solution</u>: combine a global and a local feature selection score function to select a balanced set of features ("An Improved Global Feature Selection Scheme for Text Classification." Uysal (2016))
- selection strategy is applied to all the training data to select 200 and 500 words for each NACE2 code, W-200, W-500, respectively

Model specification

• <u>Model 1</u>:

consists of feedforward layers and has as input the one-hot encoded W-200 words from the webpages weighted by the term frequency-inverse document frequency transformation (*Wide*)

- <u>Model 2</u>: consists of the first one with an additional structure (*Wide* + *Deep*):
 - a) W-500 transformed using pre-trained word embeddings from fastText
 - b) additional structure consists of multiple convolutional filters applied to the word embeddings
 - c) results from the feed forward and convolutional layers are concatenated in an penultimate layer
 - d) then supplied to a final softmax layer
 - e) R-Package keras, see Allaire and Chollet (2019), and the tensorflow software Abadi et al. (2015) used
- <u>Model 3 (Wide + Deep + Hierarchy)</u>:
 - refers to applying the cross-validation first for predicting the NACE 1 level and using the predicted probabilities for the NACE 1 category as predictors for predicting the NACE 2 level

Web Intelligence Network

Funded by

the European Union

Results

• 40 cross-validation runs: training (80%), validation (10%), test (10%)

 \rightarrow hardly any differences between the model settings and feature selection score

Results

 Average accuracy (y-axis) by NACE 2 digits (codes) (x-axis) for each model specification and feature selection score. The panels split the NACE 2 codes by number of enterprises available in the training data:

Results

 Average accuracy (y-axis) by company size (~employed persons) for each model specification and feature selection score.

More in depth reading

• Deliverable 3.1: WP3 1st Interim technical report (internal)

55 ESSnet Trusted Smart Stratistics – Web Intelligence Network Grant Agreement Number: 101035829 – 2020-PL-SmartStat Work Package 3 New Use-cases	Report: URL finding methodology
Deliverable 3.1: WP3 1st Interim technical report Final version, 2022-03-30	Draft (ver. 5.0), 2022-01-31
Prepared by: WP leader: Galya Stateva (BNSI, Bulgaria, <u>gtateva@xsi.bg</u>) UCt coordinator: Dominil: Dairvorski (S., Poland) UC2 coordinator: Revue Munter (SCB, Sveden) UC4 coordinator: March Loginator (SCB, Sveden) UC4 coordinator: March Loginator Volani (SLS, Poland) UC4 coordinator: Aren Volani (SLB, Netherlands) UC5 coordinator: Srah Phelip (SUS, Netherlands) UC6 coordinator: Srah Phelip (SUS, Netherlands)	URL Finding Methodology Prepared by: 1. Heidi Kühnemann (HSL, Germany, Heidi.kuehnemann@statistik.hessen.de) 2. Arnout van Deiden (CBS, Netherlands) 3. Donato Summa (Stat, Italy) 4. Johannes Gussenbauer (STAT, Austria) 5. Alerandra (B) (Destatis Germany)
Contributors: Andress May-Vachowius – UCI (SS-BBB, Germany) Anss: Linutanie – UCS (SS, Finland) Dick Windmeijer – UCI (SS, Finland) Dick Windmeijer – UCI (SS, Finland) Geta Lastop – UCI (SS, Finland) Geta Lastop – UCI (SS, Finland) Height Ledern – UCI (SS, Finland) Isofance Georgiev – UCI (USS, Finland) Katualia Bestzenk – UCI (GS, Finland) Katualia Bestzenk – UCI (GS, Boland) Katualia Bestzenk – UCI (GS, Boland) Pater Vitag – UCI (GS, Boland) Pater Vitag – UCI (GS, Boland) Pater Vitag – UCI (GS, Boland) Pater Lamarche – UCI (INSE, France) Ryan Leuix – UCI (GS, Finland) Salchta Fender – UCI (GS, Finland) Salchta Fender – UCI (GS, Boland)	Contraction and (Catalow and (Catalow and Catalow and (Catalow and Catalow and (Catalow and Catalow and (Catalow and (Cat
Web Intelligence Funded by the European Union	URL Finding Methodology Generation Generatio Generation Generation Generation Generation

https://ec.europa.eu/eurostat/cros/content/url-finding-methodology_en

Funded by the European Union

Report: URL finding methodology (public on Cros portal)

ESSnet Trusted Smart Statistics – Web Intelligence Network Grant Agreement Number: 101035829 — 2020-PL-SmartStat

Joint report for Work Package 2 (Online Based Enterprise Characteristics) and Work Package 3, Use Case 5 (Business register quality enhancement)

Lessons Learned

Arnout van Delden, Johannes Gussenbauer

Web Intelligence

Train- test set construction

Issues:

- Not always a 1:1 link between website and enterprise
- Enterprises often have multiple activities: predict more labels
- Difficult to obtain error-free training material
- Website texts over report certain activities (sales, quality) and under report others (production)

Some options to deal with the issues:

- Drop the uncertain cases from the train-test set
- Use a large train set
- Use a more robust ML algorithm to deal with noise

Features

- Texts from which part of the website?
 - Landing page, about us page, contact page.
- Feature derivation how to get rid of (some) noise? Points to consider:
 - Knowledge-intensive or not?
 - Context or not?
 - Language-specific standardisation
 - Different phrasing on websites than in NACE classification definitions
- Properly processing inputs can be more important than choice of algorithm ("rubbish in rubbish out")

Algorithms

- Some models have large difference between train and test performance: check for overfitting in the CV procedure
- Confidences can be calibrated into probabilities: a good calibration set is needed
- Splitting data and training multiple models also makes sense when putting procedure in production -> smooth predictions

Classes to predict

- High level NACE codes are heterogeneous: more training examples
- Class 'Other' very difficult to predict
- Rare classes: less training material and also not so interesting to automate

Options:

Predict in different rounds? From more to less certain/ easy classes

Funded by

the European Union

Skip rare and more difficult classes

Network

Performance scores

- Think carefully what you want to achieve
 - Automatic coding / generating predictions / derive estimates from predicted probabilities/ ...
- When every NACE code is equally important, use a macro score
- If you predict multiple labels for a website and only one has to be true, then adjust your performance measure to that situation
- Can be very useful to study which errors the model makes and to which factors they relate

