
In association with:

Development, implementation and demonstration of a reference processing
pipeline for the future production of official statistics based on multiple
Mobile Network Operator data (TSS multi-MNO)

Service Contract Number – 2021.0400

D4.2 – Second code release and documentation

Copyright @ 2024 European Union - Licensed under EUPL

Development, implementation and demonstration of a reference

processing pipeline for the future production of official statistics

based on multiple Mobile Network Operator data (TSS multi-MNO)

Service Contract Number – 2021.0400

Deliverable 4.2: Second code release and documentation

Version number: final

Date: 29 November 2024

The information and views set out in this publication are those of the authors and do not necessarily reflect the

official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting

on their behalf may be held responsible for the use which may be made of the information contained therein.

Cover Photo by wd toroMC from Pexels

Copyright @ 2024 European Union - Licensed under EUPL

https://www.pexels.com/photo/telecommunication-tower-under-cloudy-and-blue-sky-wireless-communication-and-information-technology-concept-17324301/

1

\ ABSTRACT

The Multi-MNO project aims to develop, implement and demonstrate a proposal for a reference standard

processing pipeline for the future production of official statistics in Europe based on Mobile Network

Operator (MNO) data from multiple operators. The term "processing pipeline" refers to the combination of a

methodological framework and a reference open-source software adhering to such a framework. This report

presents the list of software artefacts developed within the Multi-MNO project based on the requirements and

specifications provided by the methodological framework defined in deliverables D2.2 and D3.1. The software

artefacts include: (i) open-source software and testing datasets, (ii) technical documentation (including software

requirements, design and tests), (iii) developers guide and (iv) user manual. This report provides detailed

information about the software technological stack, requirements and design. Rest of software artefacts (code,

testing datasets, user manual, developer guide, etc.) are provided in the project’s Github repository publicly

available at the following link: https://github.com/eurostat/multimno.

Authors: The report was prepared under the technical coordination of Miguel Picornell (Senior Expert, Nommon).

Further contributions, expertise and research support were provided by: (in alphabetical order) Gabriele Ascari,

Oliver Bollverk, Roberto Cenciotti, Erika Cerasti, Loredana Di Consiglio, Cristina Faricelli, Ricardo Herranz, Paolo

Mattera, Miguel Picornell, Roberta Radini, Giorgia Simeoni, Margus Tiru, Villem Tonnison, Tiziana Tuoto, Luca

Valentino and Ivan Vasilyev. Specific contributions for the geolocation and continuous time segmentation

modules were provided by: Edwin de Jonge, Jan van der Laan, Matthias Offermans and Martijn Tennekes.

Acknowledgments: The authors express their gratitude for the technical review and coordination ensured by

Fabio Ricciato, responsible for steering the project on behalf of Eurostat.

This report was prepared in the context of the service contract ref. 2021.0400 awarded by Eurostat to the

consortium led by GOPA (Germany), in collaboration with the industry partners NOMMON (Spain) and POSITIUM

(Estonia), and the National Statistical Institutes ISTAT (Italy) and CBS (Netherlands).

On behalf of the contractor, project management is ensured by Florabela Carausu (GOPA).

DOCUMENT VERSION STATUS AND FUTURE UPDATES:

The document is a work-in-progress interim version of the first project deliverable. Therefore, its content may change

in future versions. This document and any future updates will be publicly disseminated on the Multi-MNO project

webpage: https://cros.ec.europa.eu/multi-mno-project

Readers are invited to submit comments and corrections or share their views via email to multimno-

project@gopa.de

https://github.com/eurostat/multimno
https://www.gopa.de/
https://www.nommon.es/
https://positium.com/
https://www.istat.it/
https://www.cbs.nl/en-gb
https://cros.ec.europa.eu/multi-mno-project
mailto:multimno-project@gopa.de
mailto:multimno-project@gopa.de

2

Abbreviations

5G Fifth-generation technology

AWS Amazon Web Services

EMR Elastic MapReduce

ESS European Statistical System

GCP Google Cloud Platform

GSM Global System for Mobile Communications

IDE Integrated Development Environment

ISO International Organisation for Standardisation

LCL Lower Control Limit

LTE Long Term Evolution (mobile networks)

MNO Mobile Network Operator

n/a not applicable

PEP 8 Python Enhancement Proposal 8

QW Quality Warnings

UCL Upper Control Limit

UMTS Universal Mobile Telecommunications System

UTC Universal Time Coordinated

3

Table of Contents
Abbreviations ... 2

Table of Contents ... 3

Index of Figures .. 6

Index of Tables .. 7

1 Introduction ... 8

1.1 Background and objectives ... 8

1.2 Scope of the document ... 8

1.3 Document structure .. 8

2 Overview of software artefacts and mapping to the methodological framework ... 9

2.1 Software artefacts and repository structure ... 9

2.2 Mapping to the methodological framework .. 9

2.3 General overview of the software solution design and release status ... 11

3 Software requirements ... 13

3.1 General requirements ... 14

3.2 Component requirements ... 15

3.2.1 NETWORKCLEANING ... 16

3.2.2 NETWORKQUALITYWARNINGS .. 19

3.2.3 SIGNALSTRENGTHMODELING .. 21

3.2.4 CELLFOOTPRINTESTIMATION.. 23

3.2.5 CELLCONNECTIONPROBABILITYESTIMATION .. 24

3.2.6 EVENTCLEANING.. 25

3.2.7 EVENTQUALITYWARNINGS... 26

3.2.8 EVENTDEDUPLICATION ... 27

3.2.9 SEMANTICCLEANING ... 28

3.2.10 SEMANTICQUALITYWARNINGS .. 29

3.2.11 DAILYPERMANENCESCORE ... 30

3.2.12 CONTINUOUSTIMESEGMENTATION ... 32

3.2.13 INSPIREGRIDGENERATOR.. 33

3.2.14 SYNTHETICDIARIES .. 34

3.2.15 SYNTHETICNETWORK .. 35

3.2.16 SYNTHETICEVENTS ... 36

3.2.17 PRESENTPOPULATIONESTIMATION .. 38

3.2.18 GRIDENRICHMENT ... 40

3.2.19 GEOZONESGRIDMAPPING ... 41

3.2.20 MIDTERMPERMANENCEESTIMATION .. 42

3.2.21 LONGTERMPERMANENCEESTIMATION .. 45

3.2.22 USUALENVIRONMENTLABELING... 46

3.2.23 USUALENVIRONMENTAGGREGATION .. 49

4 Technology stack .. 50

5 Design ... 55

5.1 General design ... 55

5.1.1 Data design .. 55

5.1.2 Software design ... 57

5.1.3 Infrastructure design .. 66

5.1.4 Version control ... 67

5.1.5 Software artefacts design .. 68

5.2 Component design... 69

5.2.1 EVENTCLEANING.. 69

5.2.2 EVENTQUALITYWARNINGS... 73

5.2.3 EVENTDEDUPLICATION ... 77

5.2.4 NETWORKCLEANING ... 81

4

5.2.5 NETWORKQUALITYWARNINGS .. 86

5.2.6 SIGNALSTRENGTHMODELING .. 92

5.2.7 CELLFOOTPRINTESTIMATION.. 96

5.2.8 CELLCONNECTIONPROBABILITYESTIMATION .. 100

5.2.9 SEMANTICCLEANING ... 104

5.2.10 SEMANTICQUALITYWARNINGS .. 108

5.2.11 DEVICEACTIVITYSTATISTICS .. 114

5.2.12 CONTINUOUSTIMESEGMENTATION ... 118

5.2.13 DAILYPERMANENCESCORE ... 124

5.2.14 INSPIREREFERENCEGRIDGENERATION.. 137

5.2.15 SYNTHETICDIARIES .. 140

5.2.16 SYNTHETICNETWORK .. 146

5.2.17 SYNTHETICEVENTS ... 150

5.2.18 GRIDENRICHMENT ... 155

5.2.19 GEOZONESGRIDMAPPING ... 160

5.2.20 PRESENTPOPULATIONESTIMATION .. 164

5.2.21 MIDTERMPERMANENCESCORE .. 172

5.2.22 LONGTERMPERMANENCESCORE ... 177

5.2.23 USUALENVIRONMENTLABELING... 181

5.2.24 USUALENVIRONMENTAGGREGATION .. 196

Annex I – Data objects ... 200

I.1 MNO Event Data – Raw ... 200

I.2 MNO Event Data – Syntactically Cleaned .. 202

I.3 MNO Event Data Syntactic Quality Metrics – by column .. 204

I.4 MNO Event Data Syntactic Quality Metrics – frequency distribution .. 206

I.5 MNO Event Data Quality Warnings – log table .. 207

I.6 MNO Event Data – Deduplicated .. 208

I.7 Cell Locations with Physical Properties - Raw .. 210

I.8 Cell Locations with Physical Properties – Cleaned ... 213

I.9 MNO Network Topology Data Quality Metrics ... 216

I.10 MNO Network Topology Data Quality Warnings – log table ... 218

I.11 Reference Grid .. 220

I.12 Cells Signal Strengths .. 221

I.13 Cell Footprints ... 222

I.14 Cell Intersection Groups ... 223

I.15 Cell Connection and Posterior Probabilities .. 224

I.16 MNO Event Data – Semantically Cleaned ... 225

I.17 MNO Device Semantic Quality Metrics .. 227

I.18 MNO Event Data at Device Level Semantic Quality Warnings – log table .. 229

I.19 Device Activity Statistics ... 232

I.20 Daily Continuous Time Segments .. 235

I.21 Daily Permanence Score ... 237

I.22 MNO Event Data Quality Warnings – for plots ... 238

I.23 MNO Network Syntactic Quality Warnings Line Plot Data .. 239

I.24 MNO Network Syntactic Quality Warnings Pie Plot Data .. 243

I.25 Event Data at Device Level Semantic Quality Warnings Bar Plot Data ... 245

I.26 MNO Network Topology Top Frequent Erros ... 247

I.27 MNO Network Topology Row Error Metrics .. 249

I.28 INSPIRE Grid .. 250

I.29 Countries ... 251

I.30 Synthetic Diaries .. 252

I.31 Enriched Grid ... 254

5

I.32 Landuse .. 255

I.33 Transportation .. 256

I.34 Administrative Units ... 257

I.35 Geographic Zones ... 259

I.36 Zones – Grid Map .. 261

I.37 UE Labels ... 262

I.38 Mid-Term Permanence Metrics ... 264

I.39 Long-Term Permanence Metrics ... 266

I.40 Holiday Dates Calendar .. 268

I.41 Present Population Zone Level .. 269

I.42 Present Population .. 270

I.43 Labeling Quality Metrics ... 271

I.44 Aggregated Usual Environments .. 272

Annex II – Notes for future revision ... 273

6

Index of Figures
Figure 1: Design and status of the multi-MNO codes release 0.3 compared to the methodological

framework .. 12

Figure 2: Medallion architecture scheme ... 56

Figure 3: Pipeline orchestration scheme .. 58

Figure 4: Component and DataObject class diagram ... 59

Figure 5: IO Interface class diagram ... 60

Figure 6: DataObjects example class diagram ... 62

Figure 7: Concrete component implementation class diagram .. 64

Figure 8: Standalone docker deployment ... 66

Figure 9: Distributed computing deployment ... 67

7

Index of Tables
Table 1: List of software artefacts and location of the associated documentation ... 9

Table 2: Mapping of the software modules in the multi-MNO codes release 0.3 to the methods described

in the deliverables from Task 2 .. 10

Table 3: Requirements table template with examples .. 14

Table 4: Software general requirements classified by category ... 14

Table 5: Software technology stack ... 51

8

1 INTRODUCTION

1.1 BACKGROUND AND OBJECTIVES

The Multi-MNO project aims to develop, implement and demonstrate a proposal for a reference standard

processing pipeline for the future production of official statistics in Europe based on Mobile Network Operator

(MNO) data from multiple operators. If successful, the proposal developed by the project may be endorsed as

European Statistical System (ESS) standard by the relevant ESS bodies. The term ‘processing pipeline’ refers to

the combination of a methodological framework and a reference open-source software adhering to such a

framework. The methodological framework mainly includes the definition of scenarios, use cases, methods,

business processes and a quality framework. Detailed information about the methodological framework

developed in this project is provided in the following documentation:

\ D2.2- Updated version of technical documentation for scenarios, requirements, use cases and methods,

and high-level architecture

\ D3.1- Interim version of technical documentation for Business Processes and Quality Framework

Based on the requirements and specifications derived from the methodological framework, an open-source

software for the production of official statistics has been developed.

1.2 SCOPE OF THE DOCUMENT

This document presents the complete list of the software artefacts developed within the Multi-MNO project,

providing detailed information about the software technological stack, requirements and design. Rest of software

documentation (user manual, developer guide, etc.) is provided in the project’s Github repository publicly

available at the following link: https://github.com/eurostat/multimno.

[Remark: The documentation provided so far covers the scope of the multi-MNO release 0.3. The documentation

will be updated as long as new releases are published]

1.3 DOCUMENT STRUCTURE

In addition to this introductory section, the remainder of this document is organised as follows:

• Chapter 2 ‘Overview of software artefacts and mapping with the methodological framework’:

presents the list of artefacts developed within the project and provides a mapping between the software

components and the methods described in D2.2

• Chapter 3 ‘Software requirement specification’: provides the requirements of the software,

addressing both general requirements and component-specific requirements.

• Chapter 4 ‘Technological Stack’: describes the technology stack established for the software, providing

a rationale for the decision taken.

• Chapter 5 ‘Design’: provides the design of the software, addressing both general design and

component-specific design.

• Annex I ‘Data objects’: presents a detailed description of the data objects generated by the software.

• Annex II ‘Notes for future revision’: annotates a partial list of pending points for improvement in

future releases of this deliverable.

https://github.com/eurostat/multimno

9

2 OVERVIEW OF SOFTWARE

ARTEFACTS AND MAPPING TO THE

METHODOLOGICAL FRAMEWORK

2.1 SOFTWARE ARTEFACTS AND REPOSITORY STRUCTURE

Table 1 presents the list of software artefacts developed in this project. Main artefacts cover: (i) open-source

software and testing datasets, (ii) technical documentation (including software requirements, design and tests), (iii)

developers guide, to facilitate maintenance and the future development of the software and (iv) user manual, to

guide the deployment and execution of the software. Most of the documentation is publicly available in the project

GitHub repository: https://github.com/eurostat/multimno. The GitHub repository includes a README.md file to

facilitate the navigation through the software documentation, as well as HTML documentation that enables

interactive web-based navigation.

Table 1: List of software artefacts and location of the associated documentation

ARTEFACTS DESCRIPTION REPOSITORY

Open-source

software

• Open-source code

• Synthetic datasets (inputs and components

outputs for a set of scenarios)

https://github.com/eurostat/multimno

Technical

documentation

• Requirement specifications

• Software design

Present document, Chapter 3 (requirements)

and Chapter 5 (design)

• Testing codes and documentation https://github.com/eurostat/multimno

Developers guide

• Guide for future developers to be able to

contribute to the software

• Methods and functions documentation as

well as code-level comments

https://github.com/eurostat/multimno

User manual

• (how-to guide) on the deployment

• (how-to guide) use of the software (data

and infrastructure requirements, installation

of the software, how to configure and run

the software, etc.).

https://github.com/eurostat/multimno

2.2 MAPPING TO THE METHODOLOGICAL FRAMEWORK

Table 2 shows the software components developed for the multi-MNO codes release 0.3 and their correspondence

with the methods described in the deliverables from Task 2. The software developed consists of a set of

components covering the different use cases defined in Task 2. Software components usually cover one or more

functionalities described in Task 2 methods (e.g. the component ‘CellConnectionProbabilityEstimation’ covers the

https://github.com/eurostat/multimno
https://github.com/eurostat/multimno
https://github.com/eurostat/multimno
https://github.com/eurostat/multimno
https://github.com/eurostat/multimno

10

functionalities described by the methods: ‘Cell Connection Probability Estimation Module' and ‘Posterior

Probability Estimation Module’). Note that it could be the case that a software component is not directly related

with any method described in Task 2, nonetheless its implementation is needed for the correct functioning of the

solution (e.g. 'InspireGridGenerator’ module creates the INSPIRE grid that is used as the reference grid for posterior

analyses).

Table 2: Mapping of the software modules in the multi-MNO codes release 0.3 to the methods described in the

deliverables from Task 2

SOFTWARE COMPONENTS METHOD NAME IN TASK 2

1 NetworkCleaning 1.1 Cleaning of MNO Network Topology Data

2 NetworkQualityWarnings 2.1 Generation of MNO Network Topology Data Syntactic Quality Warnings

3 SignalStrengthModeling 3.1 Propagation Estimation Module

4 CellFootprintEstimation 4.1 Cell Footprint Estimation Module

5 CellConnectionProbabilityEstimation
• 5.1 Cell Connection Probability Estimation Module

• 6.1 Posterior Probability Estimation Module

6 EventCleaning
• 7.1 Cleaning of MNO Event Data - Syntactic Checks

• 9.1 Demultiplexing of MNO Event Data

7 EventQualityWarnings 8.1 Generation of MNO Event Data Syntactic Quality Warnings

8 DeviceActivityStatistics 9.1 Generation of Device Activity Quality Warnings

9 SemanticCleaning 11.1 Cleaning of MNO Event Data at Device Level - Semantic Checks

10 SemanticQualityWarnings 12.1 Generation of MNO Event Data at Device Level Semantic Quality Warnings

11 DailyPermanenceScore
13.2 Estimation of the permanence score for usual environment and home

location assignation

12 ContinuousTimeSegmentation 13.3 Estimation of Continuous Time Segmentation

14 InspireGridGenerator n/a

15 SyntheticDiaries n/a

16 SyntheticNetwork n/a

17 PresentPopulation 13.1 Present Population Estimation

18 GridEnrichment n/a

19 GeoZonesGridMapping n/a

20 MidTermPermanenceScore 14. Mid-Term Processing Module

21 LongTermPermanenceScore 15. Long-Term Processing Module

22 UsualEnvironmentLabelling 15. Long-Term Processing Module

23 UsualEnvironmentAggregation 15. Long-Term Processing Module

11

[Remark - This document contains the information related to the software release 0.3. that covers part of the

methods described in the deliverables from Task 2. This section will be updated as new components of the

pipeline are developed.]

2.3 GENERAL OVERVIEW OF THE SOFTWARE SOLUTION DESIGN AND

RELEASE STATUS

In this section, we provide an overview of the software solution design and status of the multi-MNO release 0.3

implementation. The following diagram provides a high-level overview of the software pipeline. The components

are presented in boxes of different colours to indicate the current development status: (i) green means that the

component is available in release 0.3, (ii) blue means that the component is available in release 0.3 but does not

contain yet all the functionalities planned within the project framework, and (iii) red means that the component is

pending implementation and will be available in future releases. On the other hand, the data is represented by

cylindrical objects in various colors: (i) bright yellow indicates that the data is an input to the process, (ii) light

yellow indicates that the data was generated during the process, and (iii) red indicates that the data is not yet

available in release 0.3 but will be available once development is completed. It is important to note that the

available or partially available components may be improved throughout the project's lifecycle. The enhancements

to be incorporated will mainly be driven by the tests conducted in real-world environments with different MNOs.

12

Figure 1: Design and status of the multi-MNO codes release 0.3 compared to the methodological framework

13

3 SOFTWARE REQUIREMENTS

This chapter describes all the functional and non-functional requirements that each software module of the

pipeline must fulfil. A requirement is a singular documented physical and functional need that a particular design,

product or process must be able to perform. In the definition of the software requirements it is important to comply

with the following set of rules:

1. Clear and Unambiguous: requirements should be expressed in a clear and unambiguous manner, leaving

no room for interpretation. Ambiguity can lead to misunderstandings and errors.

2. Complete: requirements should cover all necessary aspects of the software's functionality, leaving no

critical features or behaviours undocumented.

3. Consistent: requirements should not contradict each other, and they should align with the project's goals

and constraints. Inconsistencies can lead to confusion and conflicts.

4. Feasible: requirements should be technically achievable within the project's constraints, including time,

budget, and available resources.

5. Measurable: requirements should be quantifiable so that they can be objectively verified during testing or

upon delivery. This often involves specifying criteria for success.

6. Testable: requirements should be written in a way that allows for effective testing. Test cases should be

derived directly from the requirements to ensure thorough testing coverage.

7. Modular: requirements should be modular and encapsulate individual pieces of functionalities or features.

This modularity simplifies development and maintenance.

8. Traceable: requirements should be traceable throughout the software development lifecycle, from the

initial concept to the final implementation. Traceability ensures that all requirements are met.

9. Approved: requirements should go through an approval process by relevant stakeholders to ensure that

they accurately represent their needs and expectations.

10. Non-Functional Requirements: these include aspects like performance, security, scalability, usability, and

reliability, in addition to functional requirements.

11. Constraints: requirements should identify any constraints, such as regulatory, hardware, or budget

limitations, that may impact the project.

General requirements (Section 3.1 General requirements) as well as specific module requirements (Section 3.2

Component requirements) are provided. Requirements are provided using a table template (see Table 3) that

contains the following information:

\ ID: requirement identifier with the following naming ‘TSS-AAA-NNN’, where ‘AAA’ is the abbreviation of the

requirements group (e.g. ‘GEN’ refers to ‘general’ requirements) and ‘NNN’ the number of the requirement

within the requirement group (e.g. ‘001’ for the first requirement). Must be unique.

\ Definition: requirement specification. Must be atomic and not ambiguous.

14

Table 3: Requirements table template with examples

ID DEFINITION

TSS-MNO-001 Timestamp data shall be given in the UTC standard.

TSS-MNO-002
The pipeline shall process a single combination of MNO and country data at each instance within the

MNO infrastructure

3.1 GENERAL REQUIREMENTS

The general requirements, covering the functional, infrastructure, software, data and performance dimensions are

described in this section. Some of the requirements are derived by the fact that Big Data sources are used in the

calculation of the indicators1. Therefore, the software must be executable within the Apache Big Data ecosystem

(Hadoop, Hive, Spark…). Other requirements consider the convenience of using state-of-the-art infrastructure for

Big Data analyses (e.g. the use of cloud environments like AWS, GCP or Azure) or the need of local execution (in

conventional laptop and desktops) with synthetic datasets for development and/or demonstration scenarios

purposes. A complete list of the general requirements considered for the development of the software is presented

in Table 4.

Table 4: Software general requirements classified by category

ID DEFINITION

Functional

TSS-GEN-001
The software shall record insights of the data transformations performed in the components in their

respective quality metrics’ data objects.

TSS-GEN-002
The software shall process a single combination of MNO and country data at each instance within the

MNO infrastructure.

TSS-GEN-003 Timestamp data shall be given in the UTC standard.

TSS-GEN-004 The software shall be able to generate synthetic data for an end-to-end pipeline execution.

TSS-GEN-005 The software shall generate data quality indicators for a set of pipeline components.

Infrastructure

TSS-GEN-006 The software shall be executable in cloud environments (AWS, GCP, Azure) of MNO Operators.

TSS-GEN-007 The software shall use the Spark framework for big data processing.

TSS-GEN-008 The software shall be executable in a single computer.

TSS-GEN-009 The software shall be executable in Windows, Linux and Mac operating systems.

Software

TSS-GEN-010
The software shall execute a pipeline of isolated components which do not share in-memory

information between them.2

1 The Multi-MNO project introduces several use cases that involve the processing of MNO data and lists for each use case the

statistical indicators that can be produced. In the reports from the project, the terms statistical indicator and indicator are used

interchangeably. The use cases and targeted statistical indicators are detailed in the project deliverables D2.
2 Rationale: by resetting both the Spark Session and the Python cache before the execution of each component, the isolated

components paradigm helps maintaining the integrity and predictability of the PySpark application. It ensures that each component

can be executed independently, without being influenced by the state or results of other components. This promotes modularity,

simplifies debugging, and enhances overall reliability.

15

ID DEFINITION

TSS-GEN-011
The software shall use a general configuration file and a specific component configuration file for each

of the components in the pipeline.

TSS-GEN-012 Configuration files shall be in INI format.

TSS-GEN-013
If the same configuration value is specified in the component configuration file and the general

configuration file, the component configuration value shall be the one to be used by the software.

TSS-GEN-014 Each component execution shall be performed through a spark-submit command.

TSS-GEN-015 All software dependencies shall be open source.

TSS-GEN-016 All software dependencies shall be free to use.

TSS-GEN-017 The software shall be able to perform spatial computations in a distributed environment.

TSS-GEN-018 The software shall be able to generate code documentation from docstrings.

TSS-GEN-019 The software shall be implemented with modular components following the object-oriented paradigm.

TSS-GEN-020 The software shall be open source and stored in a public repository.

TSS-GEN-021 The software shall use the European Union public license v. 1.2.

TSS-GEN-029 Each component shall log the configuration used in a log file at the start of its execution.

Data

TSS-GEN-022 The software shall write intermediate and output data in parquet format file.

TSS-GEN-023
If data to be written contains a geometry column, the software shall write intermediate and output data

in geoparquet format file.

TSS-GEN-024
The software shall be able to read and write in local filesystems and distributed filesystems (HDFS, AWS

S3, GCP, Azure).

TSS-GEN-025 The software shall be able to ingest reference data in csv, json, txt, shapefile and geojson formats.

TSS-GEN-026
The software shall use a spatial grid following the INSPIRE specification for representing spatial data in

intermediate calculations through the pipeline.

TSS-GEN-027
Input data, configuration data and all output data generated by a demo execution of an end-to-end

pipeline shall be provided in the code repository.

Performance

TSS-GEN-028
The software shall be able to execute an end-to-end pipeline for any of the use cases and for the whole

national territory of the MNO in less than 24 hours.

3.2 COMPONENT REQUIREMENTS

[Remark - This section contains the requirements for the components available in the release 0.3 of the software.]

16

3.2.1 NETWORKCLEANING

ID DEFINITION

TSS-NET-001
The software shall read network topology input data from parquet files stored partitioned by year

(YYYY), month (MM), and day (DD).

TSS-NET-002
The software shall be able to write processed network topology data in parquet format, partitioned by

year (YYYY), month (MM), and day (DD).

TSS-NET-003
The software shall be able to write processed network topology top frequent errors data in parquet

format, partitioned by year (YYYY), month (MM), and day (DD).

TSS-NET-004
The software shall be able to write processed network topology row error metrics data in parquet

format, partitioned by year (YYYY), month (MM), and day (DD).

TSS-NET-005
The software shall check that all the mandatory columns specified in Annex I - I.7 Cell Locations with

Physical Properties - Raw exist in the input data.

TSS-NET-006
The software shall be able to read network topology input data with the data type scheme specified in

Annex I - I.7 Cell Locations with Physical Properties - Raw.

TSS-NET-007
The software shall write output network topology data following the data type scheme specified in

Annex I - I.8 Cell Locations with Physical Properties – Cleaned.

TSS-NET-008
The software shall write output syntactic quality metrics following the data type scheme specified in

Annex I - I.9 MNO Network Topology Data Quality Metrics.

TSS-NET-009
The software shall write output top frequent error data following the data type scheme specified in

Annex I - I.26 MNO Network Topology Top Frequent Erros.

The software shall write output row error metrics following the data type scheme specified in Annex I –

I.27 MNO Network Topology Row Error Metrics.

TSS-NET-10 The software shall discard records where any of the mandatory fields are null.

TSS-NET-011 The software shall discard records where the cell_id field is not a string of length 14 or 15.

TSS-NET-012
The software shall impute a null value in records where the valid_date_start cannot be parsed as a valid

timestamp following the ISO:8601 format YYYY-MM-DDThh:mm.ss.

TSS-NET-013
The software shall impute a null value in records where the valid_date_end, if it is not null, cannot be

parsed as a valid timestamp following the ISO:8601 format YYYY-MM-DDThh:mm.ss.

TSS-NET-014

The software shall impute null values where the valid_date_start and valid_date_end fields are both

non-null, can be parsed to timestamp, and the valid_date_end is an earlier point in time than the

valid_end_start.

TSS-NET-015
The software shall discard records where the latitude field is not within the configuration-specified

bounding box.

TSS-NET-016
The software shall discard records where the longitude field is not within the configuration-specified

bounding box.

TSS-NET-017 The software shall discard records where the antenna_height is less than or equal to 0.

TSS-NET-018 The software shall discard records where the directionality is not equal to either 0 or 1.

TSS-NET-019
The software shall discard records where the azimuth_angle field is null and the directionality field is

equal to 1.

TSS-NET-020
The software shall discard records where the azimuth angle is less than 0 or greater than 360, and the

directionality field is equal to 1.

TSS-NET-021 The software shall discard records where the elevation_angle is less than -90 or greater than 90.

TSS-NET-022 The software shall discard records where the horizontal_beam_width is less than 0 or greater than 360.

TSS-NET-023 The software shall discard records where the vertical_beam_width is less than 0 or greater than 360.

TSS-NET-024 The software shall discard records where the power is equal to or less than 0.

TSS-NET-025 The software shall impute a null value in records where the range is equal to or less than 0.

TSS-NET-026 The software shall impute a null value in records where the frequency is equal to or less than 0.

TSS-NET-027
The software shall impute a null value in records where the technology is not equal to one of the

allowed configuration-specified values.

17

ID DEFINITION

TSS-NET-028
The software shall impute a null value in records where the cell_type is not equal to one of the allowed

configuration-specified values.

TSS-NET-029
The software shall record the time when the component was executed and save it as the

result_timestamp field of the output quality metrics data.

TSS-NET-030
The software shall count the number of records that the input network topology dataset had before

performing any transformation or check.

TSS-NET-031

The software shall record a quality metric with the number of registers in the original input network

topology dataset, with a field_name of null, and a type_code equal to the “total rows at the start of the

method” corresponding error code.

TSS-NET-032
The software shall count the number of records that the output network topology dataset has after all

transformations and checks are performed.

TSS-NET-033
The software shall count the number of records that are deleted after the transformations and checks

are performed.

TSS-NET-034
The software shall count the number of records that had any erroneous or missing value in any of its

fields.

TSS-NET-035

The software shall record a quality metric with the number of registers in the original input network

topology dataset, with a field_name of null, and a type_code equal to the “total rows at the end of the

method” corresponding error code.

TSS-NET-036
The software shall count, for each of the fields of the input data object I.7 Cell Locations with Physical

Properties - Raw (see Annex I), the number of records that had a correct value for that field.

TSS-NET-037

The software shall record a quality metric with the number of correct values in a given field, with a

field_name equal to that field’s value, and a type_code equal to the “no error” corresponding error

code.

TSS-NET-038
The software shall count, for each of the fields of the input data object I.7 Cell Locations with Physical

Properties - Raw (see Annex I), the number of records that had a non-admitted null value for that field.

TSS-NET-039

The software shall record a quality metric with the number of null values in a given field, with a

field_name equal to that field’s value, and a type_code equal to the “null error” corresponding error

code.

TSS-NET-040
The software shall count, for each applicable field of the input data I.7 Cell Locations with Physical

Properties - Raw (see Annex I), the number of records that had a value that could not be parsed.

TSS-NET-041

The software shall record a quality metric with the number of non-null values that could not be parsed

in a given field, with a field_name equal to that field’s value, and a type_code equal to the “could not

parse” corresponding error code.

TSS-NET-042

The software shall count, for each applicable field of the input data object I.7 Cell Locations with

Physical Properties - Raw (see Annex I), the number of records that had a value outside of the accepted

value range.

TSS-NET-043

The software shall record a quality metric with the number of non-null values that could not be parsed

in a given field, with a field_name equal to that field’s value, and a type_code equal to the “out of

range” corresponding error code.

TSS-NET-044

The software shall record a quality metric with the number of registers with non-null valid_date_start

and valid_date_end fields such that valid_date_end was an earlier point in time than valid_date_start,

with a field_name of null, and a type_code equal to the “out of range” corresponding error code.

TSS-NET-045
The software shall be able to count the number of invalid entries found for each of the fields of the

input data, as well as the frequency of each particular invalid value.

TSS-NET-046

The software shall be able to record the top k most frequent invalid values found in the input data,

where k is an integer representing the number of most frequent values to record specified via

configuration, whenever an absolute number of the most frequent invalid values is indicated via

configuration.

TSS-NET-047

The software shall be able to record the most frequent invalid values found in the input data that

represent a k percentage of all total invalid values ordered by absolute frequency, where k is a number

larger than 0 and equal or less than 100, whenever a percentage number of the most frequent invalid

values is indicated via configuration.

18

ID DEFINITION

TSS-NET-048

The software shall read via configuration the parameter k and the parameter frequent_error_criterion,

indicating whether the top k most frequent invalid values or the most frequent invalid values

covering k percentage of all invalid values must be recorded.

TSS-NET-049
The software shall read via configuration the float parameter latitude_min that will define the bounding

box used to check for out-of-range values.

TSS-NET-050
The software shall read via configuration the float parameter latitude_max that will define the bounding

box used to check for out-of-range values.

TSS-NET-051
The software shall read via configuration the float parameter longitude_min that will define the

bounding box used to check for out-of-range values.

TSS-NET-052
The software shall read via configuration the float parameter longitude_max that will define the

bounding box used to check for out-of-range values.

TSS-NET-053
The software shall read via configuration the comma-separated parameter cell_type_options that will

define accepted values of the cell_type field.

TSS-NET-054
The software shall read via configuration the comma-separated parameter technology_options that will

define accepted values of the technology field.

TSS-NET-055
The software shall read via configuration the date parameter data_period_start, the starting date

(included) for which data is to be processed.

TSS-NET-056
The software shall read via configuration the date parameter data_period_end, the ending date

(included) for which data is to be processed.

19

3.2.2 NETWORKQUALITYWARNINGS

ID DEFINITION

TSS-NQW-001
The software shall read network topology syntactic quality metrics input data from parquet files

stored partitioned by year (YYYY), month (MM) and day (DD).

TSS-NQW-002
The software shall be able to write quality warnings log table in parquet format, partitioned by year

(YYYY), month (MM), and day (DD).

TSS-NQW-003
The software shall be able to write line plot data in parquet format, partitioned by variable, year

(YYYY), month (MM), day (DD), and execution timestamp.

TSS-NQW-004
The software shall be able to write pie plot data in parquet format, partitioned by variable, year

(YYYY), month (MM), day (DD), and execution timestamp.

TSS-NQW-005
The software shall be able to read network topology syntactic quality metrics data following the data

type scheme specified in Annex I - I.9 MNO Network Topology Data Quality Metrics.

TSS-NQW-006
The software shall be able to write the output quality warnings log table following the data type

scheme specified in Annex I - I.10 MNO Network Topology Data Quality Warnings – log table.

TSS-NQW-007
The software shall be able to write the output line plot data following the data type scheme specified

in Annex I - I.23 MNO Network Syntactic Quality Warnings Line Plot Data.

TSS-NQW-008
The software shall be able to write the output pie plot data following the data type scheme specified

in Annex I - I.24 MNO Network Syntactic Quality Warnings Pie Plot Data.

TSS-NQW-009
The software shall check that all the metrics for the current date, as well as for the previous period

used for comparison, exist in the input data, and stop the execution if they do not.

TSS-NQW-010
The software shall be able to compute the average value of every quality metric for the previous

period used for comparison.

TSS-NQW-011
The software shall be able to compute the sample standard deviation of every quality metric for the

previous period used for comparison.

TSS-NQW-012
The software shall record, for each quality warning, the date of execution of the quality warnings

component.

TSS-NQW-013
The software shall record, for each quality warning, the study date of the metric that raised the

warning.

TSS-NQW-014 The software shall record, for each quality warning, the value of the metric that raised the warning.

TSS-NQW-015
The software shall record, for each quality warning, the value of the threshold crossed by the metric

that raised the warning.

TSS-NQW-016
The software shall record, for each quality warning, the condition that had to be checked in order to

raise the warning

TSS-NQW-017
The software shall record, for each quality warning, a warning text giving context to the raised

warning.

TSS-NQW-018

The software shall be able to create a warning when the number of rows before the syntactic checks

in the study date, N, verifies some of the following: a) 100 * (N - AVG) / AVG > T1, b) 100 * (N - AVG)

/ AVG < T2, c) N > AVG + T3 * S, d) N < AVG - T3 * S, e) N > T4, f) N < T5; where AVG and S are the

average and standard deviation of the number of rows before the syntactic checks over the previous

period respectively, T1 and T2 are percentage thresholds, T3 is a number-of-standard-deviations

threshold, and T4 and T5 are absolute thresholds.

TSS-NQW-019

The software shall be able to create a warning when the number of rows after the syntactic checks in

the study date, N, verifies some of the following: a) 100 * (N - AVG) / AVG > T1, b) 100 * (N - AVG) /

AVG < T2, c) N > AVG + T3 * S, d) N < AVG - T3 * S, e) N > T4, f) N < T5; where AVG and S are,

respectively, the average and standard deviation of the number of rows before the syntactic checks

over the previous period, T1 and T2 are percentage thresholds, T3 is a number-of-standard-

deviations threshold, and T4 and T5 are absolute thresholds.

TSS-NQW-020

The software shall be able to create a warning when the error rate in the study date, E, verifies some

of the following: a) 100 * (E - AVG)/AVG > T1, b) E > AVG + T2 * S, c) E > T3; where AVG and S are,

respectively, the average and standard deviation of the error rate over the previous period, T1 is a

percentage threshold, T2 is a number-of-standard-deviations threshold, and T3 is an absolute

threshold.

20

ID DEFINITION

TSS-NQW-021

The software shall be able to create a warning when the rate of missing values for any applicable field

in the study date, M, verifies some of the following: a) 100 * (M - AVG)/AVG > T1, b) M > AVG + T2 *

S, c) M > T3; where AVG and S are, respectively, the average and standard deviation of the rate of

missing values for a given field over the previous period, T1 is a percentage threshold, T2 is a

number-of-standard-deviations threshold, and T3 is an absolute threshold.

TSS-NWQ-022

The software shall be able to create a warning when the rate of out-of-range values for any applicable

field in the study date, R, verifies some of the following: a) 100 * (R - AVG)/AVG > T1, b) R > AVG + T2

* S, c) R > T3; where AVG and S are, respectively, the average and standard deviation of the rate of

out-of-range values for a given field over the previous period, T1 is a percentage threshold, T2 is a

number-of-standard-deviations threshold, and T3 is an absolute threshold.

TSS-NQW-023

The software shall be able to create a warning when the rate of parsing errors for any applicable field

in the study date, P, verifies some of the following: a) 100 * (P - AVG)/AVG > T1, b) P > AVG + T2 * S,

c) P > T3; where AVG and S are, respectively, the average and standard deviation of the rate of

parsing errors for a given field over the previous period, T1 is a percentage threshold, T2 is a number-

of-standard-deviations threshold, and T3 is an absolute threshold.

TSS-NQW-024

The software shall be able to write into a parquet file the necessary data to create a line plot showing

the time evolution of the number of rows before the syntactic checks over the previous period and

the study date, along with the average, upper control limit, and lower control limit over the previous

period.

TSS-NQW-025

The software shall be able to write into a parquet file the necessary data to create a line plot showing

the time evolution of the number of rows after the syntactic checks over the previous period and the

study date, along with the average, upper control limit, and lower control limit over the previous

period.

TSS-NQW-026

The software shall be able to write into a parquet file the necessary data to create a line plot showing

the time evolution of the error rate over the previous period and the study date, along with the

average and upper control limit over the previous period.

TSS-NQW-027

The software shall be able to write in a parquet file the necessary data to create, for each field of the

network topology data, a pie plot showing the percentage distribution of errors for that field in the

current date.

TSS-NQW-028
The software shall be able to read the extent of the lookback period from a configuration file with the

following options: “week” (7 days), “month” (30 days), and “quarter” (90 days).

TSS-NQW-029
The software shall be able to read from a configuration file the percentage threshold over the average

for all quality metrics, one per metric.

TSS-NQW-030

The software shall be able to read from a configuration file the percentage threshold under the

average for the number of rows before the syntactic checks and the average number of rows after the

syntactic checks, one for each metric.

TSS-NQW-031
The software shall be able to read from a configuration file the number of standard deviations

threshold over the average for all quality metrics, one per metric.

TSS-NQW-032

The software shall be able to read from a configuration file the number of standard deviations

threshold under the average for the number of rows before the syntactic checks and the average

number of rows after the syntactic checks, one for each metric.

TSS-NQW-033
The software shall be able to read from a configuration file the absolute threshold over the average

for all quality metrics, one per metric.

TSS-NQW-034

The software shall be able to read from a configuration file the absolute threshold under the average

for all quality metrics, for the number of rows before the syntactic checks and the average number of

rows after the syntactic checks, one for each metric.

TSS-NQW-035
The software shall contain default values for every threshold to be used in case they were not

specified via configuration file.

21

3.2.3 SIGNALSTRENGTHMODELING

ID DEFINITION

TSS-SSE-001
The software shall read input data objects from parquet files stored partitioned by year (YYYY), month

(MM), and day (DD).

TSS-SSE-002 The software shall read INSPIRE grid data from geoparquet files.

TSS-SSE-003
The input shall be I.8 Cell Locations with Physical Properties – Cleaned and I.11 Reference Grid Data

Objects (in Annex I).

TSS-SSE-004 The output shall be I.12 Cells Signal Strengths Data Object (in Annex I).

TSS-SSE-005 The software shall read input data for a date range based on the configuration parameter.

TSS-SSE-006 The software shall perform all processing steps for each date in the given date range independently.

TSS-SSE-007 The software shall write output data into parquet format partitioned by year, month, and day.

TSS-SSE-008

The software shall verify the presence of all required attributes of cells for signal strength propagation

modeling. The required attributes are: power, antenna_height.

If directionality is equal 1, then elevation_angle, vertical_beam_width, horizontal_beam_width shall be

present as well.

TSS-SSE-009

The software shall impute missing attributes with default values for different cell types. Default values

are provided for 2 cell types: normal cells and micro cells.

Default values for normal cells are: power = 10, antenna_height = 30, elevation_angle = 5,

vertical_beam_width = 9, horizontal_beam_width = 65

Default values for micro cells are: power = 5, antenna_height = 8, elevation_angle = 5,

vertical_beam_width = 9, horizontal_beam_width = 65

TSS-SSE-010

The software shall add additional attributes which are not part of I.8 Cell Locations with Physical

Properties – Cleaned, but are required for signal strength modeling.

These attributes are: range, path_loss_exponent, azimuth_signal_strength_back_loss,

elevation_signal_strength_back_loss

TSS-SSE-011

The software shall add additional attributes with default values for different cell types. Default values

are provided for 2 cell types: normal cells and micro cells.

Default values for normal cells are: range = 10000, path_loss_exponent = 3.75,

azimuth_signal_strength_back_loss = -30, elevation_signal_strength_back_loss = -30

Default values for micro cells are: range = 1000, path_loss_exponent = 6.0,

azimuth_signal_strength_back_loss = -30, elevation_signal_strength_back_loss = -30

TSS-SSE-012

If the cell type is missing the software shall impute missing attributes and add necessary additional

attributes using a single set of default values. The default values are: power = 5, antenna_height = 8,

elevation_angle = 5, vertical_beam_width = 9, horizontal_beam_width = 65, range = 5000,

path_loss_exponent = 3.75, azimuth_signal_strength_back_loss = -30,

elevation_signal_strength_back_loss = -30

TSS-SSE-013 All default properties for a set of different cell types shall be provided in the configuration file.

TSS-SSE-014
The software shall convert cell antenna power parameters from watts to decibel milliwatts using

formula: P(dBm) = 10 * log10(P(W)) + 30

TSS-SSE-013
The software shall create 3D point geometry of cells using latitude, longitude, and elevation plus the

height of the antenna.

TSS-SSE-014 The software shall create 3D point geometry of grid centroids by adding elevation.

TSS-SSE-015
If elevation or height of the antenna is missing in the input data, the software shall set these attributes

to 0.

TSS-SSE-016 The software shall perform a spatial join of cells with grid centroids based on cell range.

TSS-SSE-017

For signal strength propagation modeling, the software shall calculate planar and 3D cartesian

distances between each cell and grid centroids within the cell radius. If both cells and grid centroids'

elevations are 0, only planar distance is calculated.

22

ID DEFINITION

TSS-SSE-018

The software shall calculate signal strength per grid tile based on the path loss exponent and power

attributes of a cell and 3D distance from cell to grid tile.

Formula for it is: Sg,a = S0 - Sdist(Rg,a), where S0 is P(dBm), Sdist is path_loss_exponent * 10 *

log10(distance_to_cell_3D).

TSS-SSE-019

For directional cells, the software shall support the option for adjusting calculated previously signal

strength values using formula Sg,a = S0 - Sdist(Rg,a) - Sazi(δg,a), where S0 - Sdist(Rg,a) is previously

calculated signal strength values, Sazi(δg,a) is relation between signal loss and the offset azimuth

angles between main direction of a cell and a grid tile.

Sazi(δg,a) is calculated using linear transformation of the Gaussian formula: f(φ) = c - c * exp(-(φ^2) / (2

* σ^2)) where 𝑐 and 𝜎2 are constants, whose value is determined by the cell's direction, horizontal

beam width and the difference in signal strength between back and front of the cell

(azimuth_signal_strength_back_loss).

Whether to perform the adjustment or not shall be a configuration parameter.

TSS-SSE-020

For directional cells, the software shall support the option for adjusting signal strength values using

formula Sg,a = S0 - Sdist(Rg,a) - Selev(εg,a), where S0 - Sdist(Rg,a) is previously calculated signal

strength values, Selev(εg,a) is relation between signal loss and the offset elevation angles between tilt

of a cell and a grid tile.

Selev(εg,a) is calculated using linear transformation of the Gaussian formula: f(φ) = c - c * exp(-(φ^2) /

(2 * σ^2)) where 𝑐 and 𝜎2 are constants, whose value is determined by the elevation angle (tilt), vertical

beam width and the difference in signal strength between back and front of the cell

(elevation_signal_strength_back_loss).

Whether to perform the adjustment step or not should be a configurable parameter.

23

3.2.4 CELLFOOTPRINTESTIMATION

ID DEFINITION

TSS-CFE-001
The software shall read input data objects from parquet files stored partitioned by year (YYYY), month

(MM), and day (DD).

TSS-CFE-002 The input shall be I.12 Cells Signal Strengths Data Object (in Annex I).

TSS-CFE-003 The output shall be I.13 Cell Footprints Data Object (in Annex I).

TSS-CFE-004 The optional output shall be I.14 Cell Intersection Groups Data Object (in Annex I).

TSS-CFE-005 The software shall write output data objects into parquet format partitioned by year, month, day.

TSS-CFE-006 The software shall read input data for a date range based on the configuration parameter.

TSS-CFE-007 The software shall perform all processing steps for each date in the given date range independently.

TSS-CFE-008
The software shall produce a ‘footprint' attribute of type float in the domain [0, 1] from 'signal strength’

input.

TSS-CFE-009
Transformation of ‘signal strength’ to ‘signal dominance’ shall be performed using logistic equation: (𝑔,

𝑎) = 1 / (1 + exp (−(𝑆(𝑔, 𝑎) − 𝑆𝑚𝑖𝑑))).

TSS-CFE-010
Parameters for signal strength transformation equation - Ssteep and Smid shall be defined in

configuration file. Default values are Ssteep = 0.2, 𝑆𝑚𝑖𝑑 = -92.5.

TSS-CFE-011
The software shall have functionality to prune records by selecting cells for which the share to the total

signal dominance of a grid tile is higher than the given threshold.

TSS-SFE-012
The software shall have functionality to prune records by selecting top X cell footprints per grid tile

where X is a configurable parameter.

TSS-SFE-013
The software shall have functionality to prune records by selecting signal dominance values higher than

given threshold.

TSS-SFE-014 Pruning steps are optional. Whether the step is performed or not shall be based on config parameters.

TSS-CFE-015
Parameters for defining top X cells per grid tile and threshold signal dominance values shall be defined

in configuration file.

TSS-CFE-016
The software shall have optional step for calculating I.14 Cell Intersection Groups Data Object (in Annex

I).

TSS-CFE-017

Cell Intersection Groups Calculation shall be performed with the following workflow: 1) Grouping per

grid tile to aggregate all overlapping cells into sorted lists of cell groups; 2) Drop duplicated cell

groups; 3) Generate all missing intersections. For example, for groups of 3 cells create all possible

combinations of groups of 2 cells, for groups of 4 cells generate all possible combinations of groups of

2 cells and 3 cells and so on; 4) Drop duplicated cell groups again

24

3.2.5 CELLCONNECTIONPROBABILITYESTIMATION

ID DEFINITION

TSS-CCPPPE-001
The software shall read input data objects from parquet files stored partitioned by year (YYYY), month

(MM), and day (DD).

TSS-CCPPPE-002
The software shall have one or two inputs: cell footprint values (mandatory) and land use prior

probabilities (optional).

TSS-CCPPPE-003
The input schema for the cell footprint values input dataset shall be I.13 Cell Footprints. This input is

mandatory.

TSS-CCPPPE-004
The input schema for the land use prior probabilities input dataset shall be I.11 Reference Grid. This

input is optional.

TSS-CCPPPE-005
The software shall write output data objects to parquet files stored partitioned by year (YYYY), month

(MM), and day (DD).

TSS-CCPPPE-006 The software shall have one output: cell connection probability values.

TSS-CCPPPE-007
The output schema for cell connection probability values shall be I.15 Cell Connection and Posterior

Probabilities.

TSS-CCPPPE-008
The software shall receive a configurable value for the validity period of input data (start and end

dates).

TSS-CCPPPE-009
The software shall receive a configurable boolean value for deciding whether to use the land use

prior probabilities input data in calculating the posterior_probability column.

TSS-CCPPPE-010

For each date in the validity period, for each grid tile, the software shall calculate the sum of cell

signal dominances on that grid tile using the corresponding data from the cell footprint values input

dataset.

TSS-CCPPPE-011

For each date, for each grid tile, for each cell, the software shall calculate normalized signal

dominance. Normalized signal dominance is calculated by dividing the cell signal dominance value by

the sum of signal dominance values of the same grid tile on the same date.

TSS-CCPPPE-012 For each date, for each grid tile, the normalized signal dominance values shall add up to a sum of 1.

TSS-CCPPPE-013

If using land use prior probabilities is enabled, for each date, for each grid tile, for each cell, the

software shall calculate the posterior probability. Posterior probability is calculated by multiplying the

normalized signal dominance value by the prior probability value of the same grid tile in the land use

prior probabilities input dataset.

TSS-CCPPPE-014
If using land use prior probabilities is not enabled, the posterior probability value is equal to the

normalized signal dominance value.

TSS-CCPPPE-015

For each date, for each grid tile, for each cell, the software shall calculate the cell connection

probability. The cell connection probability is calculated by dividing the posterior probability value by

the sum of posterior probability values of the same cell on the same date.

TSS-CCPPPE-016
For each date, for each cell, the normalized cell connection probability values shall add up to a sum

of 1.

TSS-CCPPPE-017
For each date, for each grid tile, for each cell, the output shall contain both the normalized signal

dominance and the normalized cell connection probability.

25

3.2.6 EVENTCLEANING

ID DEFINITION

TSS-EVN-001

The software shall read event input data from parquet files stored under a folder structure with the

format year=YYYY/month=MM/day=DD/user_id_modulo=x where YYYY represents the year, MM the

month, DD the day for the event, x the user id modulo value and the '/' symbol denotes different folders.

TSS-EVN-002

The software shall be able to write the syntactically cleaned event output data in parquet format,

partitioned by year (YYYY), month (MM) and day (DD), and user_id_modulo in the schema defined I.2

MNO Event Data – Syntactically Cleaned.

TSS-EVN-003

The software shall be able to write the quality metrics frequency distribution in parquet format,

partitioned by date, in the schema defined in I.4 MNO Event Data Syntactic Quality Metrics – frequency

distribution.

TSS-EVN-004
The software shall be able to write the quality metrics by column in parquet format, partitioned by date,

in the schema defined in I.3 MNO Event Data Syntactic Quality Metrics – by column.

TSS-EVN-005
The software shall check that all the mandatory columns specified in I.1 MNO Event Data – Raw data

object exist in the input data.

TSS-EVN-006
If the input data is missing an optional column, the software shall create the optional column with all its

values set to the null value.

TSS-EVN-007 The software shall create a year column of the pyspark datatype ShortType from the timestamp data.

TSS-EVN-008 The software shall create a month column of the pyspark datatype ByteType from the timestamp data.

TSS-EVN-009 The software shall create a day column of the pyspark datatype ByteType from the timestamp data.

TSS-EVN-010 The software shall sort the output data to be written by the user_id and timestamp column.

TSS-EVN-011
The software shall write output data in parquet format partitioned by year, month, day and

user_id_modulo.

TSS-EVN-012

The software shall infer the domain of the data following the logic:

• If the plmn value is not null, the domain is outbound.

• If the mcc value is equal to local_mcc (defined in the configuration), the domain is domestic.

• Otherwise, the domain is inbound.

TSS-EVN-013

The software shall discard domestic and inbound records which do not meet at least one of the following

conditions:

• the cell_id value is valid;

• latitude and longitude values are valid.

TSS-EVN-014
The software shall discard records in which any mandatory field doesn’t comply with the field

requirements specified in the I.1 MNO Event Data – Raw data object.

TSS-EVN-015
The software shall be able to receive by configuration a bounding_box value composed of four decimal

numbers that define a square within WGS84 bounds.

TSS-EVN-016 The software shall discard records in which the user_id is not a binary data type of 32 bytes.

TSS-EVN-017

The software shall discard domestic and inbound records which do not meet both of the following

conditions:

• the mcc value is a 3-digit code;

• the mnc is a 2- or 3-digit code (can also begin with 0).

TSS-EVN-018 The software shall discard outbound records where the plmn value is not a 5 or 6 digit number.

TSS-EVN-019
The software shall discard domestic and inbound records if no latitude and longitude values are given

and the cell_id does not follow CGI and eCGI standards.

TSS-EVN-020
The software shall discard domestic and inbound records if no cell_id value is given and the latitude or

longitude values are not within WGS84 bounds and the bounding_box if given by configuration.

TSS-EVN-021 The software shall receive timestamp data in UTC format.

TSS-EVN-022
The software shall extract the first 12 characters of the user id hash, convert it into integer of base 10, and

apply the modulo function on that result to calculate the user_id_modulo.

TSS-EVN-023

The software shall discard records with identical timestamps and identical location information for every

user, i.e. it shall remove same location duplicates from the data. Two rows have an identical location

information when user_id, timestamp, cell_id, longitude and latitude and plmn columns are identical.

26

3.2.7 EVENTQUALITYWARNINGS

ID DEFINITION

TSS-EVN-QW-001
The software shall be able to perform Quality Warnings checks after MNO Event Cleaning -

Syntactic Checks.

TSS-EVN-QW-002 The software shall be able to read and process configs of Event Cleaning Quality Warnings.

TSS-EVN-QW-003

The software shall read Quality Metrics of MNO Event Cleaning in parquet format stored under a

folder structure with the format date=YYYY-mm-dd. The Quality Metrics include Frequency

Distribution and By Column Data Objects, with schema specified in I.4 MNO Event Data Syntactic

Quality Metrics – frequency distribution and I.3 MNO Event Data Syntactic Quality Metrics – by

column.

TSS-EVN-QW-004

The output of the component shall be a Log Table and ForPlots Data Objects following the data

type scheme specified in I.5 MNO Event Data Quality Warnings – log table and I.22 MNO Event

Data Quality Warnings – for plots.

TSS-EVN-QW-005

The software shall perform Quality Warnings based on Quality Metrics data. Given that

data_period_startand data_period_end define the time boundaries of Event Quality Warnings, the

period of available data of Quality Metrics should span over [data_period_start - lookback_period,

data_period_end], since the intermediate results for Quality Warnings are calculated based on

previous data.

TSS-EVN-QW-006

The software shall write Quality Warnings Log Table and ForPlots data into parquet format

partitioned by date column, the storing period of Log Table should be [data_period_start ,

data_period_end], ForPlots - [data_period_start - lookback_period, data_period_end].

TSS-EVN-QW-007

The software shall compute Quality Warnings and store results in Log Table Data Object regarding

data size (initial and final frequency), which includes checking if a size within a range of two

absolute numbers (upper and lower limit) and between [mean+X*std, mean-X*std] boundaries

(calculated based on lookback data). Applicable only for Event Cleaning Quality Warnings.

TSS-EVN-QW-008

The software shall compute Quality Warnings and store results in Log Table Data Object regarding

error rate (formula = (Total initial frequency - Total final frequency) / Total initial frequency*100))on

four granularity levels: by date, by date and cell_id, by date and user_id, by date and cell_id and

user_id. The error rate is checked on three warnings: should not be higher than some absolute

number; should not be higher than average of previous error rates by some X%, should not be

higher than mean + X*std (average and std are calculated on lookback data). Applicable only for

Event Cleaning Quality Warnings.

TSS-EVN-QW-009

The software shall compute Quality Warnings and store results in Log Table Data Object regarding

error type rate for each specified error rate&field name combination (formula = number of errors of

error type&field name combination / Total initial frequency *100). The checks on error type rate

contains three warnings: it must not exceed a specific absolute number; it should not surpass the

average of prior error type rates by a certain percentage X; and it cannot be greater than the mean

plus X times the standard deviation (where both average and standard deviation are determined

using historical data). Applicable for Event Cleaning Quality Warnings.

TSS-EVN-QW-010

The software shall store data in ForPlots Data Object to plot three variables' distribution - initial

frequency, final frequency, and error rate by date along with their corresponding mean,

mean+X*std (UCL - upper control limit), mean-X*std values (LCL - lower control limit), computed on

lookback period. Applicable only for Event Cleaning Quality Warnings.

TSS-EVN-QW-011
The software’s orchestration shall provide the option to flexibility define what group of Quality

Warnings to compute and what values for different thresholds to choose.

27

3.2.8 EVENTDEDUPLICATION

ID DEFINITION

TSS-EVNDED-001
The software shall perform removal of same and different location duplicates and calculate

corresponding quality metrics.

TSS-EVNDED-002 The software shall read and process configs of EventDeduplication module.

TSS-EVNDED-003 The input event data schema shall be I.2 MNO Event Data – Syntactically Cleaned.

TSS-EVNDED-004
The software shall calculate and write three quality metrics: (i) same location deduplication discarded

row count, (ii) different location deduplication discarded row count, (iii) record frequency distribution.

TSS-EVNDED-005 The output schema for deduplicated event data shall be I.6 MNO Event Data – Deduplicated.

TSS-EVNDED-006

The software shall distinguish between two types of duplication errors: same location duplicates

and different location duplicates. In case of same location duplicates, only one row is kept. In case

of different location duplicates, all rows are dropped. All rows that remain are considered

deduplicated event data.

TSS-EVNDED-007 The software shall apply same location deduplication before different location deduplication.

TSS-EVNDED-008

The software shall identify as a group of same location duplicates any two or more event records

that meet each of the following conditions: (i) identical user id, (ii) identical timestamp, (iii) identical

location (either (iiia) identical cell id or (iiib) identical longitude-latitude pair).

TSS-EVNDED-009
The software shall for each group of same location duplicates keep one record and discard all other

records.

TSS-EVNDED-010
The software shall calculate the same location deduplication discarded row count quality metric as

the total number of records discarded by same location duplicate removal for each date.

TSS-EVNDED-011

The output schema for the same location deduplication discarded row count quality metric shall be

I.3 MNO Event Data Syntactic Quality Metrics – by column, using the error code reserved for same

location duplicate errors.

TSS-EVNDED-012

The software shall identify as a group of different location duplicates any two or more event

records that meet each of the following conditions: (i) identical user id, (ii) identical timestamp, (iii)

non-identical location (either (iiia) non-identical cell id or (iiib) non-identical longitude-latitude

pair).

TSS-EVNDED-013 The software shall for each group of different location duplicates discard all the records.

TSS-EVNDED-014
The software shall calculate the different location deduplication discarded row count quality metric as

the total number of records discarded by different location duplicate removal for each date.

TSS-EVNDED-015

The output schema for the different location deduplication discarded row count quality metric shall

be I.3 MNO Event Data Syntactic Quality Metrics – by column, using the error code reserved for

different location duplicate errors.

TSS-EVNDED-016
The software shall calculate the record frequency distribution quality metric as the number of records

per user per cell before deduplication and after deduplication for each date.

TSS-EVNDED-017
The output schema for the record frequency distribution quality metric shall be I.4 MNO Event Data

Syntactic Quality Metrics – frequency distribution.

28

3.2.9 SEMANTICCLEANING

ID DEFINITION

TSS-ESC-001
The software shall be able to read deduplicated event input data from parquet files stored partitioned

by year (YYYY), month (MM), day (DD), and user_id_modulo.

TSS-ESC-002
The software shall be able to read clean network topology input data from parquet files stored

partitioned by year (YYYY), month (MM), and day (DD).

TSS-ESC-003
The software shall be able to read syntactically clean event input data with the data type scheme

specified in I.6 MNO Event Data – Deduplicated Cleaned.

TSS-ESC-004
The software shall be able to read clean network topology input data with the data type scheme

specified in I.8 Cell Locations with Physical Properties – Cleaned.

TSS-ESC-005
The software shall be able to write the semantically clean event output data in parquet format,

partitioned by year (YYYY), month (MM), day (DD), and user_id_modulo.

TSS-ESC-006
The software shall be able to write the semantic quality metrics output data in parquet format,

partitioned by year (YYYY), month (MM), and day (DD).

TSS-ESC-007
The software shall be able to write the output semantically cleaned event data at device level following

the data scheme specified in I.16 MNO Event Data – Semantically Cleaned.

TSS-ESC-008
The software shall be able to write the output device semantic quality metrics following the data

scheme specified in I.17 MNO Device Semantic Quality Metrics.

TSS-ESC-009

The software shall be able to flag with the corresponding error code those event registers which make

a reference to a cell ID that does not exist in the input network topology data for the date in which that

event was registered.

TSS-ESC-010

The software shall be able to flag with the corresponding error code those event registers which make

a reference to a cell ID that does in the input network topology data for the date in which that event

was registered, but is not operational at the moment the event was registered.

TSS-ESC-011

The software shall be able to flag with the error code corresponding to certain incorrect location an

event register where the estimated distance and speed between this event and both the previous and

following event are above some distance and speed thresholds specified via configuration.

TSS-ESC-012

The software shall be able to flag with the error code corresponding to suspicious incorrect location an

event register where the estimated distance and speed between this event and either the previous or

the following event, but not both at the same time, are above some distance and speed thresholds

specified via configuration.

TSS-ESC-013

The software shall be able to flag with the error code corresponding to suspicious incorrect location the

first event of a user if the estimated distance and speed with the second event register are above some

distance and speed thresholds specified via configuration.

TSS-ESC-014 The software shall be able to flag with the error code corresponding to different location duplicate.

TSS-ESC-015 The software shall not delete any event registers when they are flagged.

TSS-ESC-016
The software shall be able to count, for a given day, the number of events flagged with each error code,

as well as non-flagged events.

TSS-ESC-017
The software shall be able to record each quality metric together with the timestamp of the moment

when the component was executed.

TSS-ESC-018 The software shall be able to record each quality metric together with the date to which it refers.

TSS-ESC-019
The software shall be able to read from a configuration file the minimum distance threshold, in meters,

above which an event might be flagged with a location related error code.

TSS-ESC-020

The software shall be able to flag with the corresponding error code those event registers which are

different location duplicates. These are rows which have identical timestamp values for a given user, but

non-identical values in any other columns.

29

3.2.10 SEMANTICQUALITYWARNINGS

ID DEFINITION

TSS-ESW-001
The software shall be able to read semantic quality metrics input data from parquet files stored

partitioned by year (YYYY), month (MM) and day (DD).

TSS-ESW-002
The software shall be able to read semantic quality metrics input data with the data type scheme

specified in I.17 MNO Device Semantic Quality Metrics.

TSS-ESW-003
The software shall be able to write bar plot data in parquet format, partitioned by variable, year (YYYY),

month (MM), day (DD), and execution timestamp.

TSS-ESW-004
The software shall be able to write the output quality warnings log table following the data type scheme

specified in I.18 MNO Event Data at Device Level Semantic Quality Warnings – log table.

TSS-ESW-005
The software shall be able to write the output bar plot data following the data type scheme specified in

I.25 Event Data at Device Level Semantic Quality Warnings Bar Plot Data.

TSS-ESW-006

The software shall be able to calculate the percentage with which each error type occurs, including the

“no error” type, defined as the fraction of the number of said error type over the total number of events

for a given date.

TSS-ESW-007

The software shall be able to calculate, for each error type, the sample standard deviation of the

percentage of each error type over a lookback period specified via configuration file for each particular

error type.

TSS-ESW-008

The software shall be able to raise a warning, in the case that all lookback period dates are present, when

the percentage of a given error type is greater than the average percentage over its lookback period by

more than a given number of standard deviations

TSS-ESW-009

The software shall be able to raise a warning, in the case that all lookback period dates are present but

are strictly lower than 3, when the percentage of a given error type is greater than a given absolute

threshold.

TSS-ESW-010
The software shall not raise a warning for a given error type when any of the dates in its lookback period

is missing.

TSS-ESW-011 The software shall record the percentage of each error type (excluding the “no error type”).

TSS-ESW-012
The software shall record the threshold computed for a given error type from the average and sample

standard deviations of its lookback period whenever all dates in its lookback period are present.

TSS-ESW-013

The software shall be able to write into a parquet file the necessary data to create a bar plot with the

dates in its horizontal axis, ranging from the furthest lookback period in the past to the study date, and

the absolute count of each error type, including the “no error” type, in the vertical axis, for the dates in

which this data exists.

TSS-ESW-014

The software shall be able to write into a parquet file the necessary data to create a bar plot with the

dates in its horizontal axis, ranging from the furthest lookback period in the past to the study date, and

the percentage of each error type, including the “no error” type, in the vertical axis, for the date in which

this data exists.

TSS-ESW-015
The software shall be able to read from a configuration file the lookback period to be considered,

measured in days, one per metric.

TSS-ESW-016
The software shall be able to read from a configuration file the number of standard deviations to be

considered to compute the thresholds, one per metric.

TSS-ESW-017
The software shall be able to read from a configuration file the percentage threshold to use as threshold

when the standard deviation cannot be computed, one per metric.

TSS-ESW-018
The software shall contain default values for every threshold and lookback period, to be used in case they

are not specified via configuration file.

30

3.2.11 DAILYPERMANENCESCORE

ID DEFINITION

TSS-DPS-001
The software shall read semantically cleaned event input data from parquet files stored partitioned by

year (YYYY), month (MM), day (DD) and user_id_modulo.

TSS-DPS-002
The software shall be able to read semantically cleaned event input data with the data type scheme

specified in I.16 MNO Event Data – Semantically Cleaned.

TSS-DPS-003
The software shall read cell footprint input data from parquet files stored partitioned by year (YYYY),

month (MM), and day (DD).

TSS-DPS-004
The software shall be able to read cell footprint input data with the data type scheme specified in I.13 Cell

Footprints.

TSS-DPS-005
The software shall be able to write daily permanence score data to parquet files stored partitioned by

year (YYYY), month (MM), day (DD), user_id_modulo and id_type.

TSS-DPS-006
The software shall write output daily permanence score data following the data type scheme specified in

I.21 Daily Permanence Score.

TSS-DPS-007 The software shall load parameter values from a configuration file.

TSS-DPS-008
The software shall load all events of the user within the analysed date, also including the last event

preceding this date and the first event following it.

TSS-DPS-009 The software shall find, for each user and analysed date, each group of 3 events.

TSS-DPS-010

The software shall calculate the minimum Euclidean distance between the cell footprints of the event

sequence.

E.g.: d(A,B), d(B,C), d(A,C).

TSS-DPS-011

The software shall calculate the sum of the distance from the first cell of the 3-cell event sequence (A) to

the second cell (B) plus the distance from this "intermediate" cell (B) to the last cell of the event sequence

(C).

E.g.: d(A,B,C) = d(A,B) + d(B,C)

TSS-DPS-012
The software shall select the maximum distance from d(A,C) and d(A,B,C).

E.g.: d = max(d(A,C),d(A,B,C))

TSS-DPS-013

The software shall calculate the time difference between the first and the last event of each event

sequence.

E.g.: Δt = t(C) - t(A)

TSS-DPS-014

The software shall calculate the speed resulting from dividing the maximum distance by the time

difference between the first and last events of the sequence.

s = d / Δt

TSS-DPS-015
The software shall tag all the intermediate events between the first and last events of the sequence as

"move" events if the maximum speed (s) is higher than a specified threshold (e.g. 50 km/h).

TSS-DPS-016

The software shall generate a preliminary initial timestamp and a preliminary final timestamp for each

permanence-associated event (events which have not been tagged as "move"). The preliminary initial

timestamp shall be equal to the average time point between the previous event of the user and this

event, and the preliminary final timestamp shall be equal to the average time point between this event

and the following. If no previous event or no posterior events are available, a standard predefined

displacement (max_time_thresh/2) shall be applied to the event time in order to obtain the initial/final

timestamp (e.g. 15 min).

TSS-DPS-017

The software shall modify the preliminary initial timestamp when the previous event happens in the same

cell as the current event if the time between the previous event and the current event is higher than a

specified threshold. This threshold shall be configurable for day (max_time_thresh_day for 9:00-22:59)

and night (max_time_thresh_night for 23:00-8:59) periods (e.g. 2h from 9:00h to 22:59h and 8h from

23:00 to 8:59h). In case the time difference is higher than the threshold, a standard predefined

displacement (max_time_thresh/2) shall be applied to the current event time in order to obtain its initial

timestamp (e.g. 15 min).

TSS-DPS-018

The software shall modify the preliminary final timestamp when the posterior event happens in the same

cell as the current event if the time between the posterior event and the current event is higher than a

specified threshold. This threshold shall be configurable for day (max_time_thresh_day for 9:00-22:59)

and night (max_time_thresh_night for 23:00-8:59) periods (e.g. 2h from 9:00h to 22:59h and 8h from

31

ID DEFINITION

23:00 to 8:59h). In case the time difference is higher than the theshold, a standard predefined

displacement (max_time_thresh/2) shall be applied to the current event time in order to obtain its final

timestamp (e.g. 15 min).

TSS-DPS-019

The software shall modify the preliminary initial timestamp when the previous event happens in a

different cell from the current event cell if the time between the previous event and the current event is

higher than a specified threshold (max_time_thresh). In case the time difference is higher than the

threshold, a standard predefined displacement (max_time_thresh/2) shall be applied to the current event

time in order to obtain its initial timestamp (e.g. 15 min).

TSS-DPS-020

The software shall modify the preliminary final timestamp when the posterior event happens in a

different cell from the current event cell if the time between the posterior event and the current event is

higher than a specified threshold (max_time_thresh). In case the time difference is higher than the

threshold, a standard predefined displacement (max_time_thresh/2) shall be applied to the current event

time in order to obtain its final timestamp (e.g. 15 min).

TSS-DPS-021
The software shall split the day into N time slots of equal length, where N is the "time_slot_number"

parameter loaded from the configuration file.

TSS-DPS-022

The software shall intersect each of the N time slots with the permanence events of the user in the

analysed date, and thus obtain, for each time slot, the cells in which the user presents permanence and

for how long within the time slot.

TSS-DPS-023
The software shall compute for each user and time slot the total time in seconds the user has not

presented permanence in any cell.

TSS-DPS-024
The software shall convert from cell to tile by using the cell footprint data, obtaining the information of

how long the user presents permanence in each tile in each time slot.

TSS-DPS-025
The software shall map the total time in seconds in a time slot that a user has not presented permanence

in any cell to a virtual grid_id under the name ‘unknown’.

TSS-DPS-026
The software shall record for each location in the ‘id_type’ field a value of ‘grid’ whenever the ‘grid_id’

field contains the ID of a grid tile, or ‘unknown’ when the ‘grid_id’ field contains the ‘unknown’ value.

TSS-DPS-027

The software shall generate a daily permanence score (DPS) for each time slot and tile combination

according to the time that the user presents permanence in that tile during the time slot t, and the

duration of that timeslot, T. The DPS shall be an integer between 0 and 1, following this rule:

• If the user presents permanence in a tile for 0 < t < T/2 during the time slot, then DPS = 0 for

that user, tile and time slot.

• If the user presents permanence in a tile for T/2 <= t <= T during the time slot, then DPS = 1

for that user, tile and time slot.

32

3.2.12 CONTINUOUSTIMESEGMENTATION

ID DEFINITION

TSS-CTS-001
The software shall read input data from parquet files stored under a folder structure with the format

year=YYYY/month=MM/day=DD.

TSS-CTS-002
The input data shall be I.16 MNO Event Data – Semantically Cleaned and I.14 Cell Intersection Groups

Data Objects.

TSS-CTS-003
The optional input data is previously calculated I.20 Daily Continuous Time Segments for the date before

current processing date.

TSS-CTS-004 The output data shall be I.20 Daily Continuous Time Segments Data Object.

TSS-CTS-005 The software shall write output data in parquet format partitioned by year, month, day.

TSS-CTS-006 The software shall read input data for a date range based on the configuration parameter.

TSS-CTS-007 The software shall validate that events data for a given date range is available.

TSS-CTS-008 The software shall perform all processing steps for each date in the given date range independently.

TSS-CTS-009
The software shall be able to do Time Segments aggregation either from scratch or starting from the last

created Time Segments. This shall be defined by configuration parameter.

TSS-CTS-010
For each processing date, the software shall get MNO Events and Cell Intersection Groups data for the

current date and next date (D, D+1).

TSS-CTS-011
If available, the software shall additionally get the last Time Segment for each user for the previous date

(D-1).

TSS-CTS-012

For each user’s daily events data, the software shall aggregate events into Continuous Time Segments

based on time and location difference between consecutive events. This operation shall be performed by

iteration over events and comparisons of previously created Time Segments timestamps and cells with

current event timestamp and cell.

TSS-CTS-013
The first Time Segment of a day shall start at 00:00:00, the last time segment of a day shall end at

23:59:59.

TSS-CTS-014
The software shall be able to create Time Segments for every device and every day since the device has

appeared in data.

TSS-CTS-015
The software shall be able to create the following Time Segments types: ‘unknown', ‘undetermined’, ‘stay’,

'move’.

TSS-CTS-016

The 'unknown' Time Segment shall be created if one of following conditions are met: 1) there are no

events for the device for this date is available; 2) cells of the previous Time Segment and cell of the

current event are belong to the same cell intersection group and the difference between the previous

Time Segment end timestamp and current event timestamp is more than 12 hours (configuration

parameter); 3) cells of the previous Time Segment and cell of the current event do not belong to the

same cell intersection group and the difference between the previous Time Segment end timestamp and

current event timestamp is more than 2 hours (configuration parameter).

TSS-CTS-017

The ‘undetermined' Time Segment shall be created either if the previous Time Segment is of type

‘unknown’ or if the previous Time Segment is of type ‘move’ and the difference between its end

timestamp and current event timestamp is less than 15 minutes (config parameter).

TSS-CTS-018

The ‘stay' Time Segment shall be created if the previous Time Segment is 'undetermined’, the difference

between its end timestamp and current event timestamp is more than 15 minutes (config parameter) and

its cells and cell of the current event belong to the same cell intersection group.

TSS-CTS-019

The ‘stay’ Time Segment shall be extended if the difference between its end timestamp and current event

timestamp is less than 12 hours (config parameter) and its cells and cell of the current event belong to

the same cell intersection group.

TSS-CTS-020

The ‘move' Time Segment shall be created if the previous Time Segment is ‘undetermined’, ’stay' or

'move', the difference between its end timestamp and current event timestamp is less than 2 hours

(config parameter) and its cells and cell of the current event do not belong to the same cell intersection

group.

33

3.2.13 INSPIREGRIDGENERATOR

ID DEFINITION

TSS-GG-001 The software shall be able to generate Spatial Reference Grid following INSPIRE Specification.

TSS-GG-002
The software shall have possibility to generate Spatial Reference Grid for extent given in WGS84

coordinate system.

TSS-GG-003
The software shall have possibility to generate Spatial Reference Grid for a country polygon given in

WGS84 coordinate system.

TSS-GG-004
The software shall be able to read countries dataset input data with the data type and schema specified

in I.29 Countries.

TSS-GG-005 Spatial context option (extent or country) for grid generation shall be defined in configuration file.

TSS-GG-006
If spatial context option is extent, extent has to be provided as a parameter. If spatial context option is

country, country iso2 code has to be set in config.

TSS-GG-007
The software shall be able to convert spatial zones dataset coordinate system into internal coordinate

system (EPSG: 3035) before grid generation.

TSS-GG-008
The software shall be able to extend country polygon to fixed buffer distance before grid generation.

Buffer distance shall be provided in config file.

TSS-GG-009 The software shall write grid data object following schema specified in I.28 INSPIRE Grid.

TSS-GG-010 The software shall be able to partition output grid data object by quadkey.

TSS-GG-011 The software shall be able to assign quadkey to each grid tile.

TSS-GG-012 Quadkey level for partitioning shall be provided in configuration file.

https://inspire-mif.github.io/technical-guidelines/data/gg/dataspecification_gg.pdf

34

3.2.14 SYNTHETICDIARIES

ID DEFINITION

TSS-SYN-DI-001 The software shall load all necessary parameters from a configuration file.

TSS-SYN-DI-002
The output of the component shall be I.30 Synthetic Diaries parquet files partitioned by year, month

and date.

TSS-SYN-DI-003
The software shall generate N activity trip diaries per specified date, where N is a parameter provided

through the configuration file.

TSS-SYN-DI-004

The software shall generate, for each user, an activity trip diary that contains some of the stays

specified in the ‘stay_sequence_superset’ by probabilistically generating (or not) each of the stays

according to the specified ‘stay_sequence_probabilities’.

TSS-SYN-DI-005
The software shall generate, for each user and date, a home location that is within the bounding box

provided through the parameters ‘longitude_min’, ‘longitude_max’, ‘latitude_min’ and ‘latitude_max’.

TSS-SYN-DI-006

The software shall generate, for each user and date, a work location that is within the bounding box

provided through the parameters ‘longitude_min’, ‘longitude_max’, ‘latitude_min’ and ‘latitude_max’,

and which is at a distance between ‘home_work_distance_min’ and ‘home_work_distance_max’ of the

home location of the user.

TSS-SYN-DI-007

The software shall locate every user stay that is not of type ‘home’ or ‘work’ to a location which is at a

distance of between ‘other_distance_min’ and ‘other_distance_max’ from the location of the previous

stay, and which is within the bounding box.

TSS-SYN-DI-008
The software shall assign a duration for each trip (interval between stays), which is equal to the

distance between the locations of the stays divided by the specified standard ‘displacement distance’.

TSS-SYN-DI-009
The software shall assign a duration for each stay, which shall be compatible with the ‘duration min’

and ‘duration max’ parameters corresponding to the stay type.

TSS-SYN-DI-010 The stays and trips of each diary shall cover the whole day, from 00:00:00 to 23:59:59.

35

3.2.15 SYNTHETICNETWORK

ID DEFINITION

TSS-SN-001
The software shall be able to write synthetic generated network topology data to parquet files stored

partitioned by year (YYYY), month (MM, and day (DD).

TSS-SN-002
The software shall be able to write synthetic generated network topology data following the schema

specified in I.7 Cell Locations with Physical Properties - Raw.

TSS-SN-003
The software shall be able to read from a configuration file the start and end date of the range of dates

for which data will be generated.

TSS-SN-004 The software shall be able to read from a configuration file the number of cells to be generated.

TSS-SN-005
The software shall be able to read from a configuration file a seed value that will be applied to all the

random processes within the component.

TSS-SN-006
The software shall be able to read from a configuration file the latitudes and longitudes defining a

bounding box in which cell coordinates will be generated.

TSS-SN-007
The software shall be able to read from a configuration file the minimum and maximum value for the

values of the altitude, power, range, and frequency fields.

TSS-SN-008
The software shall be able to read from a configuration file the maximum, positive value that the

antenna height field can take.

TSS-SN-009
The software shall be able to read from a configuration file the value that will be set in the valid date

start and valid date end fields of all cells.

TSS-SN-010
The software shall be able to read from a configuration file the list of values that the field cell_type can

take.

TSS-SN-011

The software shall be able to read from a configuration file the probabilities of not generating any

optional fields, of setting null values in mandatory fields, of generating values outside of the allowed

ranges, and of creating erroneous values in the cell_id, valid_date_start and valid_date_end fields.

TSS-SN-012
The software shall be able to create physical network topology data for the number of cells and the

range of dates specified via configuration.

TSS-SN-013
The software shall be able to create records where all the non-mandatory columns of I.7 Cell Locations

with Physical Properties - Raw have a non-null value with a probability specified via configuration.

TSS-SN-014
The software shall be able to create records where mandatory fields have a null value with a probability

specified via configuration.

TSS-SN-015
The software shall be able to create records where fields take values outside of the allowed ranges with

a probability specified via configuration.

TSS-SN-016
The software shall be able to create records with erroneous values in the cell_id, valid_date_start and

valid_date_end fields with a probability specified via configuration.

36

3.2.16 SYNTHETICEVENTS

ID DEFINITION

TSS-EVN-QW-001
The software shall be able to read and process the data objects of I.7 Cell Locations with Physical

Properties - Raw and I.30 Synthetic Diaries.

TSS-EVN-QW-002
The output of the component shall be I.1 MNO Event Data – Raw partitioned by year, month and

date.

TSS-EVN-QW-003

The software shall generate timestamp, latitude and longitude values for moves (move events

without cell_ids) based on Synthetic Diaries, taking into account the following:

1) The total amount of events generated on the line between the current stay point and next

stay point (as provided in synthetic diaries), shall be equal to the configuration

parameterevent_freq_moves.

2) The time differences between event timestamps for a given move event and user shall be

randomly distributed.

3) The generated points shall be randomly distributed on the line from the current stay point

and next stay point.

TSS-EVN-QW-004
The software shall perform all spatial calculation operations using the coordinate reference system

in the configuration parameter cartesian_crs.

TSS-EVN-QW-005

The software shall generate timestamp, latitude and longitude values for stays (stay events without

cell_ids) based on Synthetic Diaries, taking into account the following:

1) The total amount of events generated for the stay location (a single point) between the

period of initial and final timestamp of a stay, shall be equal to event_freq_moves.

2) The time differences between event timestamps for a given stay event and user shall be

randomly distributed.

TSS-EVN-QW-006

The software shall generate timestamp, latitude and longitude values for stays (stay events without

cell_ids) based on Synthetic Diaries, taking into account the following:

1) The total amount of events generated for the stay location (a single point) between the

period of initial and final timestamp of a stay, shall be equal to event_freq_moves.

2) The time differences between event timestamps for a given stay event and user shall be

randomly distributed.

TSS-EVN-QW-007

From the generated stays and move events, the software shall randomly select, using as seed the

configuration parameter seed, the ratio of rows equal to error_location_probability for generating

location errors. It shall modify the longitude and latitude values of these rows, taking into account

the following:

1) The minimum distance from the existing point to the newly generated erroneous point

shall not be below the configuration parameter error_location_distance_min and the

maximum distance shall not exceed the configuration parameter

error_location_distance_max.

2) The software shall support generating error values in all directions: north, east, south and

west of a point.

3) The software shall store the distance from the newly generated point and existing point in

the column loc_error.

TSS-EVN-QW-008

From the generated stays and move events, the software shall randomly select, using as seed the

configuration parameter seed, the ratio of rows equal to error_cell_id_probability for the generating

errors in the cell_id column. It shall create a cell_id column for the selection of these rows,

considering the following:

1) The generated cell_id values shall syntactically follow the format of the cell_id column.

2) The generated cell_id shall be such that no cell_id value in the Synthetic Network data

matches it.

TSS-EVN-QW-009

The software shall calculate the closest cell_id for each generated event, based on the latitude and

longitude values, taking into account the following:

1) For every event, only cells within the distance defined by configuration parameter

closest_cell_distance_max are considered.

2) For every event, the cell_id is selected randomly but only as many cells are considered, as

defined by the configuration parameter max_n_of_cells.

37

ID DEFINITION

TSS-EVN-QW-010
The software shall set the value of mcc and mnc as a single value for all users as defined by

configuration parameters mcc and mnc respectively.

TSS-EVN-QW-011 The software shall set the value of plmn as null for all users.

38

3.2.17 PRESENTPOPULATIONESTIMATION

ID DEFINITION

TSS-PPE-001
The software shall be able to read semantically cleaned event input data from parquet files stored

partitioned by year (YYYY), month (MM), day (DD), and user_id_modulo.

TSS-PPE-002
The software shall be able to read cell connection probabilities input data from parquet files stored

partitioned by year (YYYY), month (MM), and day (DD).

TSS-PPE-003
The software shall be able to read clean semantically cleaned event input data with the data type

scheme specified in I.16 MNO Event Data – Semantically Cleaned.

TSS-PPE-004
The software shall be able to read cell connection probabilities input data with the data type scheme

specified in I.15 Cell Connection and Posterior Probabilities.

TSS-PPE-005
The software shall be able to perform computations based on the 100m x 100m INSPIRE grid with the

data type scheme specified in I.28 INSPIRE Grid.

TSS-PPE-006
The software shall be able to read, if so specified via configuration file, the mapping of grid tiles to

zones data with the data type scheme specified in I.36 Zones – Grid Map.

TSS-PPE-007
The software shall be able to write the estimated present population output data in parquet format,

partitioned by year (YYYY), month (MM), day (DD).

TSS-PPE-008
The software shall be able to write the output estimated present population data following the data

scheme specified in I.42 Present Population (at grid level) if so specified via configuration file.

TSS-PPE-009

The software shall be able to write the output estimated present population data following the data

scheme specified I.42 Present Population (at the level of the zoning system) if so specified via

configuration file.

TSS-PPE-010

The software shall be able to read from a configuration file whether the present population estimation

will be written at the grid system level or at the zoning level; and in the latter case, be able to read a

dataset ID and, if applicable, a hierarchical level (starting from 0, 1, 2, …).

TSS-PPE-011
The software shall be able to read from a configuration file the timestamp for which the present

population is to be estimated.

TSS-PPE-012

The software shall be able to read from a configuration file the time gap, in seconds, such that all

devices with a register with a time difference to the timestamp no larger than this gap will be included

in the estimation of the present population.

TSS-PPE-013

The software shall be able to read from a configuration file the tolerance threshold for the sum of

absolute differences between the spatial distribution of devices of the current iteration and the

previous iteration over all grid tiles, to stop the iterative procedure of this component.

TSS-PPE-014
The software shall be able to read from a configuration file the maximum number of iterations that the

estimation procedure will be allowed to run for.

TSS-PPE-015

The software shall be able to read all registers that are within a distance of the timestamp no larger

than the time gap specified via configuration, including registers of the previous or following day if the

time gap crosses over midnight.

TSS-PPE-016
The software shall filter out all registers that have a time difference larger than the time gap with

respect to the timestamp.

TSS-PPE-017

The software shall consider the remaining devices together with the cell they connected to according to

their register closest to the timestamp. In the case that two events are equally close to the timestamp,

the earlier event is selected.

TSS-PPE-018
The software shall count, for each cell, the number of devices that have connected to that cell in their

register closest to the timestamp.

TSS-PPE-019
The software shall estimate the spatial distribution of devices over the grid tiles that cover the country

and its buffer through an iterative Bayesian procedure.

TSS-PPE-020

The software shall use a uniform prior distribution of the devices over the grid tiles equal to the total

number of devices divided by the total number of grid tiles of the distribution as the initial value of the

spatial distribution of devices.

TSS-PPE-021

The software shall, in each iteration, compute the posterior probability of a device being in grid tile j

when connected to cell i according to Bayes' theorem, multiplying the value of the spatial distribution

for tile j found in the previous iteration (the prior) by the known cell connection probability of

connecting to cell i when being in tile j, and then normalising over all grid tiles.

39

ID DEFINITION

TSS-PPE-022

The software shall, in each iteration, compute the new spatial density of devices for a given grid tile j as

the sum, over all cells i, of the product of devices connected to cell i and the posterior probability of

being in grid tile j when connected to cell i.

TSS-PPE-023
The software shall stop the iterative estimation if the number of iterations exceeds the maximum

number of iterations specified via the configuration file.

TSS-PPE-024

The software shall stop the iterative estimation if the sum of absolute differences between the spatial

distribution of devices of the current iteration and the previous over all grid tiles is less than the

tolerance threshold specified via configuration file.

TSS-PPE-025
The software shall take the spatial distribution of devices over the grid tiles obtained in the iterative

procedure as the estimation of the present population.

TSS-PPE-026

The software shall be able to add up the estimated present population from the grid level to the zoning

system level when so specified, by using the mapping between grid and zones given as input, based on

the dataset ID and hierarchical level (if it applies) specified via configuration.

40

3.2.18 GRIDENRICHMENT

ID DEFINITION

TSS-GE-001
The software shall be able to read INSPIRE Grid data object partitioned by quadkey with schema

specified in I.28 INSPIRE Grid.

TSS-GE-002
The software shall be able to read transportation data in a format and schema specified in I.33

Transportation.

TSS-GE-003 The software shall be able to read landuse data in a format and schema specified in I.32 Landuse.

TSS-GE-004
The software shall ensure that all processing steps are compliant with spatial data processing standards

and ensure accurate spatial data manipulation to prevent data integrity issues.

TSS-GE-005 The software shall include error handling mechanisms to manage missing or incomplete data inputs.

TSS-GE-006

The software shall be able to calculate landuse prior probabilities and path loss exponent coefficient for

each input grid tile using landuse and transportation data. This shall be optional based on configuration

parameter.

TSS-GE-007

If landuse and transportation data are not available or prior probabilities and path loss exponent not

used in pipeline application the software shall skip corresponding processing steps and assign value 1

to both variables.

TSS-GE-008
The software shall write grid data object following schema specified in I.31 Enriched Grid partitioned by

quadkey.

TSS-GE-009

The software shall be able to convert transportation lines to polygons using predefined buffer widths

specific to each transportation class (primary, secondary, tertiary, pedestrian, railroad) as specified in the

configuration.

TSS-GE-010

The software shall be able to perform spatial operations to intersect and merge landuse polygons with

transportation polygons based on their geographical boundaries in a way that transportation polygons

do not overlap with landuse polygons.

TSS-GE-011 The software shall create grid tiles polygons from grid tiles IDs

TSS-GE-012

The software shall intersect grid tiles to calculate the proportion of each landuse category within the

boundaries of each grid tile. This includes calculating the area of each landuse category within a tile as

a percentage of the total tile area.

TSS-GE-013 If any landuse category is missing in any given grid tile the software shall assign 0.0 as area share value.

TSS-GE-014
If there are no landuse categories in any given grid tile the software shall assign 1.0 as open_area

category area share value.

TSS-GE-015

The software shall apply the predefined weights to the proportions of landuse categories within each

grid tile to calculate the landuse prior probabilities. The software shall normalize these probabilities so

that the sum across the whole grid equals one.

TSS-GE-016
The software shall apply the predefined weights to the proportions of landuse categories within each

grid tile to calculate the path loss exponent coefficient for each tile.

TSS-GE-017

The software shall provide functionality to configure the weights for the calculation of both landuse

prior probabilities and path loss exponent coefficients. This configuration should allow adjustment of

weights for each landuse category.

41

3.2.19 GEOZONESGRIDMAPPING

ID DEFINITION

TSS-ZGM-001
The software shall be able to read INSPIRE Grid data object partitioned by quadkey with schema

specified in I.28 INSPIRE Grid.

TSS-ZGM-002
The software shall be able to perform mapping of either administrative units data or other geographic

zones data to grid. Which zoning type to use shall be defined in config file

TSS-ZGM-003
If ‘administrative units’ is the selected zoning type, the software shall be able to read administrative

zoning data in a format and schema specified in I.34 Administrative Units.

TSS-ZGM-004
If ‘other geographic zones’ is the selected zoning type, the software shall be able to read other

geographic zoning data in a format and schema specified in I.35 Geographic Zones.

TSS-ZGM-005
The software shall be able to perform mapping with any datasets of a given zoning type based on

configuration parameter.

TSS-ZGM-006 The software shall perform spatial intersection operation using grid tiles centroids and zone polygons.

TSS-ZGM-007
The software shall extract number of hierarchical levels from zoning dataset. If number of levels is more

than 1, so the dataset is hierarchical, mapping shall be performed on the lowest level of hierarchy

TSS-ZGM-008
For each grid tile the software shall extract zone IDs of all levels of hierarchy and combine them into

hierarchical id using “|” as a separator between levels.

TSS-ZGM-009
If a grid tile centroid doesn’t spatially intersect with any of the given zones’ polygons, zone_id and

hierarchica_id shall be set to ‘undefined’

TSS-ZGM-010
The software shall write grid data object following schema specified in I.36 Zones – Grid Map

partitioned by dataset_id.

42

3.2.20 MIDTERMPERMANENCEESTIMATION

ID DEFINITION

TSS-MPE-001
The software shall be able to read daily permanence score input data from parquet files stored

partitioned by year (YYYY), month (MM), day (DD), id_type, and user_id_modulo.

TSS-MPE-002 The software shall be able to read holiday dates input data from parquet files.

TSS-MPE-003
The software shall be able to read the I.21 Daily Permanence Score and I.40 Holiday Dates Calendar

Data Objects.

TSS-MPE-004
The software shall be able to write mid-term permanence score metrics to parquet files stored

partitioned by year (YYYY), month (MM), day_type, time_interval, id_type, and user_id_modulo.

TSS-MPE-005
The software shall write results data following schema specified in I.38 Mid-Term Permanence Metrics

for all full months provided in the configured processing interval.

TSS-MPE-006
The software shall be able to read from a configuration file the start and end month for interval to

process in the format YYYY-MM.

TSS-MPE-007
The software shall be able to read from a configuration file the country of study for which to consider

holiday dates.

TSS-MPE-008

The software shall be able to read from a configuration file the number of days (as a positive integer)

for which to include data from the previous month. This parameter will determine the number of

calendar days, for which the values of the daily permanence score data object are read, prior to the

month currently being processed. For instance, if the currently processable month is defined as 05-

2024, and the parameter value is 15, rows from the daily permanence data object corresponding to

dates between 16-04-2024 and 30-04-2024 are also included in the processing for mean and standard

deviation calculation of regularity indices, but not for frequency calculation.

TSS-MPE-009

The software shall be able to read from a configuration file the number of days (as a positive integer)

for which to include data from the next month. This parameter will determine the number of calendar

days, for which the values of the daily permanence score data object are read, after the month currently

being processed. For instance, if the currently processable month is defined as 05-2024, and the

parameter value is 15, rows from the daily permanence data object corresponding to dates between 01-

06-2024 and 15-06-2024 are also included in the processing for mean and standard deviation

calculation of regularity indices, but not for frequency calculation.

TSS-MPE-010

The software shall be able to read from a configuration file the definition of a day based on its start

hour. For example, one might want to consider that a day D starts at 4 AM. The definition shall be

limited to full hours, and the parameter must be an integer between 0 and 23. All sub-monthly intervals

shall be defined using these borders. For example, Monday interval shall be defined from Monday 4 AM

until Tuesday 4 AM.

TSS-MPE-011

The software shall be able to read from a configuration file the definition of ‘night_time’ hours as a list

of different start and ending hours, in HH:MM format, for example 18:45 to 08:15. Allowed values of the

minutes (MM) are 00, 15, 30, and 45. Following the definition of a day based on its start hour, specified

via configuration, the ‘night_time’ will belong to the date that contains its start hour. It is allowed that

the ‘night_time’ hours cross the limit between two dates. It is not allowed, however, that when the

‘night_time’ end hour is different from 00:00 and the ‘night_time’ start hour is earlier than the day start

hour, the ‘night_time’ end hour is earlier than the ‘night_time’ start hour. Example of non-allowed

configuration: day start hour equal to 4, ‘night_time’ start hour equal to 03:30, ‘night_time’ end hour

equal to 01:00 (01:00 < 03:30 < 04:00).

TSS-MPE-012

The software shall be able to read from a configuration file the definition of ‘working_hours’ as a list of

different start and ending hours, in HH:MM format, for example 08:00 to 17:00. Allowed values of the

minutes (MM) are 00, 15, 30, and 45. Following the definition of a day based on its start hour, specified

via configuration, the ‘working_hours’ will belong to the date that contains its start hour. It is not

allowed that the ‘working_hours’ cross the limit between two dates. It is also not allowed that when the

‘working_hours’ end hour is different from 00:00 and the ‘working_hours’ start hour is earlier than the

day start hour, the ‘working_hours’ end hour is earlier than the ‘working_hours’ start hour. Example of

non-allowed configuration: day start equal to 4, ‘working_hours’ start hour equal to 03:30,

‘working_hours’ end hour equal to 01:00 (01:00 < 03:30 < 04:00).

43

ID DEFINITION

TSS-MPE-013

The software shall be able to read from a configuration file the definition of ‘evening_hours’ as a list of

different start and ending hours, in HH:MM format, for example 08:00 to 17:00. Allowed values of the

minutes (MM) are 00, 15, 30, and 45. Following the definition of a day based on its start hour, specified

via configuration, the ‘evening_hours’ will belong to the date that contains its start hour. It is not

allowed that the ‘evening_hours’ cross the limit between two dates. It is also not allowed that when the

‘evening_hours’ end hour is different from 00:00 and the ‘evening_hours’ start hour is earlier than the

day start hour, the ‘evening_hours’ end hour is earlier than the ‘evening_hours’ start hour. Example of

non-allowed configuration: day start equal to 4, ‘evening_hours’ start hour equal to 03:30,

‘evening_hours’ end hour equal to 01:00 (01:00 < 03:30 < 04:00).

TSS-MPE-014

The software shall be able to check that the time slot duration and limits of the daily permanence score

input data is compatible with the ‘night_time’, ‘evening_hours’, and ‘working_hours’ time intervals

defined in the configuration, and stop the execution and warn the user when one of the required dates

has an incompatible time slot duration.

TSS-MPE-015

The software shall be able to read from a configuration file the definition of weekend start and end

days by specifying values between 1 and 7, starting from Monday as 1, Tuesday as 2, up to Sunday as 7.

For example, if the start day is 6 and the end day is 7, and the start hour of the day was specified as 4

AM, then the weekend starts at 4 AM of the Saturday and ends at 4 AM of the Monday.

TSS-MPE-016

The allowed sub-daily periods are: ‘all’, ‘night_time’, ‘evening_time’, ‘working_hours’, and the sub-

monthly periods are: ‘all’, ‘workdays’, ‘holidays’, ‘weekends’, ‘mondays’, ‘tuesdays’, ‘wednesdays’,

‘thursdays’, ‘fridays’, ‘saturdays’, ‘sundays’.

TSS-MPE-017
The software shall be able to calculate metrics for the sub-monthly period ‘all’, defined as all dates

within each month being studied.

TSS-MPE-018

The software shall be able to calculate metrics for the sub-monthly period ‘workdays’, defined as those

days of the week that do not belong to the weekend and that are not marked as holidays in the country

of study within each month being studied.

TSS-MPE-019
The software shall be able to calculate metrics for the sub-monthly period ‘holidays’, defined as those

days marked as holidays in the country of study within each month being studied.

TSS-MPE-020

The software shall be able to calculate metrics for the sub-monthly period ‘mondays’, ‘tuesdays’,

‘wednesdays’, ‘thursdays’, ‘fridays’, ‘saturdays’, and ‘sundays’, defined by all of the corresponding days

of the week within each month being studied.

TSS-MPE-021
The software shall be able to calculate metrics for the sub-daily period ‘all’, defined by all time slots

contained in a date.

TSS-MPE-022
The software shall be able to calculate metrics for the sub-daily period ‘night_time’, defined by all time

slots contained between the start and ending ‘night_time’ hours specified via configuration.

TSS-MPE-023
The software shall be able to calculate metrics for the sub-daily period ‘working_hours’, defined by all

time slots contained between the start and ending ‘night_time’ hours specified via configuration.

TSS-MPE-024
The software shall be able to calculate metrics for the sub-daily period ‘evening_time’, defined by all

time slots contained between the start and ending ‘night_time’ hours specified via configuration.

TSS-MPE-025

The combinations of sub-daily and sub-monthly periods for mid-term metrics calculation shall be

provided in configuration file.

The input structure has the shape of a dictionary, where the keys are the allowed and non-repeated

values of sub-monthly periods, and the values are a list of allowed and non-repeated values of sub-

daily periods surrounded by quotes. Example: {'all': ['all', ‘night_time', ‘evening’, ‘working_hours’],

‘workdays’: [’night_time', 'working_hours']}.

TSS-MPE-026
The software shall read in the daily permanence score data object for the configured month and days in

the previous and next month as defined by configuration parameters.

TSS-MPE-027

The software shall be able to calculate mid-term permanence score, mid-term frequency count and

mid-term regularity indices per device and grid tile, as well as for the ‘unknown’ location, using

permanence score values from Daily Permanence Score Data Object for the combinations of sub-daily

and sub-monthly periods over each full month as specified via configuration.

TSS-MPE-028

The software shall be able to calculate the ‘device observation’ mid-term permanence score per device

from the daily permanence score data, equal to the number of time slots of the sub-monthly and sub-

daily periods over one full month that have a value of the daily permanence score equal to 1 in at least

44

ID DEFINITION

one grid tile; as well as the mid-term frequency count, equal to the number of dates in which at least

one time slot of a grid tile the sub-monthly and sub-daily period over one full month has a daily

permanence score equal to 1. These shall be done using the permanence score values from the Daily

Permanence Score Data Object for the combinations of sub-daily and sub-monthly periods over each

full month as specified via configuration.

TSS-MPE-029

The mid-term permanence score of a device in a grid tile or ‘unknown’ location shall be calculated as

the summation of the daily permanence score of the device in that location over all time slots

belonging to the corresponding sub-monthly and sub-daily periods and month being considered.

TSS-MPE-030

The mid-term frequency count of a device in a grid tile or ‘unknown’ location shall be calculated as

number of days of the sub-monthly period of the month being studied in which that location has non-

zero permanence score, i.e. permanence score values equal to 1, for any of the time slots in the sub-

daily period being considered.

TSS-MPE-031

The mid-term regularity indices shall be calculated as the mean and the standard deviation of the

temporal distance in number of days between consecutive dates of the sub-monthly period and month

being studied with daily permanence score equal to 1 (i.e., greater than zero) in any of the time slots in

the sub-daily period being considered. The start date shall be taken as the latest date of the sub-

monthly period, daily permanence score equal to one in any time slot of the sub-daily period, and that

belongs to the dates considered from the previous month for the calculation of these indices. In the

case that none of these dates satisfy these conditions, the start date shall be taken as the earliest date

considered. Analogously, the end date shall be taken as the first date among the dates of the following

month that satisfies these conditions, and if it does not exist, the latest date is considered.

TSS-MPE-032

The mid-term metrics that refer to a specific grid tile shall have in their ‘id_type’ field a value equal to

‘grid’, together with the ID of that grid tile in the ‘grid_id’ field. If the metrics refer to an unknown

location or to the device observation, they shall have the value ‘unknown’ or ‘device_observation’

respectively under both ‘grid_id’ and ‘id_type’ fields.

45

3.2.21 LONGTERMPERMANENCEESTIMATION

ID DEFINITION

TSS-LPE-001
The software shall be able to read the I.38 Mid-Term Permanence Metrics Data Object stored as parquet

partitioned by year (YYYY), month (MM), day_type, time_interval, id_type, and user_id_modulo.

TSS-LPE-002
The software shall be able to read from a configuration file the start and end month for interval to

process Mid-term Permanence Metrics in the format YYYY-MM.

TSS-LPE-003

The software shall be able to read from a configuration file the definition of a sub-yearly intervals.

Potential implementation as a dictionary {'winter':[12,1,2]. 'summer':[5,6,7,8]}, where keys are names of

sub-yearly interval and values are lists of months that constitutes this interval.

TSS-LPE-004 The software shall read in the monthly permanence metrics for the configured months.

TSS-LPE-005

The software shall be able to calculate long-term permanence score, long-term frequency count, long-

term frequency mean, long-term frequency standard deviation and long-term regularity indices per

device, grid tile and ‘unknown’ location (id_type = ‘unknown’) using monthly permanence metrics values

from Monthly Permanence Score Data Object for all combinations of sub-daily, sub-monthly and sub-

yearly periods set in the configuration file over all months in the given time interval.

TSS-LPE-006

The combinations of sub-daily, sub-monthly and sub-yearly periods for long-term metrics calculation

shall be provided in configuration file.

Potential implementation as a dictionary of dictionaries: {'all':{'all': ['all', ‘night_time', ‘evening’,

‘working_hours’], ‘working_days’: [’night_time', 'working_hours']}, 'summer':{ ‘weekends’: [’all']}}, where

keys are sub-yearly periods and values are dictionaries of sub-monthly periods as keys and and lists of

sub-daily periods as values.

TSS-LPE-007

The software shall perform validation that all configured for processing sub-daily and sub-monthly

periods are present in Mid-term Permanence Metrics Data Object and notify the user about missing

combinations and stop processing.

TSS-LPE-008
Long-term permanence score shall be calculated as the sum of the tile monthly permanence scores

(‘mps’) from Mid-term Permanence Metrics Data Object.

TSS-LPE-009

Long-term frequency count shall be calculated by sum of the monthly frequency counts from Mid-term

Permanence Metrics Data Object.

Long-term frequency mean shall be calculated as the mean of the monthly frequency count values of

months belonging to the period of reference.

The Long-term frequency std shall be calculated as the std of the monthly frequency count values of

months belonging to the period of reference.

TSS-LPE-010

Long-term regularity indices per tile are calculated by taking the mid-term monthly mean distances

between consecutive permanencies in the given tile and by computing the mean and the standard

deviation of the mean distances.

TSS-LPE-011

The software shall be able to calculate the long-term ‘device observation’ metrics:

• long-term device observation permanence score per device by summing up ‘mps' column

values of id_type = 'device_observation’ from Mid-term Permanence Metrics Data Object

• long-term device observation frequency by summing up ‘frequency' column values of id_type =

'device_observation’ from Mid-term Permanence Metrics Data Object

Metrics shall be calculated for all combinations of sub-daily, sub-monthly and sub-yearly periods set in

the configuration file over all months in the given time interval.

TSS-LPE-012

The mid-term metrics that refer to a specific grid tile shall have in their ‘id_type’ field a value equal to

‘grid’, together with the ID of that grid tile in the ‘grid_id’ field. If the metrics refer to an unknown location

or to the device observation, they shall have the value ‘unknown’ or ‘device_observation’ respectively

under both ‘grid_id’ and ‘id_type’ fields.

TSS-LPE-013
The software shall write results data following schema specified in I.39 Long-Term Permanence Metrics

Object for the whole period provided in the configured processing interval.

46

3.2.22 USUALENVIRONMENTLABELING

ID DEFINITION

TSS-UEL-001
The software shall be able to read the I.39 Long-Term Permanence Metrics Data Object stored as

parquet partitioned by start_date, end_date and user_id_modulo.

TSS-UEL-002

The software shall be able to read following threshold parameters for labeling from the configuration

file:

• gap_ps_threshold (integer): the threshold of the difference in long permanence score values

between consecutive tiles ordered by long term permanence score in descending order. Used

to filter out tiles with long permanence score difference above this value and all the tiles

following in descending long term permanence score values order. Default: 1 if only tiles with

highest score are to be kept

• total_ps_threshold (float): the total device permanence score assigned in reference period

below which the user is not assigned a usual environment label, and is flagged as ‘rarely

observed’. Default: 300 (average PS=5 per day in 60 days, when the default value for the

period of reference length is 6 months)

• freq_days_treshold (float): the percentage out of total number of days when device has

permanence in the reference period below which the user is not assigned a usual

environment label and is flagged as ‘rarely observed’. Default: 30 (unit: percentage)

• ue_gap_ps_threshold (float): same as gap_ps_threshold, but used for filtering in UE labeling.

Default: 20 (20 % of the highest permanence score value)

• ue_ps_threshold (float): the percentage of permanence scores in top tiles out of the sum of

daily device observation values in reference period. Tiles above this threshold are labeled as

Usual Environment tiles. Default value: 70 (unit: percentage)

• ue_ndays_threshold (float): the percentage of the sum of the number of days with non-zero

permanence in top tiles out of total number of non-zero permanence days in reference

period. Tiles above this threshold are labeled as Usual Environment tiles. Default value: 70

(unit: percentage)

• home_ps_threshold (float): the percentage of permanence scores in top tiles out of the sum of

daily device observation values in reference period. If the device has at least this value in top

tiles these tiles are labeled as Home Location. Default value: 80 (unit: percentage)

• home_ndays_threshold (float): the percentage of the sum of the number of days with non-

zero permanence in top tiles out of total number of non-zero permanence days in reference

period. If the device was in the first tile or group of tiles at least this value these tiles are

labeled as Home Location. Default value: 80 (unit: percentage).

• work_ps_threshold (float): minimum percentage of sum of permanence score during working

days and daytime in top tiles out of total permanence score during working days and

daytime, for a tile to be labelled as a work location tile. Default value: 80 (unit: percentage).

• work_ndays_threshold (float): minimum percentage of non-zero permanence score days

during working days and daytime in top tiles out of total number of non-zero permanence

score days during working days and daytime, for a tile to be labelled as a work location tile.

Default value: 80 (unit: percentage).

TSS-UEL-003
The software shall be able to read from a configuration file the start and end month for interval to

process Long-term Permanence Metrics in the format YYYY-MM.

TSS-UEL-004
The software shall perform Usual Environment labeling and Home and Work locations labeling of tiles

for each device.

TSS-UEL-005

The software shall perform validation that all combinations of periods required for labeling are present

in Long-term Permanence Metrics Data Object, notify the user about missing combinations and stop

further execution. Currently, the required periods are:

• UE labeling - all days: all intervals

• Home labeling - all days: all intervals, all days: night-time

• Work labeling - work days: working hours

TSS-UEL-006
The software shall filter rarely observed devices using all days: all intervals combination based on the

following rules:

47

ID DEFINITION

1. Filter devices for which 'lps' value in id_type = ‘device_observation' row < total_ps_threshold

parameter into separate table. Mark such devices as filtered by rule ‘device_filter_1’ (rarely

observed).

2. Filter devices for which 'total_frequency' value in id_type = ‘device_observation' row <

freq_days_threshold parameter into same as above separate table. Mark such devices as

filtered by rule ‘device_filter_2’ (discontinuously observed).

Devices filtered during this step shall not be used for any labeling.

TSS-UEL-007

The software shall label tiles as Usual Environment tiles based on following algorithm:

1. For all days : all intervals combination:

a. Get the highest value of a long permanence score (‘lps’) of a device over all grid tiles

(PS max).

b. Calculate the difference in ‘lps’ values between consecutive tiles ordered by ‘lps’

values in descending order.

c. Find tiles that have a difference in ‘lps’ value > ue_gap_threshold (default is 20% of

PS max), filter out these tiles and all the tiles with ‘lps’ values below.

2. For each tile in the remaining tiles group check if its ‘lps’ value is at least ue_ps_threshold

(default is 70% of 'lps' value in id_type = ‘device_observation' row of all days: all intervals

combination). Tiles for which this condition is fulfilled are labeled as UE tiles. Labeling rule

code: ‘ue_1’.

3. For tiles which have not got UE label in previous step perform the same check for all other

combinations of day types and periods. If condition is fulfilled for any of the combinations,

label tiles as UE tiles. Labeling rule code: ‘ue_2’.

4. If no UE label being assigned after all of the above steps, add ue labeling rule ‘ue_na’ - label

not assigned.

TSS-UEL-008
The software shall save the rule based on which tiles were labeled as UE tiles using predefined rule

codes.

TSS-UEL-009

The software shall label tiles as Home location tiles based on following algorithm:

1. For all days: all intervals combination:

a. Calculate the difference in long permanence scores (‘lps’) between consecutive tiles

ordered by ‘lps’ values in descending order.

b. Find first tile that have a difference in ‘lps’ value > gap_ps_threshold (default is 1),

filter out this tile and all the tiles with ‘lps’ values below from all period

combinations used for home labeling.

2. For each tile in the remaining tiles group check if its ‘lps’ value is at least home_ps_threshold.

(default is 80% of 'lps' value in id_type = ‘device_observation' row of all : all periods

combination). Such tiles are labeled as Home tiles. Labeling rule code: ‘h_1’.

3. If no home label being assigned, repeat this condition check for all days: night_time

combination. Tiles that fulfilled this condition are labeled as Home tiles. Labeling rule code:

‘h_2’.

4. If no home label being assigned, check if the device was in the tiles at least

home_ndays_threshold (default is 80% of 'total_frequency' value in id_type =

‘device_observation' row of all days: all intervals combination). Tiles that fulfilled this condition

are labeled as Home tiles. Labeling rule code: ‘h_3’.

5. If no Home label being assigned after all of the above steps, add labeling rule ‘loc_na’ - label

not assigned.

TSS-UEL-010

The software shall label tiles as Work location tiles based on following algorithm:

1. For working days : working time combination:

a. Calculate the difference in long permanence scores (‘lps’) between consecutive tiles

ordered by ‘lps’ values in descending order.

b. Find first tile that have a difference in ‘lps’ value > gap_ps_threshold (default is 1),

filter out this tile and all the tiles with ‘lps’ values below from all period

combinations used for work labeling.

2. For each tile in the remaining tiles group check for workdays: working_hours combination if

its ‘lps’ value is at least work_ps_threshold. (default is 70% of 'lps' value in id_type =

48

ID DEFINITION

‘device_observation' row of all days: all intervals combination). Tiles for which this condition is

fulfilled are labeled as Work tiles. Labeling rule code: ‘w_1’.

3. If no work label being assigned, for each tile in the remaining tiles group check for workdays :

working_hours periods combination if its ‘total_frequency’ value is at least

work_ndays_threshold (default value is 70% of 'total_frequency' value in id_type =

‘device_observation' row of all days: all intervals combination). Tiles for which this condition is

fulfilled are labeled as Work tiles. Labeling rule code: ‘w_2’.

4. If no Work label being assigned after all of the above steps, add labeling rule ‘loc_na’ - label

not assigned.

TSS-UEL-011
The software shall save the rule based on which tiles were labeled as Home or Work tiles using

predefined rule codes.

TSS-UEL-012
The software shall perform labeling for each location type individually, so same tile can be labeled

multiple times.

TSS-UEL-013
The software shall write results data following schema specified in I.37 UE Labels Data Object for all full

months provided in the configured processing interval. Partitioned by year, month, day, user_id_mod.

TSS-UEL-014

The software shall produce following quality metrics:

a. Number of tiles in each labeling rule.

b. Number of home location tiles which are not labeled as UE.

c. Number of work location tiles which are not labeled as UE.

d. Number of devices which are filtered out as rarely observed and discontinuously observed.

TSS-UEL-015
The software shall write quality metrics following schema and format specified in I.43 Labeling Quality

Metrics.

49

3.2.23 USUALENVIRONMENTAGGREGATION

ID DEFINITION

TSS-UEA-001
The software shall be able to read from a configuration file the ‘start month’ and ‘end month’ for the

interval to select from the I.37 UE Labels input in the format YYYY-MM.

TSS-UEA-002
The software shall be able to read from a configuration file a boolean ‘use land use’ parameter indicating

whether land use information will be used for the usual environment aggregation.

TSS-UEA-003
The software shall be able to read an I.37 UE Labels Data Object from parquet files stored partitioned by

start_date, end_date & user_id_modulo.

TSS-UEA-004
The software shall be able to read an I.31 Enriched Grid Data Object from parquet files stored partitioned

by quadkey.

TSS-UEA-005
The software shall load all usual environment grid tiles for all devices from the I.37 UE Labels input data

for the selected start and end month regardless of the label.

TSS-UEA-006

The software shall load a tile weight (tw) for each grid tile from the ‘prior_probabilty’ column of the I.31

Enriched Grid Data Object if ‘uniform_tile_weights’ parameter has been set as False. If this parameter has

been set as True, all grid tiles shall be assigned tw = 1.

TSS-UEA-007

The software shall calculate, for each device, its device tile weight value (weight_td) for each of the

device’s usual environment grid tiles. This is achieved by using the following formula for each tile i:

weight_td (grid_i) = tw (grid_i) / Σj(tw (grid_j))

Where:

• grid_i: is a target grid tile, i.e., a tile that is included in the current device’s usual environment,

and for which we are calculating pue.

• weight_td (grid_i): is the weight of the device in the target grid tile (grid_1).

• tw (grid_i): is the tile weight for target grid tile (grid_1), either 1 or coming from the enriched

grid data.

• Σj(tw (grid_j)): is the sum of the tile weights of all the grid tiles in the device’s usual

environment.

TSS-UEA-008
The software shall sum the weight_td values of all devices in each grid tile to obtain the aggregated

weighted device counts of each tile.

TSS-UEA-009
The software shall produce an output I.44 Aggregated Usual Environments Data Object with the final

usual environment count of each tile in parquet files partitioned by start_date and end_date.

50

4 TECHNOLOGY STACK

Based on the general software requirements (see section 3.1 General requirements), the technology stack of the

software has been defined. Apache Spark framework has been chosen as it perfectly complies with the

requirements. The only aspect not directly addressed by the Apache Spark framework is the ‘spatial computations’

requirement (TSS-GEN-017), as Spark doesn’t natively support geospatial operations. However, Apache Sedona

is an extension built on Apache Spark whose purpose is to perform efficient spatial computations with Spark. By

adding this extension to Spark, a framework that satisfies all the requirements is met. Spark is natively written in

the Scala programming language, nonetheless it supports bindings for multiple programming languages such as

Java, Python and R. From these languages, the Python programming language is chosen since it performs

exceptionally the requirements.

A comprehensive list of the technology stack selected for the development of the software together with the

rationale behind its selection is presented in Table 5.

51

Table 5: Software technology stack

TECHNOLOGIES RATIONALE REMARKS

Operating

System
Linux

Cloud environments and containers usually run Linux as

operating system.

Most Linux distributions are open-source and free.

Linux is a reliable and secure operating system due to its

design and open-source nature.

Development

Software Language: Python 3.7+

Standard data science, data analytics and data

engineering software language.

It has multiple open-source, state-of-the-art data

processing libraries, such as numpy, pandas and pyspark.

Most popular software language at the moment, with

more than 25% of total share3. This increases the

probability of external users contributing to the open-

source project.

Supported by all popular IDEs.

Supported by all cloud computing providers.

The Python version may be

constrained by the cloud

infrastructure of the MNO operator.

Data processing engine: Spark (Pyspark)

Spark is an open-source data processing framework ideal

for big data pipelines.

It provides bindings for python with the pyspark library.

Spark can be deployed in a single machine or a cluster

depending on the data workload.

Spark has a machine learning library which allows data

scientists to train and deploy models at scale.

Spark can be deployed in popular cloud managed

clusters (e.g. AWS EMR, GCP Dataproc, Azure Hdinsight).

Due to privacy constraints, MNOs

require that the software runs in their

closed cloud environment. This

restriction may limit the available

computing resources for software

execution. Based on project team

previous experience working with

MNOs, most of them usually have

deployed a cloud-managed map-

reduce cluster, such as AWS EMR or

GCP Dataproc. Spark can seamlessly

operate on these environments, which

3 PYPL PopularitY of Programming Language index

https://pypl.github.io/PYPL.html

52

TECHNOLOGIES RATIONALE REMARKS

Spark provides native support for local file systems,

distributed file systems (HDFS) and blob storage systems.

simplifies the future deployment of

the software.

Geospatial data processing framework: Apache

Sedona

Apache Sedona is a framework built on top of Apache

Spark for processing high workloads of geospatial data.

Apache Sedona provides bindings for the python

language.

Apache Sedona provides standard spatial operations such

as spatial joins, nearest neighbour searches, range

queries and spatial indexes.

As it is built on top of Apache Spark, geospatial data can

be incorporated in machine learning models.

Code &

Components

Orchestration

Custom module

An ad-hoc/custom orchestration module has been

developed for the pipeline. It is designed as a modular

piece that could be replaced in the future by a more

complex/sophisticated engine if needed.

Data

File Format:

• Parquet/GeoParquet

It allows the possibility of working with both centralized

and distributed computing systems.

Standard and recommended file format of the Spark

framework.

Data storage:

• Centralized environment

o Local file-system

• Distributed environment

o HDFS (Hadoop)

• Cloud environment

The data storage should be invisible to the software. If

the system has been setup correctly, the software should

be able to read data from the given path locations.

Spark provides support for local file systems, distributed

file systems (HDFS) and blob storage systems.

53

TECHNOLOGIES RATIONALE REMARKS

o Blob storage (AWS S3, GCP

Cloud storage, Azure Blob

storage)

Testing Pytest

Ability to run multiple tests in parallel for optimised test

suite execution times.

Easy-to-use syntax.

Automatic test discovery.

Support for HTML reports on coverage and testing

results.

Source Control GIT

As the use of GitHub is a requirement, the source control

engine should be git, as it is the main engine supported

by the platform.

Git is the most popular source control engine.

Code

Documentation

Code style:

• PEP8

PEP8 is the standard coding style for python software. It

makes code more maintainable and readable. It is ideal

for open-source projects, as it facilitates contribution due

to the fact that all the code has a homogeneous and well-

known style.

Docstring style:

• Google Docstring Style

Readable and compact. Ideal for small docstrings.

Most popular docstring format.

Makes contribution easier.

Supports automatic generation deployment of

documentation in HTML files.

Code Documentation engine:

• MkDocs

MkDocs uses Markdown, a lightweight markup language,

for content creation, making it easy for users to write and

update documentation.

54

TECHNOLOGIES RATIONALE REMARKS

MkDocs includes a built-in development server, enabling

users to preview their documentation locally before

publishing it, facilitating iterative improvements.

Multiple plugin support: search-bar, table of contents,

versioning, tabs…

Code modules automatic documentation generation

from python docstrings in Google style.

55

5 DESIGN

This chapter describes all the software design decisions considered in the development of the software. First,

general design aspects are presented (see section 5.1 General design), providing information about the data

design, software design, infrastructure design, version control and software artefacts design. Secondly, the design

considerations of each software component are presented (see section 5.2 Component design).

5.1 GENERAL DESIGN

5.1.1 DATA DESIGN

Big Data demands a meticulous and strategic approach to data design decisions within the pipeline architecture.

In the realm of processing vast volumes of information, every design choice reverberates across the entire

ecosystem, influencing the efficiency, scalability, and ultimately, the success of the data pipeline. The decisions

made in the early stages of data design impact considerably the pipeline's ability to handle, analyse, and derive

meaningful insights from massive datasets.

5.1.1.1 DATA FORMAT

All data processed by the pipeline components will be in (geo)parquet format as it is the ideal format for working

with the spark framework. It may be the case that some input data is not presented in (geo)parquet format (e.g.

csv, json, etc.). Hence, a format transformation process is needed. In this regard, a data ingestion process is defined

which incorporates all data into the system in the desired (geo)parquet format.

5.1.1.2 DATA STORAGE

As the solution is designed to work in a cloud architecture, its blob storage can be defined as a Lakehouse which

guarantees that all data in it is accessible by any computing infrastructure deployed within the cloud. When

executing locally, the OS filesystem can be used as Lakehouse. A medallion architecture is proposed for classifying

the data within the Lakehouse based in three levels in which each one represents a more advanced level of data

processing:

\ Bronze: almost raw data ingested in the desired format. Mainly MNO data and contextual data.

\ Silver: data model of the project. Enriched MNO data, intermediate outputs and quality metrics and quality

warnings datasets.

\ Gold: final aggregated outputs (final indicators) of the pipeline.

As previously mentioned, it is expected that not all input datasets will be in the (geo)parquet format, so a landing

zone has been defined to address this aspect. In this zone all data as it is obtained is centralized so it can be then

ingested into the bronze layer of the Lakehouse.

56

Figure 2: Medallion architecture scheme

57

5.1.1.3 MNO DATA DELIVERY

Event and network topology data for each day will be provided by MNOs at the Bronze level.

This data must be stored with the following folder structure:

bronze/<country>/<mno>/<data_type>/year=<YYYY>/month=<MM>/day=<DD>/*.parquet.

For example: bronze/es/orange/events/year=2023/month=01/day=01/event_data.parquet.

Under the day folder multiple parquet files could be stored. However, it is recommended to use parquet files with

sizes of 512MB-1GB as defined in the official parquet documentation [1].

References:

[1] Apache parquet file-format configurations. Available: https://parquet.apache.org/docs/file-

format/configurations/ [Accessed Nov. 23, 2023]

5.1.2 SOFTWARE DESIGN

The aim of this section is to describe all the software design decisions for the execution of a big data pipeline that

processes and generates data in the data model described in section 5.1.1 Data design.

5.1.2.1 PIPELINE DESIGN

Processing multiple Big Data pipelines is the main functionality of the software to be developed. These pipelines

can be divided into independent modules/components in which each one performs an ETL process. For this

purpose the isolated components design principle has been applied which consists on having independent

software processing units that do not share in-memory data and that, as long as they have all required input data,

they can be executed without any dependency of other components. With this approach, components can be

developed independently and will integrate without problems in a pipeline as long as the data objects definitions

are adhered to. Furthermore, if the pipeline execution fails, the pipeline execution can be restored from the

component that failed as all the previous components will have been executed correctly. Additionally, in the

context of a PySpark application, using isolated components grants that the temporary and cache data of a Spark

session will be completely cleaned after each execution.

Having each component as a single PySpark application allows the project to easily integrate with orchestration

software. A component is defined as a Python package composed of a ‘Core’ sub-package containing common

functionalities of all components like logging, configuration, abstract classes and interfaces and a ‘Components’

sub-package in which each component will represent a spark job. Besides the code, a spark job submission will

include configuration text files. Two or more configuration files will be used for each component which can be

categorized into two types:

\ General: general & common configuration of the pipeline.

\ Component: specific component configuration file(s) that can override some general configuration parameters.

https://parquet.apache.org/docs/file-format/configurations/
https://parquet.apache.org/docs/file-format/configurations/

58

Figure 3: Pipeline orchestration scheme

5.1.2.2 COMPONENTS DESIGN

While every component executed in the pipeline corresponds to a single module to be executed as a spark-job,

we can define different types of components depending on their purpose.

\ Ingestion: these components are in charge of getting raw data in different file formats (csv, json, text, shapefile,

etc.) and introducing it into the Lakehouse in a common file format: parquet & geoparquet. For

demonstration/testing purposes, synthetic data is generated to simulate a pipeline execution. The synthetic

data generating components is considered as an ingestion component.

\ Initial Validation: it is a single component that performs pipeline setup verification checks. Its main purpose is

to provide a ‘fail fast’ functionality for preventing small errors that will break the pipeline halfway like missing a

configuration file for a component at a later stage of the pipeline. The verifications performed are:

• Configuration files are valid;

• Data can be read and written;

• Component classes can be initialised.

\ Execution: components that perform the functional logic of the pipeline. Each component performs ETL

processes for a single functional step in the pipeline. It is recommended not to include too much functionality

in a single component and instead split it up between execution components.

\ Quality: these components perform validation and quality processes and store these analyses in the Lakehouse.

5.1.2.3 CLASS DIAGRAM

While the software will execute each component as a separate spark-job, the whole application can be conceived

as a single python program which provides a component selection for single executions. The proposed software

59

architecture is based in a ‘Core’ package which contains the abstract classes and interfaces, ‘DataObjects’ and

common functionalities like the configuration, spark session and logging management.

Figure 4: Component and DataObject class diagram

The most important class of the application is the ‘Component’ class which is the abstract class that performs the

read, transform and write operations. One of the key aspects of this software architecture is the use of the

‘DataObject’ classes. Every data source is accessible for read and write operations through a ‘DataObject’ class. This

prevents multiple read and write definitions of a data source used in multiple components, eases the scalability of

software and guarantees consistency in read and write operations as the same schema is always used. The

‘DataObject’ class contains an ‘IOInterface’ class which abstracts input and output operations perform on data

sources. In the realm of Big Data is common that data can be given through different file types (csv, json, parquet…),

databases or APIs; having a class that abstracts this access grants modularity and scalability as the

incorporation/change of a data source only implies a modification in the ‘IOInterface’ used by the ‘DataObject’.

Thanks to the Spark framework, different file formats are read with the same code with minimum changes. An

intermediate abstract class, called ‘PathInterface’, that inherits from ‘IOInterface’ is defined in order to prevent

having duplication of code for reading and writing a file. From this class concrete classes for reading different file

formats can be defined. The supported file formats are:

• Parquet

• Json

• Csv

• Shapefile

• Geoparquet.

The concrete classes for this file access require only a change to the FILE_FORMAT variable as the main logic is

inherited by the parent class reducing code duplication. For special cases, like shapefiles, specific logic for reading

a shapefile is needed as the Sedona Framework is used.

60

Figure 5: IO Interface class diagram

61

After defining all I/O interfaces, the ‘DataObjects’ of the application can be defined. A ‘DataObject’ class is defined

for each ‘DataObject’ defined in Annex I. These classes contain information about the data they are modeling, like

a unique ID to identify the data, the data schema or the data type. They also hold the spark DataFrame and provide

an easy and centralized way for developers to read and write data of a data object. This prevents multiple read and

write implementations of a data object that is used in multiple components. Figure 5 shows an example of four

different data object class diagrams.

62

Figure 6: DataObjects example class diagram

63

After modeling all the data objects that will be used in the release of the software, the components that make use

of this data and perform the transformations are implemented. Each component can be thought as an abstract

class which will read data, transform data and write data. They are the main point of execution as each component

represents a step of the pipeline. All components also use some common functionalities which consist of:

• Reading configuration files

• Starting a Spark Session

• Initialize a Logger

Component classes will use the ‘DataObjects’ associated to them to read and write data. All this logic can be

centralised in an abstract class which delegates to its inherited classes the only responsibility to implement the

concrete data transformations. This approach keeps codes modular and clean. Furthermore, it eases the

development as developers only need to take care of implementing the logic of the transformations of the

component.

In Section 5.2 Component design all components of the software are described with a class diagram that represents

all the concrete objects that interact in the execution of the component.

64

Figure 7: Concrete component implementation class diagram

65

5.1.2.4 CONFIGURATION DESIGN

One critical aspect of building robust big data pipelines is the management of configuration settings. To achieve

enhanced flexibility, maintainability, and scalability, a prudent approach is to utilise a combination of a general

configuration file and component-specific configuration files.

\ GENERAL CONFIGURATION FILE

The general configuration file serves as the overarching blueprint for the entire big data pipeline. It encapsulates

settings that are applicable across multiple components, providing a centralised and standardised approach to

configuration management. This file contains global execution settings, like logger settings, path values and spark-

session settings. By consolidating these shared settings in a single file, the pipeline gains consistency and becomes

more adaptable to changes in the overall infrastructure.

\ COMPONENT-SPECIFIC CONFIGURATION FILES

Complementing the general configuration file, each individual component within the big data pipeline is associated

with its own specific configuration file. These files contain parameters tailored to the unique requirements and

characteristics of each component. For instance, a data ingestion component might have settings related to data

sources, formats, and ingestion frequencies, while an execution component may have parameters governing data

transformation logic.

ADVANTAGES OF USING SEPARATED CONFIGURATION FILES

\ a. Modularity and maintainability: separating configurations into distinct files promotes a modular design,

allowing developers to focus on the specific requirements of each component. This modularity not only

simplifies development but also streamlines maintenance efforts. When modifications or updates are necessary,

developers can address specific components without the need to navigate through an extensive monolithic

configuration file.

\ b. Ease of collaboration: in collaborative development environments, multiple teams or individuals may be

responsible for different components of a big data pipeline. Using separated configuration files facilitates

parallel development and reduces the risk of conflicts. Each team can work on their respective configurations

independently, minimising the chances of unintentional interference.

\ c. Scalability: as big data pipelines evolve and expand, the addition of new components or the modification of

existing ones is inevitable. Separated configuration files accommodate this scalability seamlessly. Developers

can introduce new configurations for new components without disrupting the settings of existing ones,

promoting a scalable and extensible architecture. Furthermore, developers can override general settings

parameters in the component specific settings for testing purposes.

\ d. Version control: by organising configurations in a modular fashion, version control becomes more effective.

Changes to specific components can be tracked independently, providing a clear audit trail of configuration

modifications over time. This enhances traceability, simplifies debugging, and facilitates the rollback to previous

configurations if needed.

5.1.2.5 LOGGING DESIGN

The logger is initialised after reading the configuration file. A single python logging object is created logging into

the standard out (stdout) file descriptor. Furthermore, the software can also create a log file in the local filesystem

of the master machine besides the writing to stdout. This functionality is activated via configuration and is

recommended for local mono-cluster deployments. In cloud environments, like AWS EMR and GCP Dataproc, the

logs written in stdout file descriptor can be saved into their respective blob storage.

Each component shall log the configuration that will use at the start of its execution in the log file.

66

5.1.3 INFRASTRUCTURE DESIGN

The software developed in the project processes big data pipelines which, due to the expected large volume of

the data, distributed computing and distributed file systems frameworks will be used. Spark & HDFS, respectively,

are the proposed open-source frameworks. They can be executed in centralised environments and distributed

environments.

5.1.3.1 DEVELOPMENT/TESTING ENVIRONMENT

When developing the software, it is important that it can be executed locally so developers can perform an agile

developing cycle. Thankfully both Spark & HDFS frameworks can be deployed locally in a centralised system of a

single computer. However, in the case of a local execution, the OS filesystem can be used instead of HDFS for

simplicity as the data used in this case should not be large.

For a local execution, docker technology is proposed as it allows to completely isolate software dependencies

from the host machine inside the container. Containers can be conceived as virtual machines that only have the

indispensable libraries for executing the software. With this approach, users only need to have docker installed

in their system to execute the application. Furthermore, it allows to test different versions of libraries in an agile

manner as multiple containers with different environments can be created in order to verify the software

execution across multiple library versioning combination.

Figure 8: Standalone docker deployment

5.1.3.2 PRODUCTION ENVIRONMENT

Thanks to cloud providers like AWS and GCP, computing environments that easily scale can be deployed.

Furthermore, the software needs to be executed in the MNO cloud environments due to data privacy constraints.

Based on the project team previous experience working with MNOs, many of them usually provide a cloud-

https://spark.apache.org/
https://hadoop.apache.org/

67

managed map-reduce cluster, such as AWS EMR or GCP Dataproc. These clusters follow a driver-executor

architecture ideal for the Spark and Hadoop frameworks. In Figure 8, a representation of a distributed computing

deployment in the MNO-Cloud is represented.

Figure 9: Distributed computing deployment

5.1.4 VERSION CONTROL

The code shall be maintained and released following the semantic versioning strategy. It consists on using three

numeric levels for code versioning classified as Major.Minor.Patch. For example: 1.2.4.

Each level classifies the changes in the source code:

\ Major: changes that are not backward compatible.

\ Minor: changes that are backward compatible. Example: performance improvements or new functionalities.

\ Patches: bug fixes.

Levels are increased sequentially by one. When a level increases it resets the value for levels to its right to zero

(example: increasing the minor version for version 1.2.4. will result in 1.3.0.)

Generally, when the software is in development before its official first release (beta stage) the major version is set

to zero (example: version 0.7.3.)

Pre-release metadata can be added to the version by appending a hyphen to the end (example: version 1.0.0-

alpha1)

68

5.1.5 SOFTWARE ARTEFACTS DESIGN

5.1.5.1 SOURCE CODE

\ CODING STYLE

PEP 8, which stands for Python Enhancement Proposal 8, is the coding style proposed for writing clean, readable,

and maintainable Python code. It was created to promote consistency in Python code and make it easier for

developers to collaborate on projects. PEP 8 provides the following advantages:

1. Readability: PEP 8 enforces a consistent and easy-to-read coding style. This makes it easier for

developers to understand and maintain the code, which is especially important for collaborative projects

or when revisiting your own code in the future.

2. Consistency: PEP 8 helps ensure that Python code looks and feels consistent across different projects

and teams. This consistency simplifies code reviews and reduces the learning curve when working on

new projects.

3. Collaboration: when multiple developers work on a project, using PEP 8 ensures that everyone follows

the same coding conventions. This can prevent misunderstandings and disagreements about coding

style and improves code quality and maintainability.

4. Tooling and automation: many code editors and integrated development environments (IDEs) provide

built-in or third-party tools for checking and formatting code according to PEP 8. These tools can

automatically highlight or fix violations, making it easy to follow the style guide.

5. Debugging: code that follows PEP 8 is often easier to debug, as it has a consistent structure and naming

conventions. This can save you time when troubleshooting issues.

6. Community standards: PEP 8 is widely accepted in the Python community, and most Python developers

are familiar with its conventions. Adhering to PEP 8 makes it easier for you to collaborate with other

developers and participate in open-source projects.

7. Future-proofing: following PEP 8 helps future-proof your code. As Python evolves, adhering to

established coding standards makes it easier to update your code to newer Python versions and libraries.

PEP 8 official guide is available at the following link: https://peps.python.org/pep-0008/

\ DOCSTRING STYLE

Adhering to a unique docstring style guarantees consistency within software development in a project. Google

Docstrings are the most popular convention for docstrings which facilitates readability and collaboration in open-

source projects. Furthermore, Google Docstrings provide the following benefits:

1. Clarity and readability: Google Docstrings provide a structured format that includes sections for a

function's description, parameters, return values, and examples. This format enhances the clarity and

readability of your code documentation, making it easier for both developers and automated

documentation tools to understand your code.

2. Consistency: Google Docstrings provide a consistent way to document your code. When multiple

developers work on a project, using a standardized docstring format ensures that all functions and

classes are documented in a similar and predictable way.

3. Auto-generation: many documentation tools and IDEs can parse Google Docstrings and automatically

generate documentation from them. For example, tools like Sphinx and Doxygen can create HTML or

PDF documentation from the source code docstrings.

4. IDE support: several Python Integrated Development Environments (IDEs), such as PyCharm and

VSCode, can use Google Docstrings to provide code suggestions, autocompletion, and inline

documentation. This can be a significant productivity boost for developers.

https://peps.python.org/pep-0008/

69

5. API documentation: Google Docstrings are suitable for generating API documentation. This makes it

easier to extract and publish the project's API documentation for others to use.

6. Help for code review: when reviewing code, especially in a collaborative setting, well-documented

functions with Google Docstrings can provide reviewers with a clear understanding of the purpose of

each function and its expected inputs and outputs. This can lead to more effective code reviews.

7. Self-documentation: Google Docstrings serve as a form of self-documentation for your code. They

provide valuable information about how to use the functions and classes without needing to dig into

the implementation details.

Google Docstrings official guide is available in the following link:

https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings

5.1.5.2 TESTING

\ EXECUTION ARTEFACTS

\ Testing code: code written in Python containing the unit-tests of the project. Each module should have, at

least, a testing file with a battery of tests. Both ‘happy path’ and error cases should be tested. Tests should

evolve as code evolves.

\ Testing resources: files needed to execute all the unit-tests of the project. They can be divided in the following

categories:

• Configuration: configuration data needed for the execution of tests.

• Testing Data: small input data and output expected data needed by tests.

• Automation scripts (optional): scripts that execute the tests and generate the testing reports.

\ TESTING REPORT

Report containing the results of the testing execution. This report is automatically generated with the automation

scripts mentioned in the previous section. It is defined as:

\ Test execution report: file indicating which tests have been passed, failed or skipped. It should also include

the version of the software used, test logs and execution time.

5.2 COMPONENT DESIGN

[Remark - This section contains the design for the components available in the release 0.3 of the software.]

5.2.1 EVENTCLEANING

5.2.1.1 MODULE DESCRIPTION

• Module Name: EventCleaning

• Objectives: the objective of this method is to perform syntactic checks on the raw event data from the

MNO. Data not matching the expected syntax will be removed. Based on the removed records, quality

metrics will be created.

• Functionality:

Functionality details may be found in the software requirements: 3.2.6 EventCleaning

• Data Inputs and Outputs:

o Input:

I.1 MNO Event Data – Raw

https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings

70

o Outputs:

I.2 MNO Event Data – Syntactically Cleaned

I.4 MNO Event Data Syntactic Quality Metrics – frequency distribution

I.3 MNO Event Data Syntactic Quality Metrics – by column

5.2.1.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

The data is processed in one-day chunks. It is expected that the MNOs will provide data that is already

separated by date. All of the following steps are run for each date in the data.

o Create quality metrics data objects.

o Filter out rows that contain nulls in user_id or timestamp columns and update quality metrics.

o Filter out rows that do not have valid domain columns (each row must have mcc and mnc, or

plmn).

o Infer the domain of each row:

▪ If plmn is not null - domain is outbound

▪ If mcc is equal to local_mcc from configuration - domain is domestic

▪ Otherwise - domain is inbound

o Filter out domestic and inbound rows that have an invalid MCC code (has to be a number

between 100 and 999) and update quality metrics.

o Filter out domestic and inbound rows that have an invalid MNC code (has to be a number

numerical with 2 or 3 digits, can also be 00) and update quality metrics.

o Filter out outbound rows that have an invalid PLMN code (has to be a number between 10000

and 99900) and update quality metrics.

o Filter out domestic and inbound rows that do not have a valid location. A row has to have a

cell_id or both latitude and longitude columns as not nulls to be considered valid. Update

quality metrics.

o Filter out domestic and inboundrows with invalid cell_id. A valid cell_id contains 14 or 15

numerical digits. Update quality metrics.

o Convert timestamp column to internal timestamp type according to timestamp_format from

configuration and filter out rows where timestamp does not match the given format. Update

quality metrics.

o Filter out rows, where the timestamp is not between data_period_start and data_period_end.

Update quality metrics.

o If do_bounding_box_filtering is set to True in configuration:

For rows with latitude and longitude: Filter out rows where value is out of bounds for

bounding box defined by bounding_box in configuration. Update quality metrics

o If do_same_location_duplicate_removal is set to True in configuration:

Remove all rows that have identical values in the columns: timestamp, user_id, cell_id, latitude,

longitude, plmn

For rows with latitude and longitude: Filter out rows where value is out of bounds for

bounding box defined by bounding_box in configuration. Update quality metrics

o Calculate the modulo of the user_id column, to be used for partitioning the data, so that each

partition would contain a similar number of users.

o Write silver event data object and quality metrics

71

• Data flow diagram:

72

• Class diagram:

• Code Structure:

The code structure follows the format set by the core package, and the general repository structure.

The location of the module script in the repository is as follows:

event_cleaning.py contains one class named EventCleaning which is a subclass of Component.

The EventCleaning class overrides all methods in the Component class:

73

__init__ method initialises the data objects and reads the necessary values from config file.

read method is responsible for reading the data from one date into memory.

write method is responsible for writing event data and frequency distribution quality metrics for the

date currently being processed.

transform performs all necessary filtering and transformations for daily data and updates the quality

metrics data objects. transform contains calls to many other smaller functions that perform the actual

data manipulation.

execute is responsible for calling read, write and transform for each unique date in the dataset. The

processing is done date-by-date. Only the data from one date is being processed at any given time.

5.2.2 EVENTQUALITYWARNINGS

5.2.2.1 MODULE DESCRIPTION

• Module Name: EventQualityWarnings

• Objectives: the objective of this method is to create a flexible/dynamic tool that will compute Quality

Warnings checks based on two outputs - Quality Metrics Frequency Distribution and Quality Metrics By

Column. The flexibility is provided by the option of specifying what group of QWs to compute, what

value for different thresholds to choose and most importantly it is able to compute Quality Warnings

after both MNO Event Cleaning and Event Deduplication stages meaning that this component does the

job of Event Data Syntactic Quality Warnings and Event Deduplication Quality Warnings. The component

is supposed to write two Data Objects - Log Table with unified structure of representing errors'

information and For Plots which stores data needed to create graphs of three variables' distribution

along with some other statistical measures - initial frequency, total frequency, and error rate by date.

• Functionality:

the process of managing Quality Warnings is segmented into three major categories: QWs related to the

daily sizes of data (both raw and preprocessed); the error rate of event data across various granularity

levels (by date, by date and cell_id, by date and user_id, by date and cell_id and user_id); and quality

assessments of error types (missing values, values out-of-range, deduplication of identical locations, and

etc.).

Functionality details may be found in the software requirements: 3.2.7 EventQualityWarnings

• Data Inputs and Outputs:

o Input:

In both Quality Warnings cases the Component expects two inputs: Event Data Quality Metrics

Frequency Distribution and Event Data Quality Metrics By Column

▪ I.3 MNO Event Data Syntactic Quality Metrics – by column

▪ I.4 MNO Event Data Syntactic Quality Metrics – frequency distribution

o Output:

▪ I.5 MNO Event Data Quality Warnings – log table

▪ I.22 MNO Event Data Quality Warnings – for plots

5.2.2.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

The whole Component heavily relies on the input Quality Metrics. It is important to specify the correct

time period for Quality Warnings taking into account the lookback period timeline, in order to have

covered enough previous data for the calculation of the Quality Warnings. For example, if the Quality

Metrics were computed for the period of [2023-01-01, 2023-01-15] and a lookback period is set to be a

week (7 days) then the first date of the time reference/period for Quality Warnings would be 2023-01-

74

08, and the end date should be any date later than the start date and earlier than or the same as the

last date of the calculated Quality Metrics (i.e. 2023-01-15 in the given example).

The whole process of execution of Quality Warnings is divided into three large groups: Quality Warnings

regarding daily size of data; error rate of event data on different granularity levels; and quality checks of

error types (e.g. missing value, out-of-range, deduplication same locations). The first two groups (size

and error rate) solely use Silver Event Data Syntactic Quality Metrics - Frequency Distribution object and

each sub-Quality-Warning within the mentioned sets is invoked by boolean value (basically, if True do

something). The last group requires two inputs Frequency Distribution and Silver Event Data Syntactic

Quality Metrics - By Column although the later holds the most important information. Also, the logic of

this group differs; namely, the algorithm loops through each unique combination of

error_type&field_name and performs same types of Quality Warnings, meaning the input is changing

(e.g. number of errors for combination missing_value&user_id, or out_of_range&mcc), while the Quality

Warnings process stays the same. The Component description step-by-step is presented below:

o Initialise EventQualityWarnings Component. Create attributes based on corresponding config

(cleaning and deduplication have their own, separate config), check existence of input, initialise

corresponding output Data Objects, if clear_destination_directory clear all Component’s output

o Read Quality Metrics for the period: [data_period_start - lookback_period, data_period_end]. In

config lookback_period is specified as string but in component it gets numerical

representation.

o Perform Quality Warning regarding data size (regards only Event Cleaning Quality

Warnings), it could be either raw size (initial frequency) or clean size (final frequency), both are

run if their corresponding config boolean params (do_size_raw_data_qw and

do_size_clean_data_qw) are set to True. The QW involved: checking if a size within a range of

two absolute numbers (upper and lower limit) and between [mean+X*std, mean-X*std]

boundaries, average and standard deviation are calculated based on previous data of

lookback_period length. Correspondingly three configurable thresholds (for each type of size)

are involved: absolute upper/lower limits and the number of stds appropriate to deviate from

mean. The information of wrong entries (please refer to its structure in Methodology Section) is

stored in Log Table and apart from that data to plot graphs is being calculated. Important to

mention that for Log Table the period would be as specified in config [data_period_start,

data_period_end], while For Plots it should be [data_period_start - lookback_period,

data_period_end].

o Perform error rate Quality Warnings (regards only MNO Event Cleaning Quality Warnings)

which is computed by formula: Error rate = (Total initial frequency - Total final frequency) /

Total initial frequency*100. The error rate is then checked on three warnings: should not be

higher than some absolute number; should not be higher than average of previous error rates

by some X%, should not be higher than mean + X*std. Again, for average and standard deviation

information of previous days is used. The error rate Quality Warnings are computed on different

granularity level (by date, by date and cell_id, by date and user_id, by date and cell_id and

user_id). Each warning for each granularity level has their own configurable thresholds. The

decision on running error rate Quality Warnings on each level is decided by its own boolean

config param (e.g. do_error_rate_by_date_qw, do_error_rate_by_date_and_cell_qw, and so on).

The information of wrong entries is stored in Log Table and apart from that data to plot graphs

is being calculated but only for error rate by date.

o Perform final set of QWs - error type Quality Warnings (regards both MNO Event Cleaning

Quality Warnings and Event Deduplication Quality Warnings). They have the same checks

as for error rate Quality Warnings - absolute upper limit, not over the average by X%, and

75

mean+X*std limit (and under the hood uses the same function as for error rate QWs). However,

the logic of invoking these checks is different instead of using boolean value, the code does it

dynamically looping through unique combination of error_type&field_name (one error type can

have many field names) which is specified in a config param: error_type_qw_checks . Each stated

error_type should have another config param to define thresholds for its field_names (e.g.

missing_value_thresholds), for a more detailed description please refer to configuration. The

information of wrong entries is stored in Log Table, no data for plots is saved.

o Write silver output data objects of the Component:

SilverEventDataSyntacticQualityWarningsLogTable and

SilverEventDataSyntacticQualityWarningsForPlots as CSVs partitioned by date

• Data flow diagram:

76

• Class diagram:

77

• Code Structure:

The code structure follows the format set by the core package, and the general repository structure.

The location of the module script in the repository is as follows:

event_quality_warnings.py contains one class named EventQualityWarnings which is a

subclass of Component.

The EventQualityWarnings class overwrites all methods in the Component class:

__init__ method initialises the data objects and reads the necessary values from config file.
read method is responsible for reading the data from Event Quality Metrics
write method is responsible for writing outputs of the component.

transform performs all specified Quality Warning checks

execute is responsible for calling read, write and transform

5.2.3 EVENTDEDUPLICATION

5.2.3.1 MODULE DESCRIPTION

• Module Name: EventDeduplication

• Objectives: the objective of the method is to process event data, so that duplicate records are

removed, and to create quality metrics based on detected duplicated rows.

These quality metrics follow the standard structure of syntactic quality metrics, and include variables

such as initial frequency, total frequency, and error rate by date.

• Functionality: the Event Deduplication module retrieves and removes the duplicated records in the

device level event data. It distinguishes between same and different location duplicates. It produces

frequency and column-wise statistics for removed duplicates. Quality metrics produced per column are

produces for each date in the configured period.

Functionality details may be found in the software requirements: 3.2.8 EventDeduplication

• Data Inputs and Outputs:

o Input:

▪ I.2 MNO Event Data – Syntactically Cleaned

o Output:

▪ I.3 MNO Event Data Syntactic Quality Metrics – by column

▪ I.4 MNO Event Data Syntactic Quality Metrics – frequency distribution

▪ I.6 MNO Event Data – Deduplicated

78

5.2.3.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

o Iteration over selected dates. All the processes described below are performed on a date bases,

at each level of iteration.

o Reading in event data for all subscribers for a given date.

o Processing the data.

o Selection of one row in cases of same location duplicates. These are duplicate rows that have

identical location information (cell_id, longitude and latitude) and timestamp information. As

the rows are identical, only one row is kept.

o Removal of different location duplicates from the data. These are duplicate rows that have

identical location information timestamp information but may have different location

information. All rows in cases of these duplicates are removed.

o Counting the number of rows that have been changed by either of the two duplicate removal

techniques.

o Calculating the initial frequency before and after duplicate removal.

o Writing deduplicated quality metrics per column.

o Writing deduplicated records.

o Writing silver output data objects of the Component:

SilverEventDataSyntacticQualityMetricsByColumn considering the error codes for deduplication.

79

• Data flow diagram:

80

• Class diagram:

• Code Structure:

The code structure follows the format set by the core package, and the general repository structure.

The location of the module script in the repository is as follows:

event_deduplication.py contains one class named EventDeduplication which is a subclass of

Component.

The EventDeduplication class overwrites all methods in the Component class:

__init__ method initialises the data objects and reads the necessary values from config file.
read method is responsible for reading the data from Event Quality Metrics

write method is responsible for writing outputs of the component.

81

transform performs all specified Quality Warning checks

execute is responsible for calling read, write and transform

5.2.4 NETWORKCLEANING

5.2.4.1 MODULE DESCRIPTION

• Module Name: NetworkCleaning

• Objectives: this module is responsible for performing syntax checks on Network Topology Data to

remove erroneous entries and to produce corresponding syntax quality metrics.

• Functionality: this module finds and removes entries where one field presents one of the following

errors (when applicable): missing or null value, cannot be parsed, and out-of-range value. It also counts

the number of errors before and after performing these checks, as well as the number of times each type

of error appeared in each field.

Functionality details may be found in the software requirements: 3.2.1 NetworkCleaning

At this moment in time, only the processing of cell locations with physical properties is implemented.

• Data Inputs and Outputs:

o Input:

▪ I.7 Cell Locations with Physical Properties - Raw

o Output

▪ I.8 Cell Locations with Physical Properties – Cleaned

▪ I.9 MNO Network Topology Data Quality Metrics

▪ I.26 MNO Network Topology Top Frequent Erros

▪ I.27 MNO Network Topology Row Error Metrics

5.2.4.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes: The raw data is processed for the set of dates within an date interval

specified via configuration file. It is assumed that the raw input data is partitioned by year, month, day

columns, and the processes below work separately on each date’s data.

o Create quality metrics data object.

o Filter out rows outside of the date interval.

o Create an empty list auxiliar_columns that will contain the names of auxiliar columns

that will keep track of each possible type of error in each field of a row.

o Missing values:

▪ Create one boolean column per field name, and set it to True if, for a given row, the

value in a specific field is null.

▪ Exception: azimuth_angle is expected to be null when directionality

is equal to 0 – this is not computed as a ‘mising’-null value and will not be

computed as such for the corresponding quality metric later on.

▪ Note that valid_date_end is allowed to be null. Nevertheless, the null

values of this column will be checked and reflected in the corresponding

boolean column.

▪ Add all these columns names to auxiliar_columns.

o Parsing errors:

▪ Only valid_date_start and valid_date_end can have this type of error.

▪ Parse the above-mentioned columns from string type to timestamp type.

82

▪ When a non-null value cannot be parsed with the specified timestamp format, the

function employed, pyspark.sql.functions.to_timestamp, returns a null

value.

▪ Create one boolean column for each of these two fields and set it to True if the

original value is non-null and the parsing failed.

▪ Add the two column names to auxiliar_columns.

o Out-of-range/out-of-bounds values:

▪ First, check for incoherent dates: this occurs when valid_date_start is a later

point in time than valid_date_end.

▪ Create a new boolean column equal to True when both

valid_date_start and valid_date_end are not null, and

valid_date_start > valid_date_end.

▪ Add the new column’s name to auxiliar_columns.

▪ Now, check of out-of-range values for the rest of the variables. A new boolean column

will be created for each of them, True when the value is out-of-range, and their names

are added to auxiliar_columns.

▪ cell_id: check if the string has a length different from 14 or 15 characters

(to be improved to check for CGI/eCGI rules).

▪ latitude: check if the value is outside a configuration-specified interval.

▪ longitude: check if the value is outside a configuration-specified interval.

▪ antenna_height: check if the value is less or equal to 0 (i.e., non-positive).

▪ directionality: check if the value is not equal to 0 or to 1.

▪ azimuth_angle: whenever directionality is equal to 1, check if the value is

lower than 0 or higher than 360.

▪ elevation_angle: check if the value is lower than -90 or higher than 90.

▪ horizontal_beam_width: check if the value is lower than 0 or higher

than 360.

▪ vertical_beam_width: check if the value is lower than 0 or higher than

360.

▪ power: check if the value is lower than 0.

▪ range: check if the value is lower than 0.

▪ frequency: check if the value is lower than 0.

▪ technology: check if the value is not one of ‘5G’, ‘LTE’, ‘UMTS’, and ‘GSM’.

▪ cell_type: check if the value is not one of the possible admitted values

specified via configuration file.

o For each field, create a new boolean column and set it to True if, for a given row, the field does

not have any type of error. Add these column names to auxiliar_columns.

▪ Exception: the column valid_date_end is allowed to have null values. Thus, the

null-boolean-column corresponding to valid_date_end is not considered for the

computation of this boolean column.

o Create a new boolean column to_preserve and set it to True if a given row does not have any

type of error in any of its fields.

▪ Exception: the column valid_date_end is allowed to have null values. Thus, the

null-boolean-column corresponding to valid_date_end is not considered for the

computation of this boolean column.

o Compute quality metrics:

83

▪ Count the number of True values in each of the columns whose names are stored in

auxiliar_columns. These are the error-related quality metrics for each date

considered.

▪ For each date, count the number of rows present in the raw input data.

▪ Count the number of times that the True value appears in the to_preserve column

for each date considered. These are the number of rows present after the syntactic

checks are performed.

o Compute row error metrics:

▪ Count the total number of rows that are going to be deleted, that is, any row that has

any type of error in any of its mandatory fields.

▪ Count the total number of rows that have at least one type of error in any of its fields,

irrespective of whether that field is mandatory or optional.

o Compute top frequent invalid values: the absolute frequency of each invalid value in a given

field is computed. Ordered from most to least frequent, the accumulated sum of percentage

of each error with respect to the total number of errors is calculated. Based on what is

requested via configuration file, this information is saved in two different ways:

▪ If the top k most frequent invalid values were requested as an absolute number, the k

most frequent combinations of field and invalid value are saved.

▪ If the topmost frequent invalid values were requested as a percentage number k, the

most frequent combinations of field and invalid value that cover at least k percentage

of all invalid values are saved.

o Filter out rows with the column to_preserve as a mask, select only the original columns (so

no auxiliar_column or to_preserve is kept), and save the result. This is the clean dataset

after syntactic checks.

84

• Data flow diagram:

85

• Class diagram:

• Code Structure: The code structure follows the format set by the core package, and the general

repository structure. The location of the module script in the repository is as follows:

86

o network_cleaning.py contains one class named NetworkCleaning which is a subclass

of Component. The NetworkCleaning class overrides some of the methods of

Component:
▪ The __init__ method first call its parent’s __init__ method, which sets up the

Spark session, initialises data objects and reads the configuration file.
▪ Transform performs all necessary filtering and transformations pertaining to the

syntactic checks for daily raw network data and computes the associated updates the

quality metrics data objects.

5.2.5 NETWORKQUALITYWARNINGS

5.2.5.1 MODULE DESCRIPTION

• Module Name: NetworkQualityWarnings

• Objectives: the task of this module is to analyse the quality metrics resulting from the network

syntacitc checks process and identify anomalous situations that may require further investigation.

• Functionality: the module computes statistics on the quality metrics over a specified lookback period

and compares them with present values. When anomalous situations are identified, warnings are

produced, as well as data to easily create plots that summarise the evolution of metrics over time and

the frequency of each type of error.

Functionality details may be found in the software requirements: 3.2.2 NetworkQualityWarnings

• Data Inputs and Outputs:

o Input:

▪ I.9 MNO Network Topology Data Quality Metrics

o Output:

▪ I.10 MNO Network Topology Data Quality Warnings – log table

▪ I.23 MNO Network Syntactic Quality Warnings Line Plot Data

▪ I.24 MNO Network Syntactic Quality Warnings Pie Plot Data

5.2.5.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

o Create the data objects.

o The thresholds to be used for raising warnings that are specified via configuration file are read

and their types and values are validated. In the case that a specific threshold is not present, its

default value is used instead.

o Read the length of the lookback period from the configuration file, as well as the date to be

studied. If the study date is not present, or any of the lookback dates are not present, an

exception is raised and the execution stops.

o Compute the necessary statistics, namely the average and the sample standard deviation, of

each quality metric over the lookback period.

o Load the values of the quality metrics for the study date.

o Register warnings regarding the number of rows before the syntactic checks when:

▪ The study date's number of rows is greater than the average number of rows over the

previous period by more than a specified threshold percentage.

▪ The study date's number of rows is smaller than the average number of rows over the

previous period by more than a specified threshold percentage.

87

▪ The study date's number of rows is greater than the average number of rows over the

previous period by a specified number of standard deviations – that is, greater than

the upper control limit.

▪ The study date's number of rows is smaller than the average number of rows over the

previous period by a specified number of standard deviations – that is, smaller than

the lower control limit.

▪ The study date's number of rows is greater than a specified absolute threshold.

▪ The study date's number of rows is smaller than a specified absolute threshold.

o Register warnings regarding the number of rows after the syntactic checks when:

▪ The study date's number of rows is greater than the average number of rows over the

previous period by more than a specified threshold percentage.

▪ The study date's number of rows is smaller than the average number of rows over the

previous period by more than a specified threshold percentage.

▪ The study date's number of rows is greater than the average number of rows over the

previous period by a specified number of standard deviations – that is, greater than the

upper control limit.

▪ The study date's number of rows is smaller than the average number of rows over the

previous period by a specified number of standard deviations – that is, smaller than the

lower control limit.

▪ The study date's number of rows is greater than a specified absolute threshold.

▪ The study date's number of rows is smaller than a specified absolute threshold.

o Register warnings regarding the overall error rate in the syntactic checks process when:

▪ The study date's error rate is greater than the average error rate over the previous

period by more than a specified threshold percentage.

▪ The study date's error rate is greater than the average error rate over the previous

period by a specified number of standard deviations – that is, greater than the upper

control limit.

▪ The study date's error rate is greater than a specified absolute threshold.

o Register warning regarding the number of errors that each field presented in each error type

(separately):

▪ The study date's number of errors of a given error type in a given field is greater than

the average number of errors of that error type in that field over the previous period

by more than a specified threshold percentage.

▪ The study date's number of errors of a given error type in a given field is greater than

the average number of errors of that error type in that field over the previous period

by a specified number of standard deviations – that is, greater than the upper control

limit.

▪ The study date's number of errors of a given error type in a given field is greater than

a specified absolute threshold.

o Write every registered warning into a log table, specifying:

▪ the study date,

▪ the date in which the quality warnings component is being executed,

▪ the value of the metric that raised the warning,

▪ the condition that had to be fulfilled to raise the warning,

▪ the threshold with which the metric was compared, and

▪ a warning text giving context to the warning.

o Using the statistics computed previously, prepare the data needed to plot the required graphs:

▪ Line plot showing the evolution of the number of rows before the syntactic checks over

the lookback period and the study date, together with the average over the previous

88

period, the upper control limit, and the lower control limit. Save the data needed to

make this graph into parquet format.

▪ Line plot showing the evolution of the number of rows after the syntactic checks over

the lookback period and the study date, together with the average over the previous

period, the upper control limit, and the lower control limit. Save the data needed to

make this graph into a parquet file.

▪ Line plot showing the evolution of the error rate over the lookback period and the study

date, together with the average over the previous period and the upper control limit.

Save the data needed to make this graph into a parquet file.

▪ For each field, a pie chart showing the percentage distribution of each type of error

present in that field for the study date. Save the data needed to make this graph into

respective parquet files.

89

• Data flow diagram:

90

• Class diagram:

91

• Code Structure: The code structure follows the format set by the core package, and the general

repository structure. The location of the module script in the repository is as follows:

o network_quality_warnings.py contains one class named NetworkQualityWarnings which is a

subclass of Component. It overrides the following methods:

▪ The __init__ method first call its parent’s __init__ method, which sets up the Spark

session, initialises data objects and reads the configuration file.

▪ The transform method handles all the logic behind the component.

▪ The write method writes the quality warnings log table containing the computed

warnings. It also writes into parquet files the data required to produce the defined

plots.

o The NetworkCleaning component also has the following methods:

▪ get_thresholds handles the logic of reading configuration-specified thresholds and

the usage of default threshold whenever a specific threshold value is not specified.

▪ check_needed_dates verifies that both the study date and the dates in the lookback

period are all present in the metrics data and throws an exception when some date is

missing.

▪ get_lookback_period_statistics computes the average and sample standard deviation

of the quality metrics over the lookback period

▪ get_study_date_values retrieves and computes the metric values of the study date.

▪ register_warning is a method that abstracts away the creation of a warning in the log

table, taking as arguments all necessary information and putting it in the correct

format.

▪ raw_size_warnings contains the logic behind the warning computation regarding the

number of rows before the syntactic checks.

▪ clean_size_warnings contains the logic behind the warning computation regarding the

number of rows after the syntactic checks.

▪ error_rate_warnings contains the logic behind the warning computation regarding the

error rate detected in the syntactic checks process.

▪ all_specific_error_warnings loops over all field and error type specific errors in order to

compute their warnings.

▪ specific_error_warning contains the logic behind the warning computation regarding

a specific (field, error type) pair determined in the all_specific_error_warnings method.

▪ create_plots_data gathers and formats the data required to produce the necessary

plots of the component.

o NetworkCleaning also contains as attributes different sets of formattable strings used in the

generation of the log table. These include MEASURE_DEFINITION, CONDITION, TITLE,

WARNING_MESSAGE.

92

5.2.6 SIGNALSTRENGTHMODELING

5.2.6.1 MODULE DESCRIPTION

• Module Name: SignalStrengthModeling

• Objectives: responsible for modeling the signal strength propagation in a cellular network.

• Functionality: takes as input a configuration file and a set of data representing the network's cells and

their physical properties. The component then calculates the signal strength at various points of a

reference grid, taking into account factors such as the distance to the cell, physical properties of the cell,

the azimuth and elevation angles of the cell, the directionality of the cell and physical environment.
Functionality details may be found in the software requirements: 3.2.3 SignalStrengthModeling

• Data Inputs and Outputs:

o Inputs:

▪ I.8 Cell Locations with Physical Properties – Cleaned

▪ I.11 Reference Grid

o Outputs:

▪ I.12 Cells Signal Strengths

5.2.6.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

1. Initialisation. Read all necessary config parameters, check the availability of input data, read it in data

objects.

2. Prepare input datasets:

1. Filter input network data to include only date range specified in config.

2. Add Z coordinate to grid centroids. If elevation is used Z coordinate is assigned based on a grid

elevation property. If elevation is not used assign Z = 0.

3. Check that all necessary cells' physical properties are present and impute missing properties.

Based on a cell type, missing properties are filled in by taking default values for this cell type

defined in config file. If cell type is not defined or not present in config file default cell properties

are assigned.

4. Convert signal strength values from W to DBm.

5. Create cell point geometries. If elevation is used, set Z coordinate as altitude + antenna height.

If elevation is not used, set Z coordinate as 0 + antenna height.

6. Project coordinate system of cell geometries to coordinate system of the reference grid.

3. Spatial join of cells to grid centroids. Join is done based on spatial intersection of a buffer polygons

around cell points of a radius equal to the maximum cell range with grid centroids.

4. Calculate planar and 3D cartesian distances between cell point and all joined grid centroids.

5. Calculate signal strength in grid tiles. Using power and Path Loss Exponent cell properties and distances

to joined grid tiles within cell range calculate signal strength in every grid tile with signal strength

propagation equation.

6. Perform horizontal beam width adjustments to signal strength for directional cells. Optional depending

on config parameter.

1. Get mapping table with standard deviations in signal strength in all horizontal angles for all

combinations of horizontal beam widths and signal strength differences between front and back

of antennas.

2. Filter only directional cells from cell-grid dataset.

3. Join mapping table with standard deviations to cell-grid dataset.

93

4. Calculate signal strength adjustments based on relative azimuth angle and the distance between

grid tiles and a cell using joined standard deviation value for a cell horizontal beam width.

7. Perform vertical beam width adjustments to signal strength for directional cells. Optional depending on

config parameter.

1. Get mapping table with standard deviations in signal strength in all vertical angles for all

combinations of vertical beam widths and signal strength differences between front and back

of antennas.

2. Filter only directional cells from cell-grid dataset.

3. Join mapping table with standard deviations to cell-grid dataset.

4. Calculate signal strength adjustments based on elevation angle and the distance between grid

tiles and a cell using joined standard deviation value for a cell vertical beam width.

8. Union directional and non-directional cell-grid datasets.

9. Convert cell-grid dataset schema to match the output data object schema and save to storage.

94

• Data flow diagram:

95

• Class diagram:

•

96

• Code Structure:

The code structure follows the format set by the core package, and the general repository structure.

The location of the module script in the repository is as follows:

signal_stength_modeling.py contains one class named SignalStrengthModelingwhich is a subclass of

Component.

The SignalStrengthModelingclass overrides transform method of base Component class.

transform method performs all necessary filtering and transformations of network topology data for signal

strengths modeling by sequentially calling other methods that perform the actual data manipulation.

5.2.7 CELLFOOTPRINTESTIMATION

5.2.7.1 MODULE DESCRIPTION

• Module Name: CellFootprintEstimation

• Objectives: convert cells signal strength to signal dominance (cell footprint). Optionally calculate cells

intersection groups.

• Functionality: takes as input a configuration file and Signal Strength Data. The component then

calculates the signal dominance per grid tile and applies any combination out of 3 pruning methods

depending on config parameters. Optionally component also produces Cell Intersection Groups.

Functionality details may be found in the software requirements: 3.2.4 CellFootprintEstimation

• Data Inputs and Outputs:

o Input:

▪ I.12 Cells Signal Strengths

o Outputs:

▪ I.13 Cell Footprints

▪ I.14 Cell Intersection Groups

5.2.7.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

1. Initialisation. Read all necessary config parameters, check the availability of input data, read it in data

objects.

2. Prepare input datasets:

1. Filter input Signal Strength data to include only date range specified in config.

3. Calculate signal dominance (cell footprint) from signal strength values.

4. Apply set of pruning methods depending on configuration:

97

1. Maximum cells per grid tile. Keep predefined number of contributing to overall tile’s signal

dominance cells per grid tile. Optional step depending on configuration.

2. Threshold difference from the best signal dominance. Always keep best signal dominance cell

per grid tile. Then calculate the difference of all other cells in this tile from the best and prune

cells under predefined difference threshold. Optional step depending on configuration.

3. Threshold signal dominance. Prune all cells with signal dominance value under threshold.

Optional step depending on configuration.

5. Calculate Cell Intersection Groups. Optional step depending on configuration:

1. Aggregate all contributing cells per grid tile into lists, drop duplicates.

2. Extract all possible combinations of overlapping cells from previously calculated lists, drop

duplicates.

6. Convert output datasets schema to match the output data objects schemas and save to storage.

98

• Data flow diagram:

99

• Class diagram:

100

• Code Structure:

The code structure follows the format set by the core package, and the general repository structure.

The location of the module script in the repository is as follows:

cell_footprint_estimation.py contains one class named CellFootprintEstimationwhich is a subclass of Component.

The CellFootprintEstimationwhich class overrides transform method of base Component class.

transform method performs all necessary filtering and transformations of Signal Strength data to convert it to

signal dominance (cell footprint) by sequentially calling other methods that perform the actual data manipulation.

5.2.8 CELLCONNECTIONPROBABILITYESTIMATION

5.2.8.1 MODULE DESCRIPTION

• Module Name: CellConnectionProbabilityEstimation

• Objectives: this module calculates cell connection probabilities based on the cell footprint values, and

optionally applies the land use prior probabilities, to get the posterior probabilities for each cell id and

grid id.

• Functionality:

the component reads in cell footprint data, calculates cell connection probabilities for each grid, and

then performs posterior calculation , using prior probability values from the reference grid, when so

specified in the configuration.

Functionality is outlined in the software requirement specifications:

3.2.5 CellConnectionProbabilityEstimation

• Data Inputs and Outputs:

o Input:

▪ I.13 Cell Footprints

▪ I.11 Reference Grid

o Outputs:

▪ I.15 Cell Connection and Posterior Probabilities

5.2.8.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:
The data is processed for the selected dates range. All following steps are run for each date:

o Calculate sum of cell footprint for each grid_id.

o Calculate cell connection probability as ratio of cell footprint to sum of footprint for grid_id.

o If so set in configuration, join the grid data with prior probabilities to the result of previous step

101

o If so set in configuration, calculate posterior probabilities by multiplying prior probabilities and

cell connection probabilities. Otherwise make posterior probabilities equal with cell connection

probabilities.

o Calculate sum of cell connection probabilities for cell id.

o Normalise posterior probabilities using sum of previous step.

102

• Data flow diagram:

103

• Class diagram:

• Code Structure:

The code structure follows the format set by the core package, and the general repository structure.

The location of the module script in the repository is as follows:

o cell_connection_probability.py contains one class named CellConnectionProbabilityEstimation

which is a subclass of Component.

The CellConnectionProbabilityEstimation class overwrites __init__ andtransform in the Component class.

__init__ method initialises the data objects and reads the necessary values from config file.

transform performs all necessary transformations and calculation of cell probability estimation for the

104

entire period. transform does not contain any calls to smaller functions, but holds the entire processing

flow.

5.2.9 SEMANTICCLEANING

5.2.9.1 MODULE DESCRIPTION

• Module Name: SemanticCleaning

• Objectives: the objective of this module is to perform checks to identify and flag semantically erroneous

events of devices.

• Functionality: the semantic checks include the following checks:

o Valid reference to a cell identifier: whether an event makes a reference to an existent cell that is

operative at the event’s timestamp, and if the cell exists, whether it was operative or not.

o Illogical change of location of the device based on time and distance difference between

consecutive events: some events are flagged as incorrect and others are flagged as suspicious.

Functionality is outlined in the software requirement specifications: 3.2.9 SemanticCleaning

At this moment in time, only the processing of cell locations with physical properties is implemented.

• Data Inputs and Outputs:

o Input:

▪ I.1 MNO Event Data - Raw

▪ I.8 Cell Locations with Physical Properties – Cleaned

o Output:

▪ I.16 MNO Event Data – Semantically Cleaned

▪ I.17 MNO Device Semantic Quality Metrics

5.2.9.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

o Create the data objects: events and cells.

o Read from the configuration file the minimum distance and speed for which an event might be

classified as semantically erroneous.

o Create a geometry column with the latitude-longitude point of each cell.

o Perform a left join between events and cells by the cell ID field. In this way, non-existent cell IDs

appearing in the events data will be matched with null values.

o Whenever the geometry column is null, flag these events with the flag corresponding to a non-

existent cell.

o Then, flag different location duplicates. Different location duplicates are cases where timestamp

and user_id columns have identical values for more than two rows, but the combination of

values for longitude, latitude and cell_id is not identical for the same selection of rows.

o Then, flag events that refer to an existent cell that was not operative when the event was

registered with the corresponding flag. The geometry column created above, which is just an

auxiliar column, is set to null for these flagged events for convenience later on.

o Next, semantically erroneous events regarding location will be flagged. For this it is necessary

to compute the estimated distance and speed between two consecutive events which have not

been flagged. This is achieved as follows:

▪ Create two windows, both partitioned by year, month, day, user_id_modulo (these four

are the partitoin variables of event data) and user_id, and ordered by timestamp. One

window will comprise all events following the current position (from the current

position plus one, to unbounded following), and the other will comprise all events

105

preceding the current position (from unbounded preceding, to the current position

minus one).

▪ Using these two windows and ‘skipping’ all events previously flagged, four auxiliary

columns are created, containing the time difference to the next event, the time

difference from the previous event, the distance to the following event, and the

distance to the previous event, respectively.

▪ Then, two additional columns are created with the estimated mean speed with respect

to next and previous events respectively.

▪ With all the necessary information already computed, events are now flagged:

▪ Whenever the distance and speed to both the next and previous events

surpass their thresholds specified via configuration, the event is flagged as an

event with an incorrect location.

▪ Whenever the distance and speed to either, but not both, the next or previous

events surpass the thresholds specified via configuration, the event is flagged

as an event with a suspicious location.

▪ The first and last events of the day for a given device are compared with the

second and second-to-last events of the day respectively. If the distance and

speed thresholds are surpassed, they are flagged with a suspicious location.

o The rest of the events that have not been flagged until now are given the ‘no error’ flag.

o All auxiliary columns are removed and only those fields in the output event data object are left.

o The dataframe is cached or persisted into memory.

o Semantic metrics are computed: the now flagged event data is grouped by error flag and the

number of occurrences of each flagged is counted.

o The output event data and semantic metrics are saved.

106

• Data flow diagram:

107

• Class diagram:

• Code Structure: The code structure follows the format set by the core package, and the general

repository structure. The location of the module script in the repository is as follows:

o event_semantic_cleaning.py contains one class named SemanticCleaning which is a subclass of

Component. It overrides the following methods:

▪ The __init__ method first call its parent’s __init__ method, which sets up the Spark

session, initialises data objects and reads the configuration file.

▪ The transform method handles all the logic behind the component.

o The SemanticCleaning component also has the following methods:

▪ _flag_non_existent_cell_ids handles the check and flagging of references to non-

existent cell IDs.

▪ _flag_invalid_cell_ids handles the check and flagging of references to existent cell IDs

that were not operative in the moment an event was registered.

108

▪ _flag_by_event_location handles the check and flagging of events with an incorrect or

suspicious location.

▪ _compute_semantic_metrics handles the counting of occurences of each flag and

formatting them as the quality metrics.

▪ _flag_different_location_duplicate handles the detection and flagging of different

location duplicates.

5.2.10 SEMANTICQUALITYWARNINGS

5.2.10.1 MODULE DESCRIPTION

• Module Name: SemanticQualityWarnings

• Objectives: this module analyses the semantic quality metrics produced in the event semantic checks

at device level process in order to identify anomalous situations that may need to be investigated

further.

• Functionality: the module computes statistics on the semantic event quality metrics over a specified

lookback period and compares them with present values. When anomalous situations are identified,

warnings are produced, as well as data to easily create plots that summarise the evolution of metrics

over time and the frequency of each type of error.

Functionality is outlined in the software requirement specifications: 3.2.10 SemanticQualityWarnings

• Data Inputs and Outputs:

o Input:

▪ I.17 MNO Device Semantic Quality Metrics

o Output:

▪ I.18 MNO Event Data at device Level Semantic Quality Warnings – log table

▪ I.25 Event Data at Device Level Semantic Quality Warnings Bar Plot Data

5.2.10.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

o Create the data objects.

o The thresholds to be used for raising warnings that are specified via configuration file are read

and their types and values are validated. In the case that a specific threshold is not present, its

default value is used instead.

o Since each metric might have a different lookback period, the date furthest into the past is

found, and data is read between this date and the study date.

o If there are no metrics for the study date, an exception is raised.

o Compute the percentage of each type of flag error, including the ‘no error’ flag, for each date

read.

o For each error flag (excluding ‘no error’ flag) do:

▪ Check that the corresponding metric is present for all the lookback period dates of this

error:

▪ If one of them is missing, no warning is to be raised.

▪ If they are all present, but the lookback period is lower than 3, use the

‘min_percentage’ parameter as the threshold for the warning raising condition.

▪ If they are all present and the lookback period is equal or greater than 3,

compute the average and sample standard deviation of the percentage of this

flag error over its lookback period. Then, compute the threshold to raise a

109

warning as the upper control limit (i.e. average plus the standard deviation

multiplied by the ‘min_sd’ parameter).

▪ If the percentage of the study date is greater than the threshold, raise a

warning.

▪ Log the percentage value of the present day. In the case that a threshold was computed,

log it as well. If a warning is to be raised, log a True value, or False otherwise.

o Format all logged data in the required format and write it to file.

o Using the statistics computed previously, prepare the data needed to plot the required graphs:

▪ Bar plot showing the absolute count of each flag error type for each date over the

longest lookback period plus the study date considered in the process. Save the data

needed to make this graph into a parquet file.

▪ Bar plot showing the percentage of each flag error type for each date over the longest

lookback period plus the study date considered in the process. Save the data needed

to make this graph into a parquet file.

110

• Data flow diagram (full view):

111

• Data flow diagram (part I):

112

• Data flow diagram (part II):

113

• Class diagram:

114

• Code Structure: The code structure follows the format set by the core package, and the general

repository structure. The location of the module script in the repository is as follows:

o semantic_quality_warnings.py contains one class named SemanticQualityWarnings which is a

subclass of Component. It overrides the following methods:

▪ The __init__ method first call its parent’s __init__ method, which sets up the Spark

session, initialises data objects and reads the configuration file.

▪ The transform method handles all the logic behind the component.

▪ The write method writes the quality warnings log table containing the computed

warnings. It also writes into parquet files the data required to produce the defined plots.

o The SemanticQualityWarnings also has the following methods:

▪ get_thresholds handles the logic of reading configuration-specified thresholds and the

usage of default threshold whenever a specific threshold value is not specified.

▪ quality_warnings_by_error: method that handles the logic for computing the necessary

statistics and raising a warning for a specific error flag in the study date.

▪ register_warning is a method that abstracts away the creation of a warning in the log

table, taking as arguments all necessary information and putting it in the correct format.

▪ set_output_log_table formats the warnings into the expected table format.

▪ create_plots_data gathers and formats the data required to produce the necessary plots

of the component.

5.2.11 DEVICEACTIVITYSTATISTICS

5.2.11.1 MODULE DESCRIPTION

• Module Name: DeviceActivityStatistics

• Objectives: This module uses data on individual devices after and produces metrics to assess the

usability of the devices for specific procedures or use cases based on the activity statistics.

• Functionality:

• Data Inputs and Outputs:

o Input:

I.16 MNO Event Data – Semantically Cleaned

I.8 Cell Locations with Physical Properties – Cleaned

o Outputs:

I.19 Device Activity Statistics

5.2.11.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

The data is processed in one-day chunks in the local timezone. As the data is saved in UTC, the first

115

step is to calculate the times in UTC that need to be read. All of the following steps are run for each

date in the data:

o Preprocess events data:

▪ Timestamp is converted to local time.

▪ Year, month and day fields are updated according to new timestamp.

▪ Events data is joined with topology data to get locations of cells where the events

happened.

▪ The data is ordered by user and timestamp.

▪ The time gaps between records are calculated per user.

▪ Geometry (point) columns are created for the current cell location and location of next

cell.

▪ The distance between these two geometries is calculated.

o Calculate number of unique cells per user.

o Calculate number of unique locations per user (based on cell locations or lat/lon of event if

cell_id not available).

o Calculate distance between records per user (based on cell locations or lat/lon of event if cell_id

not available).

o Calculate number of unique hours present in data per user.

o Calculate mean and standard deviation of time gaps per user.

116

• Data flow diagram:

117

• Class diagram:

• Code Structure:

The code structure follows the format set by the core package, and the general repository structure.

The location of the module script in the repository is as follows:

118

device_activity_statistics.py contains one class named DeviceActivityStatistics which is a subclass of

Component.

The EventCleaning class overwrites __init__, transform and execute in the Component class.

__init__ method initialises the data objects and reads the necessary values from config file.

transform performs all necessary transformations and calculation of activity statistics for daily data.

transform contains calls to many other smaller functions that perform the actual data manipulation.

execute is responsible for calling read, write and transform for each unique date in the dataset. The

processing is done date-by-date. Only the data from one date is being processed at any given time.

5.2.12 CONTINUOUSTIMESEGMENTATION

5.2.12.1 MODULE DESCRIPTION

• Module Name: ContinuousTimeSegmentation

• Objectives: responsible for aggregating event data for each user into continuous time segments based

on certain spatio-temporal conditions.

• Functionality: takes as input a configuration file, semantically cleaned event data, cell intersection

groups and previously calculated time segments (only when available from executions from previous

dates; if not available, the process calculates this information). It then processes user events for each

date in the chosen data period and aggregates them into continuous time segments using cell

intersection groups to determine events which are happening in nearby cells with overlapping coverage

areas and so can belong to the same time segment. Segments are assigned with different states:

▪ stay-the location of the device is known and the device is staying in one location for a

certain period of time. Period of time is configuration parameter.

▪ move - the device is moving from one location to the next; the location of the device

is somewhere in between the two locations.

▪ undetermined -the location of the device is known, but it is unclear whether or not

the device is moving.

▪ unknown the location of the device is unknown: there are no events for a certain

(longer) period of time.

Functionality is outlined in the software requirement specifications:
3.2.12 ContinuousTimeSegmentation

• Data Inputs and Outputs:

o Inputs:

▪ I.16 MNO Event Data – Semantically Cleaned

▪ I.14 Cell Intersection Groups

▪ I.20 Daily Continuous Time Segments (optional)

o Outputs:

▪ I.20 Daily Continuous Time Segments

119

5.2.12.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

1. Initialisation. Read all necessary config parameters, check the availability of input data, read it in data

objects. Check existence of input files for the dates within the date interval specified via configuration

file, plus the previous (D-1) and posterior date (D+1) to each of these (D).

2. Prepare input datasets:

1. If this is the first run of the component and no D-1 time segments are available, create an empty

data frame with Time Segments Data Object schema. If CTS outputs are available for D-1, the

last time segment is uploaded.

2. If CTS outputs are available for D+1, the first segment is uploaded; otherwise, the first event for

D+1 are considered together with ‘D’ events for the analysis of time segments.

3. For previous time segment, convert year, month, date columns to the current processing date

in order to properly join it with current date events dataset later.

4. For previous time segment, convert user_id column to hex string from binary. This step is needed

due to Pandas serialization/deserialization. Must be omitted when user_id will be stored as hex

string instead of binary.

3. Start iterating over dates in date range between date period start and date period end, for each date do

following input datasets preparations:

1. Filter events dataset to include only events for current processing date and only for given

semantic error flags. Default configuration includes only semantic error flag 0, so that only

records without any semantic errors are included.

2. Filter cell intersection groups to include only groups only for current processing date.

3. In events dataset, convert user_id column to hex string from binary. This step is needed due to

Pandas serialization/deserialization. Must be omitted when user_id will be stored as hex string

instead of binary.

4. Convert cells arrays column of cell intersection groups to string with comma separator for easier

lookup and conversion to Pandas dataframe later

5. Broadcast cell intersection groups dataframe to have it available on all worker nodes

4. Perform time segments aggregation. Group events dataframe by year, month, day, user_id_modulo

partition key, user_id and cogroup it with last time segments dataframe also grouped by the same

columns. Then apply Pandas UDF on cogroups of these datafames. Each cogroup is a Pandas dataframe

with user events for the current processing date and last time segment for the same user in the previous

date. The UDF function performs following steps:

1. It initialises an empty segments list to store the time segments and a boolean is_first_ts to track

if it's the first time segment.

2. It calculates the start and end of the current and previous dates.

3. It creates a Pandas dataframe intersection_pdf from the broadcasted intersection groups.

4. It initializes the user info and the last time segment based on the presence of events and last

segments for the current date:

1. If events are present, but there is no last segment for the current user, creates time

segment of type 'undetermined' for the whole previous date. Takes user_id, mcc,

user_id_modulo columns from events dataframe

2. If events and last segment for the current user are present, takes the last time segment

as is. Takes user_id, mcc, user_id_modulo columns from events dataframe

3. If there are no events for the current date, creates time segment of type

'undetermined' for the whole time period of the current date. Takes user_id, mcc,

user_id_modulo columns from last time segment dataframe

120

5. If there are no events for the current date, append the only created segment to the final

segments list.

6. If there are events for the current date, start iteration over events having the last time segment

derived earlier as a current time segment. For each event:

1. It initialises an empty dictionary to store the next time segment and an empty list to

store time segments to be added to final time segments list.

2. It extracts the timestamp and cell of the event.

3. It handles first time segment. If it's the current time segment is the previous day’s last

time segment, It checks the state of this time segment and the time difference between

the end of this current time segment and the first event in the current date:

▪ If the state is 'undetermined' or 'stay' and the time difference is within the

maximum missing stay time, or if the state is 'move' and the time difference is

within the maximum missing move time, it creates a new time segment with

the same cells, state. The start timestamp of the new time segment is the start

of the current date, and the end timestamp is the timestamp of the first event.

▪ If neither of these conditions are met, it creates a new time segment with an

empty list of cells, state 'unknown'. The start timestamp of the new time

segment is the start of the next date, and the end timestamp is the timestamp

of the first event minus the padding time.

4. It defines intersection status by checking if current segment cells are intersected with

current even cell (their coverage areas overlaps).

5. It processes current time segment with amending it or creating new time segments

based on the following logic:

▪ if there's an intersection and the time gap between the event timestamp and

the end timestamp of the current time segment is within the acceptable range

for a 'stay', it checks the state of the current time segment:

▪ If the state is 'undetermined' or 'stay', it updates the current time

segment with the new cell and the new end timestamp and sets the

state to 'stay' if the time gap is more than the minimum time for a

'stay'.

▪ If the state is 'move', it creates a new time segment with state

'undetermined' after the 'move' segment. If the time gap is big

enough to assume that it's a 'stay', it changes the state to 'stay'. The

current time segment and the new time segment are added to final

time segments list.

▪ If there's no intersection and the time gap is within the acceptable range for a

'move', it checks the state of the current time segment:

▪ If the state is not 'unknown', it creates two new 'move' segments half

of total time between time segment end timestamp and event

timestamp each. It then adds first move time segment and the current

time segment to the final list of time segments and sets the second

move time segment as the current time segment.

▪ If the state of the current time segment is 'unknown', it creates a new

'undetermined' time segment and adds the current time segment to the final

time segments list.

▪ Finally, if the time gap is too big, it creates new ‘unknown' segment for the

missing time and a new ‘undetermined' time segment with start timestamp as

event timestamp - pad time and event cell as segment cells. It adds current

time segment and new 'unknown’ time segment to the final time segments list

and sets 'undetermined’ time segment as current time segment.

121

6. After processing all events, it sets the is_last field of the last time segment to True and

appends it to the final time segments list.

7. Convert final time segments list to Pandas dataframe, assign user_id mcc,

user_id_modulo columns and return.

5. Filter the last time segments for the current date from the time segments dataframe.

6. Convert year, month, date columns to the next processing date in order to properly join it with the next

date events in the next iteration.

7. Extract year, month, day columns from the initial_timestamp of time segments.

8. Convert cell-grid dataset schema to match the output data object schema and save to storage partition

by year, month, day, user_id_modulo.

122

• Data flow diagram:

123

• Class diagram:

124

• Code Structure:

The code structure follows the format set by the core package, and the general repository structure.

The location of the module script in the repository is as follows:

time_segments_aggregation.py contains one class named ContinuousTimeSegmentation which is a subclass of

Component.

The ContinuousTimeSegmentation class overrides transform and execute method of base Component class.

Execute method facilitates iteration over list of processing dates to manage all processing on daily batches.
Transform method performs all necessary filtering and transformations of MNO event data to aggregate it to

Time Segments by sequentially calling other methods that perform the actual data manipulation. The main

method for Time Segments aggregation is aggregate_stays which is a Pandas UDF called on grouped Spark

DataFrame.

5.2.13 DAILYPERMANENCESCORE

5.2.13.1 MODULE DESCRIPTION

• Module Name: DailyPermanenceScore

• Objectives: Given a definition of time intervals of the day, use events data to estimate each user’s

permanence time at each grid tile during each of the intervals.

• Functionality: needed functionalities are outlined in the software requirement specifications:

3.2.11 DailyPermanenceScore

• Data Inputs and Outputs:

o Input:

▪ I.13 Cell Footprints

▪ I.16 MNO Event Data – Semantically Cleaned

o Output:

▪ I.21 Daily Permanence Score

5.2.13.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes: The raw data is processed for the set of dates within a date interval specified

via configuration file. It is assumed that the raw input data is partitioned by year, month, day columns.

The key processes are described below:

0) Check available data and load input data objects

125

o Check existence of input files for the dates within the date interval specified via configuration

file, plus the previous (D-1) and posterior date (D+1) to each of these (D).

o Exit process if one or more input files are not found at their corresponding path.

o Iterate over dates within the date interval specified via configuration file. Each calculation after

this will be performed once for each of the dates.

o Load Cell Footprint Data Objects and Semantically Cleaned Event Data Objects for the current

date (D), for the immediately previous date (D-1) and for the date after (D+1).

o Remove unneeded columns from Semantically Cleaned Event Data Objects.

o Filter out events with semantic flag warnings from Semantically Cleaned Event Data Objects.

o Load user events:

o reach the last event corresponding to one user for date D-1.

o reach all events corresponding to the same user for date D.

o reach the first event corresponding to the same user for date D+1.

o combine all these, sorted by event time, into the same table.

1) Differentiate events associated to ‘permanence’ and events associated to ‘moves’

o Join user events table with cell footprint data for date D. Use key = cell_id. Generate new column

‘grid_ids’ in user events table.

o Search for ‘cell_id’ value from first user event from the user events table (which came from D-1)

in cell footprint data for date D-1 and assign value to new column 'grid_ids' for first row.

o Search for ‘cell_id’ value from last user event from the user events table (which came from D+1)

in cell footprint data for date D+1 and assign value to new column 'grid_ids' for last row.

o Add new ‘is_move’ boolean column to user events table. Initialise with False values.

o Generate 3-row window containing first 3 rows of the user events table.

o Calculate distance between cells in the 3-row window. Current distance algorithm computes all

distances between cell 1 grids vertices and cell 2 grids vertices and finds minimum (final

optimised algoritm for calculation of distance between grid tiles of cells to be defined).

o Calculate time difference (Δt) between 1st and last (3rd) event in the 3-row window.

o Calculate the maximum value of the distance from the 1st event’s cell and the 2nd event’s cell

and the sumation of distances from 1st to 2nd and from 2nd to 3rd: d_max = max(d(1,3), d(1,2)

+ d(2,3))

o Calculate the speed (s) resulting from dividing d_max by Δt.

o If the speed (s) is higher than ‘max_vel_thresh', assign 'True’ value to the intermediate 3-row

window event for the ‘is_move’ column.

o Move the 3-row window to the next position and repeat until the end of the user events table

is reached.

2) Assign initial and end times to each event classified as stay’

o Generate 3-row window containing the first 3 rows of the user events table.

o Add ‘init_time’ and ‘end_time’ columns (timestamp type) to user events table. Initialise with null

values.

o Calculate time difference (Δt) between the event in the centre of the 3-row window and the

previous event (with ‘timestamp’ column).

o If the previous event and the current event happen in a different cell ('cell_id' column has

different values the respective rows), then check if the time difference (Δt) is higher than

‘max_time_thresh’:

126

o If Δt ≤ ‘max_time_thresh’: ‘init_time’ value for the middle event is equal to the

average between the ‘timestamp' value of the previous row and the 'timestamp’

value of the current row.

o If Δt > 'max_time_thresh': ‘init_time’ value for the middle event is equal to the

‘timestamp’ value of the current row minus 'max_time_thresh’ / 2.

o If the previous event and the current event happen in the same cell ('cell_id' column has the

same value for both rows), then check if the time interval between the ‘timestamp’ of the

previous event and the ‘timestamp’ of the current event intersects with the night interval. If the

interval intersects with the night interval: ‘time_threshold’ = ‘max_time_thresh_night’. Else,

‘time_threshold’ = ‘max_time_thresh_day’:

o If Δt ≤ ‘time_threshold’: ‘init_time’ value for the middle event is equal to the

average between the ‘timestamp' value of the previous row and the 'timestamp’

value of the current row.

o If Δt > ‘time_threshold’: ‘init_time’ value for the middle event is equal to the

‘timestamp’ value of the current row minus 'time_threshold’ / 2.

o Calculate time difference (Δt) between the event in the centre of the 3-row window and the next

event (with ‘timestamp’ column) and follow the analogous process to the one described just

above for the previous event (in this case, filling in the ‘end_time’ values).

o Move the 3-row window to the next position and repeat until the end of the user events table

is reached.

3) Intersect ‘permanence’ times with specified intervals

o Filter out moves: keep only those rows for which ‘is_move’ = False in the user events table.

o Define a list of equal intervals in which the day is split based on the ‘time_slot_number’ field

from the configuration file. This number can only take values 24, 48 or 96, which result in equal

intervals of 60, 30 and 15 minutes, respectively. Create a table with these time slots.

o Cross join user events table with time slots.

o For each row of the crossed table, calculate the maximum value of ‘init_time’ and

‘time_slot_init_time’ columns and the minimum value of ‘end_time’ and ‘time_slot_end_time’

columns. If the maximum init time is lower than the minimum end time, there is an intersection.

o Calculate subtraction to obtain duration and of the permanence.

o For each user and time slot, calculate the total time the user has performed a permanence.

Subtract this value from the time length of the time slot to obtain the time duration during

which the use has not been observed performing a permanence. Set this table aside for the

moment, discarding rows where the ‘unknown’ duration is 0. This is the ‘unknown’ table.

o In the original cross table, discard the rest of the rows in which duration is 0.

127

4) Calculate ‘permanence’ times at each grid tile in each specified interval for each user

o Explode table: repeat each row as many times as tiles in the ‘grid_ids' list.

o Group table by ‘grid_id’ and sum the 'int_duration' column values.

o Concatenate this new table with the ‘unknown’ duration table, by considering that the latter

refers to a grid tile with its grid_id equal to ‘unknown’ and is equivalent to the permanence time

in a grid tile with that ID.

5) Apply duration mapping to calculate DPS (Daily Permanence Score)

o From the permanence duration in a grid tile, create a new column ‘dps’ set to 0 if the user

presents a permanence strictly less than half the duration of the time slot in that tile, or set it to

1 if the user presents a permanence at least half the duration of the time slot in that tile.

128

• Data flow diagram:

Simplified high-level diagram

129

Full detail diagram

130

Step-by-step diagrams:

STEP 0

131

STEP 1

132

STEP 2

133

STEP 3

134

STEP 4

135

STEP 5

136

• Class diagram:

137

• Code Structure: The code structure follows the format set by the core package, and the general

repository structure. The location of the module script in the repository is as follows:

daily_permanence_score.py contains one class named DailyPermanenceScore which is a subclass of

Component. The DailyPermanenceScore class overrides some of the methods of Component:

The __init__ method first call its parent’s __init__ method, which sets up the Spark session, initialises data

objects and reads the configuration file.

The transform method performs all necessary filtering and transformations pertaining to the daily

permanence score calculation.

5.2.14 INSPIREREFERENCEGRIDGENERATION

5.2.14.1 MODULE DESCRIPTION

• Module Name: InspireGridGeneration

• Objectives: Create Reference Grid in INSPIRE format.

• Functionality: Generates 100 by 100 meters rectangular grid following INSPIRE specification for the

given extent or given country polygon. For a country polygon, a buffer distance can be defined to

extend grid beyond the country polygon borders.

Functionality specification:

o 3.2.13 INSPIRE Grid Generation

• Data Inputs and Outputs:

o Inputs:

▪ I.29 Countries

o Outputs:

▪ I.11 Reference Grid

5.2.14.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

Initialisation:

1. Read configurations parameters: type of grid mask, extent, reference country, buffer around country

borders, quadkey level for spatial partitioning.

2. Clear the destination directory if configured.

3. Load input data objects for grid, transportation, and land use data.

4. Initialize the output data object for the enriched grid.

Processing:

138

1. Generate INSPIRE grid centroids.

1. If grid mask parameter is ‘extent’, generate grid for given extent.

2. If grid mask parameter 'polygon':

1. Filter reference country polygon from countries dataset using given iso2 code.

2. Create a buffer of a given distance around country polygons.

3. Country may consist of multiple polygons, so it is necessary to merge overlapping

resulted polygons together.

4. Generate grid for each polygon.

2. Assign quadkey of a given level for each grid tile based on tile’s centroid latitude and longitude.

3. Convert dataset schema to match the output data object schema and save to storage partitioned by

quadkey.

• Data flow diagram:

139

• Class diagram:

140

• Code Structure:

The code structure follows the format set by the core package, and the general repository structure.

The location of the module script in the repository is as follows:

inspire_grid_generation.py contains one class named InspireGridGeneration which is a subclass of Component.

The InspireGridGeneration class is rely on InspireGridGenerator utility class to perform actual grid generation.

The InspireGridGeneration class overrides transform method of base Component class.

transform method instantiates InspireGridGenerator class and uses its method to generate INPSIRE grid

centroids for the given spatial extent or country polygon.

5.2.15 SYNTHETICDIARIES

5.2.15.1 MODULE DESCRIPTION

• Module Name: SyntheticDiaries

• Objectives: the objective of this module is to generate a given number of synthetic user activity-trip

diaries.

• Functionality: the module includes the following functionalities:

o Synthetically generating users with random but compatible home and work locations.

o Synthetically generating compatible sequences of stays for each user (e.g. home-work-other-

home).

o Synthetically assigning a location (exact coordinates) to each of the activities of the user.

o Synthetically assigning a start time and an end time to each of the activities of the user.

• Data Inputs and Outputs:

o Input:

▪ No input datasets are used by this method

o Output:

▪ I.30 Synthetic Diaries

5.2.15.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

o Read from the configuration file the number of users for which to generate diaries.

o Read from the configuration file the date format for the output diaries.

o Read from the configuration file the initial date for the diary generation.

o Read from the configuration file the number of dates for the diary generation.

o Read from the configuration file the maximum longitude and latitude for activity generation

(bounding box top right corner limit).

o Read from the configuration file the minimum longitude and latitude for activity generation

(bounding box bottom left corner limit).

141

o Read from the configuration file the minimum and maximum distance between home and

work for synthetic generation.

o Read from the configuration file the minimum and maximum distance for the assignment of

the location of other activities with respect to the location of the previous activity.

o Read from the configuration file the minimum and maximum home activity duration.

o Read from the configuration file the minimum and maximum work activity duration.

o Read from the configuration file the minimum and maximum other activity duration.

o Read from the configuration file the displacement speed which will be considered for

assignment of the start activity time of the next activity.

o Read from the configuration file the stay sequence superset in which all synthetically

generated diaries will be based.

o Read from the configuration file the sequence of probabilities of the stays in the stay

sequence superset of being generated in each synthetically generated diary.

o For each date, starting in the initial date and ending in initial date + number of dates:

▪ Create one agent, from 0 to the provided number of users, and for each agent:

1. Generate a stay sequence for an agent probabilistically based on the

provided stay sequence and weights (e.g. home-work-other-other-home).

2. Generate home location coordinates for the agent based on the bounding

limits.

3. Generate work location coordinates for the agent based on the bounding

limits and minimum and maximum distance to home.

4. Generate activity locations for each of the activities in the generated stay

sequence for this agent:

1. For ‘home’ activities, assign home location of the agent.

2. For ‘work’ activities, assign work location of the agent.

3. For ‘other’, reach previous activity, and assign a random location

that is at a distance to the previous activity location that is between

the provided thresholds.

5. Generate activity times according to generated stay sequence for this agent:

1. Firstly, assign to each of these activities the minimum duration

considered for that activity type. Trip times are based on

Pythagorean distance and a specified average speed.

1. If the sum of all minimum duration of the activities and the

duration of the trips is higher than the 24h of the day, then

assign just one "home" activity to the agent from 00:00:00

to 23:59:59.

2. Else, there will be a remaining time. E.g., the diary of an

agent, after adding up all trip durations and minimum

activity durations may end at 20:34:57. There is a remaining

time to complete the full diary (23:59:59 - 20:34:57). Adjust

activity times probabilistically according to the maximum

activity duration and this remaining time, making the diary

end at exactly 23:59:59.

6. Write diaries to output file.

• Data flow diagram:

Initialising the SyntheticDiaries component launches a process that loads all necessary parameters from

the configuration path.

142

Then, the transform method is applied, triggering the processing of the rest of the method, which, for each date

and user, generates an activity-trip diary:

143

The generation of each user’s diary is described in the graph below:

144

• Class diagram:

145

• Code Structure: The code structure follows the format set by the core package, and the general

repository structure. The location of the module script in the repository is as follows:
o /multimno/

└── src

 └── components

 └── ingestion

 └── synthetic

 └── synthetic_diaries.py

o synthetic_diaries.py contains one class named SyntheticDiaries which is a subclass of

Component. It overrides the following methods:

▪ The __init__ method first call its parent’s __init__ method, which sets up the Spark

session, initialises data objects and reads the configuration file.

▪ The transform method handles all the logic behind the component.

o The SyntheticDiaries component also has the following methods:

▪ initalize_data_objects loads the output data object schema.

▪ haversine calculates haversine distance between 2 points in lat-lon.

▪ random_seed_number_generator generates random seed based on several

arguments.

▪ calculate_trip_time calculates trip time given an origin location and a destination

location, according to the specified trip speed.

▪ calculate_trip_final_time calculates end time of a trip given an origin time, an origin

location, a destination location and a speed.

▪ generate_stay_location generates a random activity location within the bounding box

limits based on the activity type and previous activity locations.

▪ create_agent_activities_min_duration generates activities of the minimum duration

following the specified agent activity sequence for this agent and date.

▪ adjust_activity_times modifies the "date_activities" list, changing the initial and final

timestamps of both stays and moves probablilistically in order to generate stay

durations different from the minimum and adjust the durations of the activities to the

24h of the day.

▪ add_agent_date_activities for a specific date and user, generate a sequence of

activities probabilistically according to the specified activity superset and the activity

probabilities. Firstly, assign to each of these activities the minimum duration

considered for that activity type. Trip times are based on Pythagorean distance and a

specified average speed. If the sum of all minimum duration of the activities and the

duration of the trips is higher than the 24h of the day, then assign just one "home"

activity to the agent from 00:00:00 to 23:59:59. Else, there will be a remaining time.

E.g., the diary of an agent, after adding up all trip durations and minimum activity

durations may end at 20:34:57. There is a remaining time to complete the full diary

(23:59:59 - 20:34:57). Adjust activity times probabilistically according to the maximum

activity duration and this remaining time, making the diary end at exactly 23:59:59.

▪ add_date_activities generates activity (stays and moves) rows for a specific date

according to parameters.

▪ generate_activities generates activity and trip rows according to parameters.

▪ generate_lonlat_at_distance given a point (lon, lat) and a distance, in meters,

calculates a new random point that is exactly at the specified distance of the provided

lon, lat.

▪ generate_home_location generates a random home location based on bounding box

limits.

146

▪ generate_work_location generates random work location based on home location

and maximum distance to home. If the work location falls outside of bounding box

limits, try again.

▪ generate_other_location generates other activity location based on previous location

and maximum distance to previous location. If there is no previous location (this is the

first activity of the day), then the home location is considered as previous location. If

the location falls outside of bounding box limits, try again.

▪ generate_stay_duration generates stay duration probabilistically based on activity

type and remaining time.

▪ generate_min_stay_duration generates minimum stay duration based on stay type

specifications.

▪ remove_consecutive_stay_types generates new list replacing consecutive stays of the

same type by a unique stay as long as the stay type is contained in the

"stay_types_to_group" list.

▪ generate_stay_type_sequence generates the sequence of stay types for an agent for a

specific date probabilistically based on the superset sequence and specified

probabilities. Replace 'home'-'home' and 'work'-'work' sequences by just 'home

5.2.16 SYNTHETICNETWORK

5.2.16.1 MODULE DESCRIPTION

• Module Name: SyntheticNetwork.

• Objectives: The main goal of the service is to generate synthetic MNO network topology data to

simulate real network data provided by the MNO, and allowing the testing and execution of the

pipeline. The development of this service will be incremental, iteratively adding more features and

characteristics of the real data as the different steps of the pipeline will require them.

• Functionality: The SRS documentation sums up the functionality of this service: 3.2.15

SyntheticNetwork.

• Data Inputs and Outputs:

o There are no input objects.

o The current output data object is I.7 Cell Locations with Physical Properties - Raw.

5.2.16.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes: an underlying set of all cells is initially generated. In the clean, no error

version, each cell will have a constant value of each of its properties across all dates (e.g., the altitude

will be the same for every day). It is supposed that cell data will be available at a daily rate, thus, a

parquet partition will be created for every day between starting_date and ending_date.

o Clean, underlying data generation:

▪ The ID of the cell is generated as a 14- or 15-digit string (for now, not following

CGI/eCGI standards).

▪ The latitude and longitude of the cell are randomly generated with uniform

probability in the rectangle defined by latitude_min, latitude_max, longitude_min and

longitude_max.

▪ The altitude is randomly sampled with uniform probability in the interval defined by

altitude_min and altitude_max.

▪ The antenna height is randomly sampled with uniform probability in the interval

defined by 0and antenna_height_max.

147

▪ The directionality is randomly sampled from the set {0, 1} with uniform probability.

▪ The azimuth angle is equal to None if the directionality is equal to 0, or is randomly

sampled with uniform probability in the interval [0, 360].

▪ The elevation angle is randomly sampled with uniform probability in the interval [-90,

90].

▪ The horizontal and vertical beam widths are each randomly sampled with uniform

probability in the interval [0, 360].

▪ The power is randomly sampled with uniform probability in the interval defined by

power_minand power_max.

▪ The range is randomly sampled with uniform probability in the interval defined by

range_min and range_max.

▪ The power is randomly sampled with uniform probability in the interval defined by

frequency_min and frequency_max.

▪ The technology is randomly sampled with uniform probability from the four options

5G, LTE, UMTS, GSM.

▪ The valid date start is set to earlist_valid_date_start.

▪ The valid date end is set to latest_valid_date_end.

▪ The cell type is randomly sampled with uniform probability from a set of options

defined via configuration in cell_type_options. Example: macrocell, microcell, picocell,

femtocell.

o Null values: with a probability specified via configuration, all optional fields of a row are set to

null.

o If the user decides to generate synthetic data with errors, then the following steps are

followed:

▪ Out of bound values: with a probability specified via configuration, for each

appropriate field a subset of records is selected and that field’s values are changed by

value outside the admitted range of values.

▪ Nulls in mandatory columns: with a probability specified via configuration, for each

mandatory field a subset of records is selected and that field’s values are changed to

null.

▪ Erroneous values:

▪ With a probability specified via configuration, a subset of records is selected

and the cell_id value is changed by an erroneous one.

▪ With a probability specified via configuration, a subset of records is selected:

the valid_date_start and valid_date_end are swapped for one half, and for the

other half the timestamps are changed for invalid ones.

148

• Data flow diagram:

149

• Class diagram:

150

• Code Structure: The code structure follows the format set by the core package, and the general

repository structure. The location of the module script in the repository is as follows:

/multimno/

└── components

 └── ingestion

 └── synthetic

 └── synthetic_network.py

o synthetic_network.py contains one class named SyntheticNetwork which is a subclass of

Component. The SyntheticNetwork class overrides some of the methods of Component:

▪ The __init__ method first call its parent’s __init__ method, which sets up the Spark

session, initialises data objects and reads the configuration file.

▪ transform performs handles the main logic of the execution.

o The SyntheticNetwork class also has the following methods:

▪ clean_cells_generator creates the clean synthetic network topology data according to

the different parameters specified via configuration.

▪ generate_errors handles the error generation logic whenever any of the probabilities

of generating null values in mandatory columns, creating out-of-bound values or

other erroneous values is greater than zero.

▪ generate_nulls_in_mandatory_columns handles the changing of valid values in

mandatory columns by null values.

▪ generate_out_of_bounds_values handles the logic of creating values outside accepted

ranges for each applicable field.

▪ generate_erroneous_values is handles the creation of invalid cell_id values, swapping

valid_date_start and valid_date_end values, and creating invalid timestamps for these

two fields as well.

5.2.17 SYNTHETICEVENTS

5.2.17.1 MODULE DESCRIPTION

• Module Name: SyntheticEvents

• Objectives: the objective of this module is to generate synthetic data on the event level.

• Functionality: the module includes the following functionalities:

o Generating event data that corresponds to stay and move information from synthetic diaries

data object and and cell_ids and their locations from the synthetic network data object.

o Generating event data given with a given set of stay and move frequency parameters and

distance measure parameters.

o Generating location errors and records with nonexistent cell_ids (cell_ids that are not present

in synthetic network).

• Data Inputs and Outputs:

o Input:

▪ I.30 Synthetic Diaries

▪ I.7 Cell Locations with Physical Properties - Raw

o Output:

▪ I.1 MNO Event Data – Raw

151

5.2.17.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

o Create the data objects: diaries, network and event data.

o Read from the configuration file the frequency of events to be generated for all stays.

o Read from the configuration file the frequency of events to be generated for all moves.

o Read from the configuration file the maximum distance for a cell to be allowed to be linked to

generated point.

o Read from the configuration file the maximum distance for a cell to be considered as the

closest cell when generating events that have erroneous locations.

o Read from the configuration file the ratio of generated stays and moves to sample, for the

generating events that have nonexistent cell ids.

o Read from the configuration file, the maximum number of cells to consider when generating

an event.

o Generate event timestamps for moves. From synthetic diaries, read in stays, and proceed as

follows:

1. Define window according to initial timestamp

2. Define geometry column based on the longitude and latitude of next stay

3. Calculate the time difference between the initial timestamp of next stay and the final

timestamp of the current stay

4. Calculate the total amount of events to be generated for a move event as

time_difference_in_seconds / event_freq_moves.

5. Generate as many random random values in the range of 0 and 1 as was the result of

(4) on seperate rows - i.e., explode the dataframe so each random value is assigned to

a separate row for a given combination of the timestamp column values

6. Calculate the offset in seconds as random_float*time_difference_in_seconds

7. Add the offset in seconds to the final timestamp, which results in random event

timestamps between the two stays, and label these rows with the activity type “move”

o Generate event timestamps for stays. Follow the same logic as for moves generation, but

instead use the final and initial timestamp columns for the same row to calculate time

difference. Then follow the same sampling idea and generate (or explode to) as many rows as

time_difference_in_seconds / event_freq_moves results in.

o Generate locations for moves. Calculate a line between the geometry of column of current

stay, and the next stay. Interpolate on the point, random float values that have been calculated

in step 5 of event timestamp generation for moves.

o Sampling records for which to generate location errors. The parameter

“error_location_probability” determines how many rows are sampled, according to the seed

value given in the configuration.

o Generating location errors for sampled records. Location errors are generated using the

following steps:

1. Generated longitude and latitude values from the sample are projected from

EPSG:4326 to a configured coordinate reference system.

2. The location error column (loc_error) is calculated as

(random_float*(error_location_distance_max - error_location_distance_min))

+ error_location_distance_min

where random_float is generated from a uniform distribution, with paramers (0, 1),

using the seed value from configuration. The result is a random value within the

range of configured parameters, that is be used to offset x and y values (the result of

projection in step I).

152

3. For each sampled x and y coordinate, randomly determine if the offset is applied by

summing loc_error or subtracting it. The probability for either case is equal (0.5).

4. Existing generated points are replaced with the new points, that have been applied

the offset value in the loc_error column with the sign generated in step III.

o Sampling records for which to generate nonexistent cell ids. Nonexistent here refers to cell ids

that are not present in the input network data object. This is done by using the parameter

error_cell_id_probability, which determines how many rows are sampled, according to the seed

value given in the configuration.

o Generating records with nonexistent cell ids for sampled records. This is done by:

1. Generate random values to match the cell_id field length requirements

2. Using a left anti join, select from generated cell ids, only those that are not present in

the existing network data.

3. Join those selected in II to the sampled records, using a generated id. The generated

id is equal to the row number in the result of II, whereas in the generated records, the

id is achieved as row_number() % number_of_unique_cell_ids_in_network_data_object.

o Add cell ids to all previously generated latitude and longitude values. This is done by:

1. Creating a buffer around each event location and finding cells that intersect with this

buffer

2. Calculating the distance from each event location to the cell and ranking the cells

based on this distance.

3. Keeping only the top 'max_n_of_cells' closest cells for each event

o Add the mcc column value for all users, as the value given in the configuration parameter

“mcc”

o Add the mnc column value for all users, as the value given in the configuration parameter

“mnc”

o Add the plmn column value for all users as null.

o Add year, month and day columns based on generated timestamps

153

• Data flow diagram:

154

• Class diagram:

155

• Code Structure: The code structure follows the format set by the core package, and the general

repository structure. The location of the module script in the repository is as follows:

/multimno/

└── src

 └── components

 └── ingestion

 └── synthetic

 └── synthetic_events.py

o synthetic_events.py contains one class named SyntheticEvents which is a subclass of

Component. It overrides the following methods:

▪ The __init__ method first call its parent’s __init__ method, which sets up the Spark

session, initialises data objects and reads the configuration file.

▪ The transform method handles all the logic behind the component.

o The SyntheticEvents component also has the following methods:

▪ generate_event_timestamps_for_moves handles generation of event timestamps for

moves.

▪ generate_event_timestamps_for_stays handles generation of event timestamps for

stays

▪ generate_locations_for_moves handles generation of point geometry for moves.

▪ add_cell_ids_to_locations handles joining cell ids to generated longitude and latitude

values, given the parameter closest_cell_distance_max .

▪ generate_location_errors handles the generation of point geometry, using the given

seed parameter for randomized processes (such as exact range of distance, and

direction of offset), and the parameters error_location_distance_max and

error_location_distance_min .

▪ generate_records_with_non_existant_cell_ids handles the generation of records with

cell_ids that do not exist in the synthetic network data object, yet follow the format of

a cell id syntactically.

5.2.18 GRIDENRICHMENT

5.2.18.1 MODULE DESCRIPTION

• Module Name: GridEnrichment

• Objectives: Add additional attributes to reference grid.

• Functionality: The component uses landuse and transportation data objects to calculate following

metrics for each grid tile:

o Landuse prior probabilities of the distribution of mobile devices.

o Environment coefficient for dynamic path loss exponent calculation for cell signal strength

modeling.

Functionality specification: 3.2.18 Grid Enrichment

• Data Inputs and Outputs:

o Inputs:

▪ I.32 Landuse

▪ I.33 Transportation

▪ I.11 Reference Grid

o Outputs:

▪ I.31 Enriched Grid

156

5.2.18.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

Initialisation:

1. Read configurations parameters for performing land cover enrichment, transportation category buffers,

landuse types weights for prior calculation, landuse types weights for environment coefficient

calculation and Spark checkpoint directory.

2. Clear the destination directory if configured.

3. Load input data objects for grid, transportation, and land use data.

4. Initialise the output data object for the enriched grid.

Processing:

For each quadkey partition in input grid data object:

1. Prepare input data.

1. Filter transportation data to the extent of the current quadkey.

2. Perform buffer operation using different buffer distances for different road types based on

configuration to convert transportation lines to polygons.

3. Filter landuse data to the extent of the current quadkey.

4. Cut landuse polygons with transportation polygons and merge them together so that

transportation polygons do not overlap landuse polygons.

2. Intersect grid tiles geometry with combined landuse polygons and calculate ratios of landuse classes

which are intersected with a grid tile to the total area of a grid tile.

a. Assign weights for prior probability to each landuse category based on configuration

parameter and calculate weighed sum of landuse categories per grid tile.

b. Assign weights for path loss exponent coefficient to each landuse category based on

configuration parameter an calculate weighed sums of landuse category ratios per grid

tile to get environment Path Loss Exponent coefficient

c. Persists the current results with a checkpoint and clear cache to reduce memory

footprint.

3. Combine all persisted result parts and remove potential duplicates.

4. Calculate total sum of weighed sums of landuse categories over all grid tiles.

157

5. Divide weighed sums of landuse categories in grid tiles by total sum to get landuse prior probability

values

6. Order and repartition resulted grid by quadkey.

7. Apply schema casting and add missing columns to match the output data object's schema.

8. Save to storage partition by quadkey.

158

• Data flow diagram:

159

• Class diagram:

160

• Code Structure:

The code structure follows the format set by the core package, and the general repository structure.

The location of the module script in the repository is as follows:
multimno

 └── components

 └── execution

 └── grid_enrichment

 └── grid_enrichment.py

grid_enrichment.py contains one class named GridEnrichmentwhich is a subclass of Component.

The GridEnrichment class overrides transform method of base Component class.

5.2.19 GEOZONESGRIDMAPPING

5.2.19.1 MODULE DESCRIPTION

• Module Name: GeozonesGridMapping

• Objectives: Map given geographic zone datasets to reference grid tile centroids.

• Functionality: For each given zoning dataset the component enriches grid tiles with information about

zoning unit which they are intersecting by performing spatial join of zoning polygons to grid centroids.

In case of hierarchical zoning system, spatial join is performed on the lowest level of hierarchy. Higher

level zone IDs are then derived from parent_id column of a zoning dataset and combined into

hierarchical id. Functionality specification:

o 3.2.19 GeozonesGridMapping

• Data Inputs and Outputs:

o Inputs:

▪ I.11 Reference Grid

▪ I.35 Geographic Zones

▪ I.34 Administrative Units

o Outputs:

▪ I.36 Zones – Grid Map

5.2.19.2 DEVELOPMENT DESIGN:

• Key Algorithms/Processes:

Initialisation:

1. Read configuration parameters for selecting zoning dataset IDs to perform mapping, zoning type (e.g.,

administrative units or other geographic zones).

2. Clear the destination directory if configured.

3. Load input data objects for grid, other geographic zones or administrative units based on the selected

zoning type.

4. Initialize the output data object for the geozones grid map.

Processing:

1. For each dataset ID following steps are performed:

1. Filter the current zoning dataset by the dataset ID from corresponding data object.

2. Retrieve the hierarchy levels of zoning units.

3. Map zoning units on the maximum level of hierarchy to the grid by performing spatial join of

grid centroids to zoning polygons.

161

4. Extract IDs for all levels of zoning hierarchy and combine them into hierarchical ID.

5. Assign year, month, and day columns from the zoning dataset to the grid.

6. Apply schema casting to match the output data object's schema and write to storage

partitioned by quadkey.

162

• Data flow diagram:

163

• Class diagram:

164

• Code Structure:

The code structure follows the format set by the core package, and the general repository structure.

The location of the module script in the repository is as follows:
multimno

 └── components

 └── execution

 └── geozones_grid_mapping

 └── geozones_grid_mapping.py

geozones_grid_mapping.py contains one class named GeozonesGridMappingwhich is a subclass of Component.

The GeozonesGridMappingclass overrides transform method of base Component class.

5.2.20 PRESENTPOPULATIONESTIMATION

5.2.20.1 MODULE DESCRIPTION

• Module Name: PresentPopulationEstimation

• Objectives: This module estimates the present population (number of actual people) in each spatial

unit at each time point (fixed timestamp). The spatial unit is either a grid tile or a zone/municipality

(collection of grid tiles).

• Functionality: This module implements the methodology described in D2.2 method 14.1, variant 1.

• Data Inputs and Outputs:

o Inputs:

▪ I.16 MNO Event Data – Semantically Cleaned

▪ I.15 Cell Connection and Posterior Probabilities

▪ I.28 INSPIRE Grid

▪ I.36 Zones – Grid Map

o Outputs:

▪ I.42 Present Population

▪ I.41 Present Population Zone Level

• Configuration parameters

o tolerance_period_s: Maximum allowed time difference for an event to be included in a time

point.

o data_period_start: Starting bound when to start time point generation. The first time point is

created at this timestamp.

o data_period_end: Ending bound when to end time point generation. No time points are

generated later than this timestamp. A time point can be generated on this exact timestamp.

o time_point_gap_s: Number of seconds between two generated time points.

o nr_of_user_id_partitions: Total number of user_id_modulo partitions.

o nr_of_user_id_partitions_per_slice: Number of user_id_modulo partitions to process in one

batch.

o max_iterations: Maximum number of iterations allowed for the Bayesian process.

o min_difference_threshold: Minimum total difference between Bayesian process prior and

posterior values needed to continue iterations of the process.

o output_aggregation_level: Supported values: ‘grid’, ‘zone’. Determines which level the results

are aggregated to.

o zoning_dataset_id: Name of the zoning dataset to use. Only needed when

output_aggregation_level is ‘zone’.

o zoning_hierarchical_level: Level of hierarchical zoning to aggregate results to. Only needed

when output_aggregation_level is ‘zone’.

165

5.2.20.2 DEVELOPMENT DESIGN

\ TIMELINE QUANTIZATION

Starting from data_period_start generate one timestamp after each time_point_gap_s until data_period_end is

reached. A time point can be generated at exactly data_period_end, but not later.

timestamp

2023-07-14 10:00:00

2023-07-14 11:00:00

2023-07-14 12:00:00

2023-07-14 13:00:00

2023-07-14 14:00:00

\ DETERMINING RELEVANT EVENT DATA FOR THE TIME POINT

For each time point at timestamp t, the events included in its calculation are all events within the window [t-

tolerance_period_s, t+tolerance_period_s].

When selecting the data, first date-level filtering is applied to make use of date-partitioned storage of event

data. Then timestamp-level filtering is applied to select the exact events.

\ ESTIMATION OF DEVICE COUNT PER CELL FOR TIME POINT

For each time point, for each cell, calculate the number of unique devices present. Both domestic and inbound

data should be included (if available).

cell_id count timestamp

1 25436 2023-07-14 14:00:00

2 5342 2023-07-14 14:00:00

3 304334 2023-07-14 14:00:00

4 145755 2023-07-14 14:00:00

\ ITERATIVE PROCESS FOR THE ESTIMATION OF POPULATION PER GRID TILE

For each time point, for each grid tile, estimate the present population using cell weighted counts and cell

connection probabilities. This is an iterative Bayesian procedure.

Determine grid to cell probabilities by selecting the cell to grid connection probability data that matches the

current time point. Then for each grid tile, sum and normalize the cell to grid probabilities to determine the grid

to cell probability.

For the iterative process, first initialize the population values of each grid tile: calculate the sum of weighted_count

of all cells, then for each grid tile, set the initial population value to weighted_counts_sum/n_grid, where n_grid is

the total number of grid tiles.

In each iteration:

1. For each (cell_id, grid_id) pair, calculate the value a as population*grid_prob, where population is this

cell's population value and grid_prob is the grid to cell connection probability of this grid_id.

166

2. For each cell_id, calculate the sum sum_a across all of its (cell_id, grid_id, a) rows. Get (cell_id, sum_a)

rows.

3. Normalize a: for each (cell_id, grid_id, a) row, join with (cell_id, sum_a) on cell_id. Divide a by sum_a and

replace a with the new value.

4. Apply weighting by count: for each (cell_id, grid_id, a) row, join with device count per cell data (cell_id,

count) on cell_id. Multiply a with count and replace a with the new value.

5. For each grid_id, calculate value new_population as the sum of a across all matching (cell_id, grid_id, a)

rows.

6. Determine difference: for each grid_id, calculate the absolute difference between population and

new_population. Calculate sum_diff as the sum of absolute differences across all grid_ids.

7. Replace population with new_population.

8. Check for iteration conditions. Repeat the loop if sum_diff is above threshold and iteration count is

below threshold.

grid_id population timestamp

1 654 2023-07-14 14:00:00

2 234 2023-07-14 14:00:00

3 1654 2023-07-14 14:00:00

\ IF AGGREGATING BY GRID, THEN THE RESULTS ARE DONE.

Write results partitioned by day, month, year calculated from the time point timestamp.

\ IF AGGREGATING BY ZONE, MAP GRIDS TO ZONE IDS.

From the zones to grid mapping dataset, select rows where dataset_id matches zoning_dataset_id. From the

hierarchical_id column, extract the id from level zoning_hierarchical_level at set it as the zone_id. Join the

population per grid data with the zones to grid mapping data on grid_id, then calculate the sum of population

grouped by zone_id.

\ WRITE RESULTS

If aggregating by grid, the output data object is I.42 Present Population.

If aggregating by zone, the output data object is I.41 Present Population Zone Level.

In either case, write results partitioned by day, month, year calculated from the time point timestamp.

167

\ DATA FLOW DIAGRAM (PART 1)

168

\ DATA FLOW DIAGRAM (PART 2)

169

\ DATA FLOW DIAGRAM (COUNT DEVICES PER CELL)

170

\ DATA FLOW DIAGRAM (CALCULATE DEVICES PER GRID)

171

\ CLASS DIAGRAM

172

\ CODE STRUCTURE

The code structure follows the format set by the core package, and the general repository structure.

The location of the module script in the repository is as follows:
/multimno_internal/

└── multimno

 └── components

 └── execution

 └── present_population

 └── present_population_estimation.py

present_population_estimation.py contains one class named PresentPopulationEstimation which is a subclass of

Component.

The PresentPopulationEstimation class overwrites __init__, transform and execute in the Component class.

__init__ method initializes the data objects and reads the necessary values from the config file.

transform performs all necessary transformations and calculation of activity statistics for daily data. transform

contains calls to other smaller functions that perform the actual data manipulation.

execute is responsible for calling read, write and transform for each unique date in the dataset. The processing

is done one time point at a time.

5.2.21 MIDTERMPERMANENCESCORE

5.2.21.1 MODULE DESCRIPTION

• Module Name: MidtermPermanenceScore

• Objectives: Process Daily Permanence Score to obtain mid-term permanence score metrics, including

frequency and regularity of stays, for different sub-monthly and sub-daily periods.

• Functionality: needed functionalities are outlined in the software requirement specifications:

o 3.2.20 MidTermPermanenceEstimation

• Data Inputs and Outputs:

o Input:

▪ I.21 Daily Permanence Score

▪ I.40 Holiday Dates Calendar

▪ I.13 Cell Footprints

o Output:

▪ I.38 Mid-Term Permanence Metrics

5.2.21.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

o Initialise data objects.

o Parse and validate configuration parameters:

▪ Read months for which the mid-term metrics will be computed.

▪ Read the number of days before and after each month that will be used to compute

the regularity metrics.

▪ Read the hour that marks the start of a day.

▪ Read the definition of each time interval (i.e., subdaily period), and reject non-allowed

time intervals

173

▪ It is not allowed, when interval_end is not 00:00, that interval_end <

interval_start < day_start

▪ (Except for night_time) It is not allowed that interval_start < day_start <

interval_end

▪ Read start and end days of the week defining the weekend.

▪ Read each combination (day_type, time_interval) for which the mid-term metrics are

to be computed in each month.

o For each month to be studied:

▪ Read Daily Permanence Score data necessary for the processing of this month.

▪ Select only rows where DPS > 0 (i.e., DPS = 1).

▪ Check that the duration of the time slots of each date of Daily Permanence Score data

is compatible with the time intervals' start and end times (in particular, their minutes)

by taking one row from each date. If they are not compatible, raise an error.

▪ For each day type and time interval combination to be studied:

▪ Filter out the time slots that do not belong to this time interval.

▪ Assign the correct date that each time slot belongs to, according to the

definition of a day following the hour that marks the start of each day: a time

slot belongs to the date that contains its start time.

▪ Filter out the time slots that do not belong to a date of the current day type:

▪ In particular, work days are defined as those dates that are not part

of the weekend and are not holidays.

▪ Find, for each grid tile and device, the latest date in the regularity look-back

dates with any time slot with DPS = 1, if it exists.

▪ Find, for each grid tile and device, the earliest date in the regularity look-

forward dates with any time slot with DPS = 1, if it exists.

▪ For each device, calculate the number of time slots in this month, day type

and time interval in which any grid tile had DPS = 1. The sum of these DPS

values (equal to the count of these time slots) is equal to the “Device

Observation” Mid-term Permanence Score. Similarly, the number of dates in

which any grid tile in any time slot had DPS = 1 is equal to the “Device

Observation” frequency. Store these values.

▪ Compute the mid-term permanence score of a device and grid tile as the

sum of the DPS values of its time slots in this month, day type and time

interval.

▪ For each device and grid tile (as well as unknown location) find the dates in

this month, day type and time interval in which the DPS value of any time

slot was equal to 1.

▪ Compute the mid-term frequency of this device and location as the

number of these dates.

▪ Compute the day difference or gap between the consecutive dates

of this list, considering the following: i) if there was a latest date in

the regularity look-back dates, put it at the beginning of the ordered

list, and if not, put the start date of the look-back period instead; ii)

if there was an earliest date in the regularity look-forward dates, put

it at the end of the ordered list, and if not, put the end date of the

look-forward period instead.

▪ Compute the regularity mean as the mean of these day distances.

▪ Compute the regularity standard deviation as the sample standard

deviation of these day distances:

174

▪ Save the mid-term permanence score and metrics computed for this month and all

combinations of day types and time intervals considered.

175

• Data flow diagram:

176

• Class diagram:

177

• Code Structure: The code structure follows the format set by the core package, and the general

repository structure. The location of the module script in the repository is as follows:

/multimno_internal/

└── src

 └── components

 └── execution

 └── midterm_permanence_score

 └── midterm_permanence_score.py

o midterm_permanence_score.py contains one class named MidtermPermanenceScorewhich is a

subclass of Component. It also contains the function frequency_and_regularity, a PySpark UDF

that computes the mid-term frequency and regularity metrics for each device and grid tile or

unknown location.

o The MidtermPermanenceScoreclass overrides some of the methods of Component

▪ The __init__ method first call its parent’s __init__ method, which sets up the Spark

session, initialises data objects and reads the configuration file.

▪ The transform method handles all the logic behind the component.

o The MidtermPermanenceScore also has the following methods:

▪ _get_midterm_periods returns a list of dictionaries, where each dictionary contains the

start and end date of the month of study of each mid-term period, together with the

start and end date of the additional dates used for computing the regularity metrics.

▪ _check_weekday_number parses and validates a numerical day of the week.

▪ _check_time_interval parses and validates the start or end of a time interval/sub-daily

period.

▪ _validate_and_load_daily_permanence_score reads the Daily Permanence Data Object

data that will be used for a particular mid-term period and validates that the time slot

duration of every date to be used is compatible with the time intervals defined in the

configuration file.

▪ filter_dps_by_time_interval filters out the time slots that do not belong to a particular

time interval, and adds the “date” column, assigning each time slot to its

corresponding date according to the day start hour parameter.

▪ filter_dps_by_day_type filters out the time slots that do not belong to a particular day

type, based on the “date” column previously generated by the

filter_dps_by_time_interval method.

▪ compute_midterm_metrics computes the mid-term permanence score and metrics.

5.2.22 LONGTERMPERMANENCESCORE

5.2.22.1 MODULE DESCRIPTION

• Module Name: LongtermPermanenceScore

• Objectives: Process Mid-term Permanence Score to obtain long-term permanence score metrics,

including total frequency, mean and standard deviation of mid-term frequency, and mean and

standard deviation of the mid-term regularity mean metric, for different sub-yearly, sub-monthly, and

sub-daily period combinations.

• Functionality: needed functionalities are outlined in the software requirement specifications:

o 3.2.21 LongTermPermanenceEstimation

178

• Data Inputs and Outputs:

o Input:

▪ I.38 Mid-Term Permanence Metrics

o Output:

▪ I.39 Long-Term Permanence Metrics

5.2.22.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

o Initialise data objects.

o Parse and validate configuration parameters:

▪ Read initial and final month that define the complete long-term analysis.

▪ Read the months that are assigned to each of the four seasons: winter, spring,

summer, and autumn, as integers from 1 to 12. They must not be repeated in the

same season or appear in more than one season.

▪ Read and validate all desired combinations of season, day type, and time interval (i.e.,

sub-yearly, sub-monthly, and sub-daily periods) for which the long-term permanence

metrics will be computed separately.

▪ Check that, if some season has been requested, it has been assigned via configuration

at least one month. If not, raise an error.

▪ For each season, day type, and time interval, determine the concrete set of months

between the initial and final month (both inclusive) that belong to this combination.

o For each season, day type, and time interval combination, check that for its assigned months

there is mid-term permanence score data available. If not, warn the user and stop the

component.

o For each season, day type, and time interval combination:

▪ Compute the long-term permanence score and total frequency of each device and

grid tile / unknown location / device observation as the sum of the mid-term

permanence score and mid-term frequency respectively.

▪ Compute the mean and standard deviation of the mid-term frequency, as well as the

mean and standard deviation of the mid-term regularity mean metric for each device

and grid tile / unknown location.

179

• Data flow diagram:

180

• Class diagram:

181

• Code Structure: The code structure follows the format set by the core package, and the general

repository structure. The location of the module script in the repository is as follows:

/multimno_internal/

└── src

 └── components

 └── execution

 └── longterm_permanence_score

 └── longterm_permanence_score.py

o longterm_permanence_score.py contains one class named LongtermPermanenceScorewhich is

a subclass of Component.

o The LongtermPermanenceScoreclass overrides some of the methods of Component

▪ The __init__ method first call its parent’s __init__ method, which sets up the Spark

session, initialises data objects and reads the configuration file.

▪ The transform method handles all the logic behind the component.

o The LongtermPermanenceScore also has the following methods:

▪ _get_month_list parses and validates a list of integers representing the months that

will comprise a season and returns them as a list of integers between 1 and 12.

▪ _check_midterm_data_exist checks that, for each combination of season, day type and

time interval, the mid-term permanence score of the months that belong to that

combination has been computed for those months, day type, and time interval. If

there is some data missing, the component stops and warns the user of the missing

data. If the check passes, the function returns a list of dictionaries, each containing

the season, day type, time interval, and list of months that form an individual long-

term analysis.

▪ filter_longterm_analysis_data filters the mid-term permanence score data that is going

to be used for the current long-term analysis being performed, by selecting only the

necessary months, day types, and time intervals.

▪ compute_longterm_metrics calculates the long-term permanence score and metrics

for the current long-term analysis being performed.

5.2.23 USUALENVIRONMENTLABELING

5.2.23.1 MODULE DESCRIPTION

• Module Name: UsualEnvironmentLabeling

• Objectives: The objective of this module is to get measures on a large time scale (e.g. 6 months, 1

year) at the device level. For each device, this module aims to get as output a proxy its Usual

Environment, and a tentative identification of Home Location, Second Home (not to be implemented

yet) and Work/Study place.

• Functionality: needed functionalities are outlined in the software requirement specifications:

o 3.2.22 UsualEnvironmentLabeling

• Data Inputs and Outputs:

o Input:

▪ I.39 Long-Term Permanence Metrics

o Output:

▪ I.37 UE Labels

182

▪ I.43 Labeling Quality Metrics

5.2.23.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

Initialisation:

1. Read configuration parameters for component processing, date range for which to read dataset (start

month and end month), and thresholds to consider.

2. Clear the destination directory if configured.

3. Load input data object for Long-term Permanence Metrics.

4. Initialize the output data objects for UE Labels and Labeling Quality Metrics.

Processing:

1. Get specified start date and end date:

o Find the start_date of the specified period by selecting the first day of the start_month

o Find the end_date of the specified period by selecting the last day of the end_month

2. Filter Long-term Permanence Metrics dataset to required time range by filtering ‘start_date' =

start_date and 'end_date’ = end_date. Set this filtered Long-term Permanence Metrics dataset as the

new Long-term Permanence Metrics dataset to be used from here onwards.

3. Check that all of the following combinations of values for the columns ‘day_type' and 'time_interval’ are

present (at least once) in the Long-term Permanence Metrics dataset:

o ‘all_days’, ‘all_intervals’

o ‘all_days’, ‘night-time’

o 'work_days', ‘working_time’

4. If some of these combinations of values for the columns ‘day_type' and 'time_interval’ are not present

in the input data object, exit method with an error message.

5. Detect ‘rarely observed devices’ and ‘discountinously observed devices’:

o Filter Long-term Permanence Metrics dataset by ‘id_type' = ‘device_observation’, ‘day_type’ =

‘all_days’ and ‘time_interval’ = 'all_intervals’ to obtain Device Observation Metrics dataset.

o Now, for ‘rarely observed devices’:

▪ Filter rows of Device Observation Metrics dataset for which ‘lps’ < total_ps_threshold

▪ Find the list of unique values of ‘user_id’ column from the resulting filtered Device

Observation Metrics dataset.

▪ Count the length of this list of unique user values, and save to device_filter_1_rule

integer variable

o Now, for ‘discountinously observed devices’:

▪ Filter rows of Device Observation Metrics dataset for which ‘total_frequency’ <

freq_days_threshold

▪ Find the list of unique values of ‘user_id’ column from the resulting filtered Device

Observation Metrics dataset.

▪ Count the length of this list of unique user values, and save to device_filter_2_rule

integer variable

6. Discard from the Long-term Permanence Metrics all those rows with a ‘user_id’ value that is included

either in the ‘rarely observed devices’ list or in the ‘discountinously observed devices’ list. Set this

filtered Long-term Permanence Metrics dataset as the new Long-term Permanence Metrics dataset to

be used from here onwards.

7. Use Usual Environment Labeling function, explained in the corresponding section*, to produce the

Usual Environment Tiles Dataset:

o Usual Environment Tiles Dataset = Usual Environment Labeling (Long-term Permanence

Metrics dataset, ue_gap_ps_threshold, ue_ps_threshold, ue_ndays_threshold)

183

8. Use Home Labeling function, explained in the corresponding section*, to produce the Home Tiles

Dataset:

o Home Tiles Dataset = Home Labeling (Long-term Permanence Metrics dataset,

gap_ps_threshold, home_ps_threshold, home_ndays_threshold)

9. Use Work Labeling function, explained in the corresponding section*, to produce the Work Tiles

Dataset:

o Work Tiles Dataset = Work Labeling (Long-term Permanence Metrics dataset,

gap_ps_threshold, work_ps_threshold, work_ndays_threshold)

10. Join Usual Environment Tiles, Home Tiles and Work Tiles datasets into a UE Labels dataset:

o A) Create the UE Labels dataset as a copy of the Usual Environment Tiles.

o B) Add the Home Tiles to the UE Labels dataset:

▪ B.1.) For rows in which ‘grid_id’ value is already in the UE Labels dataset:

▪ replace ‘label' value of these rows (currently ‘no_label’) by 'home’.

▪ add ‘location_label_rule’ value from Home Tiles dataset.

▪ B.2.) For rows in which ‘grid_id’ value is not in the UE Labels dataset:

▪ directly add row from Home Tiles to the UE Labels dataset.

▪ set ‘ue_label_rule’ as ‘ue_na’ for this row.

o C) Add the Work Tiles to the UE Labels dataset:

▪ C.1.) For rows in which ‘grid_id’ value is already in the UE Labels dataset:

▪ C.1.1.) if the value of this row in the UE Labels dataset, for column ‘label', is

'no_label’:

▪ replace ‘label' value of these rows (currently ‘no_label’) by 'work’.

▪ add ‘location_label_rule’ value from Work Tiles dataset.

▪ C.1.2.) if the value of this row, in the UE Labels dataset, for column ‘label', is

not ‘no_label’ (thus, it is 'home’), then keep this row in the UE Labels and add

a new one:

▪ directly add row from Work Tiles to the UE Labels dataset.

▪ set ‘ue_label_rule’ as the ‘ue_label_rule’ of the old row for this new

row.

▪ C.2.) For rows in which ‘grid_id’ value is not in the UE Labels dataset:

▪ directly add row from Work Tiles to the UE Labels dataset.

▪ set ‘ue_label_rule’ as ‘ue_na’ for this row.

11. Write UE Labels dataset to output as a parquet UE Labels Data Object with the corresponding

specifications.

12. Generate Labeling Quality Metrics dataset by using previously calculated device_filter_1_rule and

device_filter_2_rule counts, and by counting the number of occurrences in the UE Labels dataset for

each of the specified label/rule_label combinations:

o ‘ue_1_rule’: number of rows in UE Labels dataset in which ‘ue_label_rule’ == ‘ue_1’.

o ‘ue_2_rule’: number of rows in UE Labels dataset in which ‘ue_label_rule’ == ‘ue_2’.

o ‘h_1_rule’: number of rows in UE Labels dataset in which ‘location_label_rule’ == ‘h_1’.

o ‘h_2_rule’: number of rows in UE Labels dataset in which ‘location_label_rule’ == ‘h_2’.

o ‘h_3_rule’: number of rows in UE Labels dataset in which ‘location_label_rule’ == ‘h_3’.

o ‘w_1_rule’: number of rows in UE Labels dataset in which ‘location_label_rule’ == ‘w_1’.

o ‘w_2_rule’: number of rows in UE Labels dataset in which ‘location_label_rule’ == ‘w_2’.

o ‘ue_na_rule’: number of rows in UE Labels dataset in which ‘ue_label_rule’ == ‘loc_na’.

o ‘loc_na_rule’: number of rows in UE Labels dataset in which ‘location_label_rule’ == ‘loc_na’.

o ‘h_non_ue’: number of rows in UE Labels dataset in which ‘ue_label_rule’ == ‘loc_na’ & ‘label’

== ‘home’.

o ‘w_non_ue’: number of rows in UE Labels dataset in which ‘ue_label_rule’ == ‘loc_na’ & ‘label’

== ‘work’.

184

\ *USUAL ENVIRONMENT LABELING PROCESS:

o Arguments:

▪ Long-term Permanence Metrics dataset

▪ ue_gap_ps_threshold

▪ ue_ps_threshold

▪ ue_ndays_threshold (currently not used)

o Returns:

▪ UE tiles

1. Filter Long-term Permanence Metrics dataset: keep rows in which ‘day_type’ = ‘all_days’ and

‘time_interval’ = ‘all_intervals' to obtain Long-term Permanence Metrics dataset (1):

1. Apply Preprocessing function to obtain Pre-selected tiles (1):

▪ Pre-selected tiles (1) = Preprocessing (Long-term Permanence Metrics dataset (1),

ue_gap_ps_threshold, threshold_is_absolute=False)

2. Calculate total assigned PS: Filter Long-term Permanence Metrics dataset (1) by id_type =

‘device_observation’, then reach ‘lps’ value of the only row in the resulting dataframe. This is

tot_assigned_ps.

3. Apply relative LPS filter:

▪ abs_ps_threshold = tot_assigned_ps * ue_ps_threshold / 100

▪ Filter rows of Pre-selected tiles (1) for which ‘lps’ > abs_ps_threshold to obtain:

▪ > Selected tiles (1)

▪ < Not selected tiles (1)

4. Generate UE tiles (1): copy Selected Tiles (1) and add column ‘ue_label_rule’ = ‘ue_1’

2. Filter Long-term Permanence Metrics dataset: keep rows in which ‘day_type’ = ‘all_days’ and

‘time_interval’ = ‘night-time' to obtain Long-term Permanence Metrics dataset (2):

1. Pre-selected tiles (2) = Long-term Permanence Metrics dataset (2), keeping only those rows

with grid_id in Not selected tiles (1).

2. Calculate total assigned PS: Filter Long-term Permanence Metrics dataset (2) by id_type =

‘device_observation’, then reach ‘lps’ value of the only row in the resulting dataframe. This is

tot_assigned_ps.

3. Apply relative LPS filter:

▪ abs_ps_threshold = tot_assigned_ps * ue_ps_threshold / 100

▪ Filter rows of Pre-selected tiles (2) for which ‘lps’ > abs_ps_threshold to obtain:

▪ > Selected tiles (2)

▪ < Not selected tiles (2)

4. Generate UE tiles (2): copy Selected Tiles (2) and add column ‘ue_label_rule’ = ‘ue_2’

3. Filter Long-term Permanence Metrics dataset: keep rows in which ‘day_type’ = ‘work_days’ and

‘time_interval’ = ‘working_hours' to obtain Long-term Permanence Metrics dataset (3):

1. Pre-selected tiles (3) = Long-term Permanence Metrics dataset (3), keeping only those rows

with grid_id in Not selected tiles (2).

2. Calculate total assigned PS: Filter Long-term Permanence Metrics dataset (3) by id_type =

‘device_observation’, then reach ‘lps’ value of the only row in the resulting dataframe. This is

tot_assigned_ps.

3. Apply relative LPS filter:

▪ abs_ps_threshold = tot_assigned_ps * ue_ps_threshold / 100

▪ Filter rows of Pre-selected tiles (3) for which ‘lps’ > abs_ps_threshold to obtain:

▪ > Selected tiles (3)

▪ < Not selected tiles (3)

4. Generate UE tiles (3): copy Selected Tiles (3) and add column ‘ue_label_rule’ = ‘ue_2’

5. Generate UE tiles (na): copy Not selected tiles (3) and add column ‘ue_label_rule’ = ‘ue_na’

185

4. Concatenate UE tiles (1), UE tiles (2), UE tiles (3) and UE tiles (na) tables, and add column ‘label’ =

‘no_label’ to generate UE tiles.

\ *HOME LABELING PROCESS:

o Arguments:

▪ Long-term Permanence Metrics dataset

▪ gap_ps_threshold

▪ home_ps_threshold

▪ home_ndays_threshold

o Returns:

▪ Home tiles

1. Filter Long-term Permanence Metrics dataset: keep rows in which ‘day_type’ = ‘all_days’ and

‘time_interval’ = ‘all_intervals' to obtain Long-term Permanence Metrics dataset (1):

1. Apply Preprocessing function to obtain Pre-selected tiles (1):

▪ Pre-selected tiles (1) = Preprocessing (Long-term Permanence Metrics dataset (1),

gap_ps_threshold, threshold_is_absolute=True)

2. Calculate total assigned PS: Filter Long-term Permanence Metrics dataset (1) by id_type =

‘device_observation’, then reach ‘lps’ value of the only row in the resulting dataframe. This is

tot_assigned_ps.

3. Apply relative LPS filter:

▪ abs_ps_threshold = tot_assigned_ps * home_ps_threshold / 100

▪ Filter rows of Pre-selected tiles (1) for which ‘lps’ > abs_ps_threshold to obtain:

▪ > Selected tiles (1)

▪ < Not selected tiles (1)

4. Generate Home tiles (1): copy Selected Tiles (1) and add column ‘location_label_rule’ = ‘h_1’

2. Filter Long-term Permanence Metrics dataset: keep rows in which ‘day_type’ = ‘all_days’ and

‘time_interval’ = ‘night-time' to obtain Long-term Permanence Metrics dataset (2):

1. Pre-selected tiles (2) = Long-term Permanence Metrics dataset (2), keeping only those rows

with grid_id in Not selected tiles (1).

2. Calculate total assigned PS: Filter Long-term Permanence Metrics dataset (2) by id_type =

‘device_observation’, then reach ‘lps’ value of the only row in the resulting dataframe. This is

tot_assigned_ps.

3. Apply relative LPS filter:

▪ abs_ps_threshold = tot_assigned_ps * home_ps_threshold / 100

▪ Filter rows of Pre-selected tiles (2) for which ‘lps’ > abs_ps_threshold to obtain:

▪ > Selected tiles (2)

▪ < Not selected tiles (2)

4. Generate Home tiles (2): copy Selected Tiles (2) and add column ‘location_label_rule’ = ‘h_2’

3. Filter Long-term Permanence Metrics dataset: keep rows in which ‘day_type’ = ‘all_days’ and

‘time_interval’ = ‘all_intervals' to obtain Long-term Permanence Metrics dataset (3):

1. Pre-selected tiles (3) = Long-term Permanence Metrics dataset (3), keeping only those rows

with grid_id in Not selected tiles (2).

2. Calculate total observed days: Filter Long-term Permanence Metrics dataset (3) by id_type =

‘device_observation’, then reach ‘total_frequency’ value of the only row in the resulting

dataframe. This is tot_observed_days.

3. Apply relative n days filter:

▪ abs_ndays_threshold = tot_observed_days * home_ndays_threshold / 100

▪ Filter rows of Pre-selected tiles (3) for which ‘total_frequency’ > abs_ndays_threshold

to obtain:

▪ > Selected tiles (3)

186

▪ < Not selected tiles (3)

4. Generate Home tiles (3): copy Selected Tiles (3) and add column ‘location_label_rule’ = ‘h_3’

5. Generate Home tiles (na): copy Not selected tiles (3) and add column ‘location_label_rule’ =

‘loc_na’

4. Concatenate Home tiles (1), Home tiles (2), Home tiles (3) and Home tiles (na) tables, and add column

‘label’ = ‘home’ to generate Home tiles.

\ *WORK LABELING PROCESS:

o Arguments:

▪ Long-term Permanence Metrics dataset

▪ gap_ps_threshold

▪ work_ps_threshold

▪ work_ndays_threshold

o Returns:

▪ Work tiles

1. Filter Long-term Permanence Metrics dataset: keep rows in which ‘day_type’ = ‘work_days’ and

‘time_interval’ = ‘working_hours' to obtain Long-term Permanence Metrics dataset (1):

1. Apply Preprocessing function to obtain Pre-selected tiles (1):

▪ Pre-selected tiles (1) = Preprocessing (Long-term Permanence Metrics dataset (1),

gap_ps_threshold, threshold_is_absolute=True)

2. Calculate total assigned PS: Filter Long-term Permanence Metrics dataset (1) by id_type =

‘device_observation’, then reach ‘lps’ value of the only row in the resulting dataframe. This is

tot_assigned_ps.

3. Apply relative LPS filter:

▪ abs_ps_threshold = tot_assigned_ps * work_ps_threshold / 100

▪ Filter rows of Pre-selected tiles (1) for which ‘lps’ > abs_ps_threshold to obtain:

▪ > Selected tiles (1)

▪ < Not selected tiles (1)

4. Generate Work tiles (1): copy Selected Tiles (1) and add column ‘location_label_rule’ = ‘w_1’

2. Filter Long-term Permanence Metrics dataset: keep rows in which ‘day_type’ = ‘work_days’ and

‘time_interval’ = ‘working_hours' to obtain Long-term Permanence Metrics dataset (2):

1. Pre-selected tiles (2) = Long-term Permanence Metrics dataset (2), keeping only those rows

with grid_id in Not selected tiles (1).

2. Calculate total observed days: Filter Long-term Permanence Metrics dataset (2) by id_type =

‘device_observation’, then reach ‘total_frequency’ value of the only row in the resulting

dataframe. This is tot_observed_days.

3. Apply relative n days filter:

▪ abs_ndays_threshold = tot_observed_days * work_ndays_threshold / 100

▪ Filter rows of Pre-selected tiles (2) for which ‘total_frequency’ > abs_ndays_threshold

to obtain:

▪ > Selected tiles (2)

▪ < Not selected tiles (2)

4. Generate Work tiles (2): copy Selected Tiles (3) and add column ‘location_label_rule’ = ‘w_2’

5. Generate Work tiles (na): copy Not selected tiles (3) and add column ‘location_label_rule’ =

‘loc_na’

3. Concatenate Work tiles (1), Work tiles (2), Work tiles (3) and Work tiles (na) tables, and add column

‘label’ = ‘work’ to generate Work tiles.

187

\ PREPROCESSING FUNCTION (CUT TILES AT GAP):

o Arguments:

▪ Long-term Permanence Metrics dataset (filtered for a specific day/time)

▪ gap_ps_threshold

▪ threshold_is_absolute (bool)

o Returns:

▪ Pre-selected tiles

1. Filter Long-term Permanence Metrics dataset: keep rows in which ‘id_type’ = ‘grid’.

2. Sort resulting table by ‘lps’ field (descending).

3. Add ‘lps_difference’ column to resulting table:

1. lps_difference = lps(current_row) - lps(previous_row)

4. Find first occurrence of ‘lps_difference’ >= gap_ps_threshold, then filter out all rows below.

5. The resulting dataframe are the Pre-selected tiles.

188

\ DATA FLOW DIAGRAMS:

• KEY ALGORITHMS/PROCESSES (GENERAL VIEW):

189

• USUAL ENVIROMENT LABELING DETAIL:

190

• HOME LABELING DETAIL:

191

• WORK LABELING DETAIL:

192

\ FUNCTION DETAILS:

• PREPROCESSING (CUT TILE LIST AT GAP) FUNCTION:

193

• CALCULATE TOTAL ASSIGNED PS FUNCTION AND RELATIVE LPS FILTER FUNCTION:

194

• CALCULATE TOTAL OBSERVED DAYS FUNCTION AND RELATIVE N DAYS FUNCTION:

195

\ CLASS DIAGRAM:

196

\ CODE STRUCTURE:

The code structure follows the format set by the core package, and the general repository structure. The

location of the module script in the repository is as follows:

/multimno_internal/

└── src

 └── components

 └── execution

 └── user_environment_labeling

 └── user_environment_labeling.py

user_environment_labeling.py contains one class named UserEnvironmentLabeling which is a subclass of

Component. The UserEnvironmentLabeling class overrides some of the methods of Component:

The __init__ method first call its parent’s __init__ method, which sets up the Spark session, initialises data

objects and reads the configuration file.

transform method performs all necessary filtering and transformations pertaining to the user environment

labeling calculation.

5.2.24 USUALENVIRONMENTAGGREGATION

5.2.24.1 MODULE DESCRIPTION

• Module Name: UEAggregation

• Objectives: Aggregate individual devices usual environment tiles over reference INSPIRE grid

• Functionality: The component takes Usual Environment Labels dataset for the given period and

performs aggregation of individual devices over grid tiles. The component computes device weight in

each tile in its usual environment either based on assumption of uniform distribution so that all tiles

have the same weight or takes into account prior probabilities from land use information. Tile weights

of all devices are then summed up per each tile.

o Functionality specification: 3.2.23 UsualEnvironmentAggregation

• Data Inputs and Outputs:

o Inputs:

▪ I.37 UE Labels

▪ I.31 Enriched Grid

o Outputs:

▪ I.44 Aggregated Usual Environments

5.2.24.2 DEVELOPMENT DESIGN

• Key Algorithms/Processes:

Initialisation:

1. Read configuration parameters for component processing, date range for which to read labeling

dataset, either to use land use information for device weights.

2. Clear the destination directory if configured.

3. Load input data objects for UE labels, and, optionally, enriched grid

4. Initialize the output data object for aggregated usual environment.

197

Processing:

1. Filter Usual Environment Labels dataset to required time range

2. Assign tile weights (tw) to each tile in device usual environment

1. If landuse information is not used, all tile weights are assigned as 1.

2. If landuse information is used, tile weights are assigned using landuse prior probabilities

values.

3. Repeat next steps for all tiles for UE counts and for each label type (home, work):

1. Calculate device weights weigth_td for each tile as:

weight_td (grid_i) = tw (grid_i) / Σj(tw (grid_j))

Where:

grid_i: is a target grid tile, i.e., a tile that is included in the current device’s usual environment, and for

which we are calculating pue.

weight_td (grid_i): is the weight of the device in the target grid tile (grid_1).

tw (grid_i): is the tile weight for target grid tile (grid_1), either 1 or coming from the enriched grid

data.

Σj(tw (grid_j)): is the sum of the tile weights of all the grid tiles in the device’s usual environment.

b. Sum up all device weights per tile using grid_id

c. Write aggregated results as a parquet partitioned by start and end date

198

• Data flow diagram:

199

• Code Structure:

The code structure follows the format set by the core package, and the general repository structure.

The location of the module script in the repository is as follows:
multimno

 └── components

 └── aggregation

 └── ue_aggregation

 └── ue_aggregation.py

ue_aggregation.py contains one class named UEAggregation which is a subclass of Component. The

UEAggregation class overrides transform method of base Component class.

200

ANNEX I – DATA OBJECTS

I.1 MNO EVENT DATA – RAW

NAME BRONZEEVENTDATAOBJECT

Description

'MNO Event Data’ contains geolocation data from MNO subscribers.

Data shall be created using at least one of the following data sources: (i) CDRs and/or (ii)

signalling data. Additional information from MNO Apps can be added in order to improve the

quality of the dataset, but this information is not mandatory. CDRs information shall contain all the

information coming from voice, messages, internet connections, etc. CDRs shall also include

roaming-in and roaming-out data.

Each record of the dataset corresponds to a MNO data event, containing at least information

about the identifier of the user, the timestamp of the event and the identifier of the cell to which

the user is connected. When location information is estimated at point level (e.g. through signal

triangulation or GPS data) information can be also be provided.

This dataset shall only contain information about personal mobile devices. IoT, M2M and other

related devices not associated to people shall not be included in the dataset.

Owner/Holder MNO

Object/Unit/Record Mobile network event associated to a specific subscriber

Contents

Mandatory fields:

• user_id:

o Type: Binary

o Requirements: 32 bytes (256 bits) field.

o Description: Unique pseudonymized identifier of the device, generated by

hashing the user's IMSI using the SHA-256 function.

• timestamp:

o Type: String

o Requirements: String with date and time following ISO:8601 format: YYYY-MM-

DDThh:mm.ss

o Description: Point in time where the event took place.

• mcc:

o Type: Integer

o Requirement: 3 digits code

o Description: Mobile Country Code derived from the user's IMSI

• mnc:

o Type: String

o Requirement: 2- or 3-digits code

o Description: Mobile Network Code, a code of a home operator. It might help to

assess the selectivity bias that is in place due to preferential roaming

agreements between MNOs. This must be string, as it can start with 0 digit.

Possible options can also be 01 or 001, so it cannot be integer.

• plmn:

o Type: Integer

o Requirement: 5- or 6-digits code. Mandatory only for outbound data

o Description: Network identifier of the foreign roaming partner MNO consists of

PLMN=MCC+MNC.

• cell_id:

o Type: String

o Requirements: 14- or 15-character length string. All characters must be

numbers. Optional if ‘latitude’ and ‘longitude’ are not null.

o Description: Identifier of the cell following CGI and eCGI standards.

https://arimas.com/2016/10/24/cgi-ecgi/

201

NAME BRONZEEVENTDATAOBJECT

• latitude:

o Type: Float

o Requirements: Latitude value in WGS84 system. Value must be within WGS84

bounds. Optional if ‘cell_id’ is not null.

o Description: Latitude value of the location of the event.

• longitude:

o Type: Float

o Requirements: Longitude value in WGS84 system. Value must be within WGS84

bounds. Optional if ‘cell_id’ is not null.

o Description: Longitude value of the location of the event.

Optional fields:

• loc_error:

o Type: Float

o Requirements: Positive value. If ‘latitude’ and ‘longitude’ are null, this field shall

be set to null.

o Description: Location error in meters.

\ EXAMPLE

user_id timestamp mc

c

mn

c

plm

n

cell_id latitud

e

longitud

e

loc_erro

r

000000000000..0

1
2023-01-

01T00:00:0

0

21

4
01 nul

l
21403041203893

1
-

3.62958
40.51873 100.0

000000000000..1

0
2023-01-

01T00:01:1

5

21

4
01 nul

l
21403041203893

1
-

3.62952
40.51871 100.0

000000000000..1

1
2023-01-

01T12:05:0

3

21

4
01 nul

l
21403548412354

1
null null null

202

I.2 MNO EVENT DATA – SYNTACTICALLY CLEANED

NAME SILVEREVENTDATAOBJECT

Description
This data is basically the same as MNO Event Data - Raw. The only difference is that the events with

syntactic errors have been removed.

Object/Unit/Record Mobile network event associated to a specific subscriber

Contents

Mandatory fields:

• year:

o Type: Integer 16

o Requirements: Integer of 16 bits.

o Description: Year the event took place.

• month:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Month the event took place.

• day:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Day the event took place.

• user_id:

o Type: Binary

o Requirements: 32 bytes (256 bits) field.

o Description: Unique pseudonymized identifier of the device.

• user_id_modulo:

o Type: Integer

o Requirements: Integer of 8 bits.

o Description: Modulo division result, as applied to the integer part of the user_id

column.

• timestamp:

o Type: Time

o Requirements: Parquet time type in hour, minutes and seconds.

o Description: Point in time where the event took place.

• mcc:

o Type: Integer

o Requirement: 3 digits code

o Description: Mobile Country Code derived from the user's IMSI.

• mnc:

o Type: String

o Requirement: 2- or 3-digits code

o Description: Mobile Network Code, a code of a home operator. It might help to

assess the selectivity bias that is in place due to preferential roaming

agreements between MNOs. This must be string, as it can start with 0 digit.

Possible options can also be 01 or 001, so it cannot be integer.

• plmn:

o Type: Integer

o Requirement: 5- or 6-digits code. Mandatory only for outbound data

o Description: Network identifier of the foreign roaming partner MNO consists of

PLMN=MCC+MNC.

• cell_id:

o Type: String

o Requirements: 14- or 15-character length string. All characters must be

numbers. Optional if “latitude” and “longitude” are not null.

o Description: Identifier of the cell following CGI and eCGI standards.

https://arimas.com/2016/10/24/cgi-ecgi/

203

NAME SILVEREVENTDATAOBJECT

• latitude:

o Type: Float

o Requirements: Latitude value in WGS84 system. Value must be within WGS84

bounds. Optional if “cell_id” is not null.

o Description: Latitude value of the location of the event.

• longitude:

o Type: Float

o Requirements: Longitude value in WGS84 system. Value must be within WGS84

bounds. Optional if “cell_id” is not null.

o Description: Longitude value of the location of the event.

Optional fields:

• loc_error:

o Type: Integer

o Requirements: Positive value

o Description: Location error in meters.

\ EXAMPLE

yea

r

mont

h

da

y

user_id timesta

mp

mc

c

mn

c

plm

n

cell_id lon lat loc_err

or

202

3

01 01 000000000000.

.01

00:00:0

0

21

4

01 nul

l

214030412038

931

40.518

73

-

3.629

58

100

202

3

01 01 000000000000.

.01

00:01:1

5

21

4

01 nul

l

214030412038

931

40.518

71

-

3.629

52

100

202

3

01 01 000000000000.

.10

12:05:0

3

21

4

01 nul

l

214035484123

541

null null null

204

I.3 MNO EVENT DATA SYNTACTIC QUALITY METRICS – BY COLUMN

NAME SILVEREVENTDATASYNTACTICQUALITYMETRICSBYCOLUMN

Description
Quality metrics produced by EventCleaning.

It includes counts of records removed or labelled by variable and by type of error.

Object/Unit/Record Quality metrics

Contents

Mandatory fields:

• result_timestamp:

o Type: TimestampType

o Requirements: Timestamp

o Description: Timestamp of the start of the process when the metrics were

produced. One process can generate multiple metrics.

• date:

o Type: DateType

o Requirements: The date that the data was about.

o Description: The date for which the quality metrics were produced.

• variable:

o Type: StringType

o Requirements: Must be a name of a column

o Description: The name of the field to which the metric refers to. it could be null

if the error refers to more then a variable.

• type of error

o Type: ShortType

o Requirements: Integer of 16 bits.

o Description: Shows which error occurred. Possible errors are in table below.

• type of transformation

o Type: ShortType

o Requirements: Integer of 16 bits

o Description: Shows which type of transformation occurred. Possible

transformations are in table below.

• value:

o Type: IntegerType

o Requirements: Integer of 32 bits.

o Description: Count of records with the characteristics in the previous field

\ EXAMPLE

TYPE_OF_ERROR ERROR_TYPE_DESCRIPTION

1 Missing value

2 Not right syntactic format

3 Out of admissible values

4 Inconsistency between variables

5
No location (no cell_id and no latitude&longitude), for that type or error there is None for variable

column

6 Out of bounding box

7 No domain columns

9 No error

10 Different location duplicate

11 Same location duplicate

205

TYPE_OF_TRANSFORMATION ERROR_TYPE_DESCRIPTION

1 Converted timestamps

2 Other conversion

9 No transformation

RESULT_TIMESTAMP DATE VARIABLE TYPE_OF_ERROR TYPE OF TRANSFORMATION VALUE

2023-01-01 12:00:00 2022-12-01 cell_id 1 - 1000

2023-01-01 12:00:00 2022-12-01 cell_id 2 - 20

2023-01-01 12:00:00 2022-12-01 cell_id 9 - 10000

2023-01-01 12:00:00 2022-12-01 timestamp - 1 1

206

I.4 MNO EVENT DATA SYNTACTIC QUALITY METRICS – FREQUENCY DISTRIBUTION

NAME SILVEREVENTDATASYNTACTICQUALITYMETRICSFREQUENCYDISTRIBUTION

Description

Quality metrics produced by EventCleaning.

This data object includes a table to show distribution of records by user_id and cell_id before and

after the application of MNO Event Data Syntactic Quality Metrics method.

Object/Unit/Record Quality metrics

Contents

Mandatory fields:

• cell_id:

o Type: StringType

o Requirements: 14- or 15-character length string. All characters must be

numbers.

o Description: Identifier of the cell following CGI and eCGI standards.

• user_id:

o Type: BinaryType

o Requirements: 32 bytes (256 bits) field.

o Description: Unique pseudonymized identifier of the device, generated by

hashing the user's IMSI using the SHA-256 function.

• initial_frequency:

o Type: IntegerType

o Requirements: Integer of 32 bits.

o Description: Number of records with given cell_id and user_id before filtering.

• final_frequency:

o Type: IntegerType

o Requirements: Integer of 32 bits.

o Description: Number of records with given cell_id and user_id after filtering.

• date:

o Type: DateType

o Requirements: Date of the data in UTC.

o Description: Date of the data in UTC.

\ EXAMPLE

cell_id user_id date initial_frequency final_frequency

214030412038931 000000000000..01 2023-07-20 200 10

214030412038931 000000000000..01 2023-07-21 600 600

https://arimas.com/2016/10/24/cgi-ecgi/

207

I.5 MNO EVENT DATA QUALITY WARNINGS – LOG TABLE

NAME SILVEREVENTDATASYNTACTICQUALITYWARNINGSLOGTABLE

Description Data Object is meant to store warnings in unified format.

Object/Unit/Record Quality warnings

Contents

Mandatory fields:

• date:

o Type: Date

o Description: date a warning happened.

• measure_definition:

o Type: String

o Description: A name of warning group, e.g. ‘Error rate …’

• lookback_period:

o Type: String

o Description: The text representation of a lookback period, e.g. ‘week’ meaning 7

days

• daily_value:

o Type: Float

o Description: The value that does not meet warning condition.

• condition_value:

o Type: Float

o Description: Value to compare with daily_value to check if condition is met.

• condition:

o Type: String

o Description: Condition description.

• warning_text:

o Type: String

o Description: Warning description

\ EXAMPLE

date measure_definition lookback_period daily_value condition_value condition warning_text

2024-

01-29
Error rate for

date
week 23.41 22.48

Error rate is

over the upper

control limit

calculated on

the basis of

average and

standard

deviation of

the

distribution

of the error

rate in

previous

The error

rate after

syntactic

checks

application

is

unexpectedly

high with

respect to

previous

period,

taking into

account its

usual

variability

208

I.6 MNO EVENT DATA – DEDUPLICATED

NAME SILVEREVENTDATAOBJECT

Description
This data is schematically identical to I.1 MNO Event Data – Raw.

The difference is that duplicated rows have been removed.

Object/Unit/Record Mobile network event associated to a specific subscriber

Contents

Mandatory fields:

• year:

o Type: Integer 16

o Requirements: Integer of 16 bits.

o Description: Year the event took place.

• month:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Month the event took place.

• day:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Day the event took place.

• user_id:

o Type: Binary

o Requirements: 32 bytes (256 bits) field.

o Description: Unique pseudonymized identifier of the device.

• user_id_modulo:

o Type: Integer

o Requirements: Integer of 8 bits.

o Description: Modulo division result, as applied to the integer part of the user_id

column.

• timestamp:

o Type: Time

o Requirements: Parquet time type in hour, minutes and seconds.

o Description: Point in time where the event took place.

• mcc:

o Type: Integer

o Requirement: 3 digits code

o Description: Mobile Country Code derived from the user's IMSI.

• cell_id:

o Type: String

o Requirements: 14- or 15-character length string. All characters must be

numbers. Optional if ‘latitude’ and ‘longitude’ are not null.

o Description: Identifier of the cell following CGI and eCGI standards.

• latitude:

o Type: Float

o Requirements: Latitude value in WGS84 system. Value has to be within WGS84

bounds. Optional if ‘cell_id’ is not null.

o Description: Latitude value of the location of the event.

• longitude:

o Type: Float

o Requirements: Longitude value in WGS84 system. Value has to be within

WGS84 bounds. Optional if ‘cell_id’ is not null.

o Description: Longitude value of the location of the event.

Optional fields:

• loc_error:

o Type: Integer

https://arimas.com/2016/10/24/cgi-ecgi/

209

NAME SILVEREVENTDATAOBJECT

o Requirements: Positive value

o Description: Location error in meters.

\ EXAMPLE

year month day user_id timestamp mcc cell_id lon lat loc_error

2023 01 01 000000000000..01 00:00:00 214 214030412038931 40.51873
-

3.62958
100

2023 01 01 000000000000..01 00:01:15 214 214030412038931 40.51871
-

3.62952
100

210

I.7 CELL LOCATIONS WITH PHYSICAL PROPERTIES - RAW

NAME BRONZENETWORKDATAOBJECT

Description

Contains information about the location and physical properties of network cells for a specific day.

Data updated along with MNO event data representing the network parameters for all active cells

for a specific date.

Owner/Holder MNO

Object/Unit/Record Characteristic of a specific cell

Contents

Mandatory fields:

• cell_id:

o Type: String

o Requirements: 14-digit or 15-digit numeric code following CGI and eCGI

standards

o Description: Code uniquely identifying one cell.

• latitude:

o Type: Float

o Requirements: Latitude value in WGS84 system. Value must be within WGS84

bounds.

o Description: Latitude of cell location (location of the antenna).

• longitude:

o Type: Float

o Requirements: Longitude in WGS84 system. Value must be within WGS84

bounds.

o Description: Longitude of cell location (location of the antenna).

• directionality:

o Type: Integer

o Requirements: value is either 0 or 1

o Description: 0 for omnidirectional antennas and 1 for directional antenas.

• azimuth_angle:

o Type: Float, nullable

o Requirements: value between 0 and 360 if ‘directionality’ equal to 1, null

otherwise.

o Description: angle in degrees of the main propagation direction with respect to

the North clockwise; for directional cells only.

Optional fields:

• altitude:

o Type: Float

o Requirements:

o Description: Altitude (meters) of the antenna base from the sea level.

• antenna_height:

o Type: Float

o Requirements: Positive value

o Description: Height of the antenna in meters from ground

• elevation_angle:

o Type: Float

o Requirements: value between -90 and 90

o Description: Antenna placement angle; also known as tilt

• horizontal_beam_width:

o Type: Float

o Requirements: value between 0 and 360

o Description: The angular extent of the cell beam in the horizontal plane

• vertical_beam_width:

o Type: Float

o Requirements: value between 0 and 360

https://arimas.com/2016/10/24/cgi-ecgi/
https://arimas.com/2016/10/24/cgi-ecgi/

211

NAME BRONZENETWORKDATAOBJECT

o Description: The angular extent of the cell beam in the vertical plane

• power:

o Type: Float

o Requirements: Positive value

o Description: W

• range:

o Type: Float

o Requirements: Positive value

o Description: maximum coverage range of the cell, in metres

• frequency:

o Type: Integer

o Requirements: Positive value

o Description: MHz

• technology:

o Type: String

o Requirements:

o Description: Technology of the cell.

• valid_date_start:

o Type: String

o Requirements: String with date and time following ISO:8601 format: YYYY-MM-

DDThh:mm.ss. Has to be earlier than valid_period_end.

o Description: Start of time window in which the antenna is operational in this

location. Period start timestamp is included within the time window.

• valid_date_end:

o Type: String, nullable

o Requirements: String with date and time following ISO:8601 format: YYYY-MM-

DDThh:mm.ss. Has to be later than valid_period_start. It shall be set to null if it

still operational.

o Description: End of time window in which the antenna is operational in this

location. Period end timestamp is excluded from the time window.

• cell_type:

o Type: String

o Requirements:

o Description: picocell, femtocell, etc.

• year:

o Type: Integer 16.

o Description: Year the register corresponds to.

• month:

o Type: Integer 8.

o Description: Month the register corresponds to.

• day:

o Type: Integer 8.

o Description: Day the register corresponds to.

212

\ EXAMPLE

cell_id

lat

itu

de

long

itud

e

alt

itu

de

antenn

a_heig

ht

direct

ionali

ty

azimut

h_angl

e

elevati

on_angl

e

horizontal

_beam_widt

h

vertical_

beam_widt

h

po

we

r

freq

uenc

y

tech

nolo

gy

valid_d

ate_sta

rt

valid_

date_e

nd

cell

_typ

e

y

e

a

r

mo

nt

h

d

a

y

2140304

1203893

1

-

3.6

295

8

40.5

1873

20.

0
42 1 90 4 65 9 3 3500 LTE

2023-

07-

20T10:0

0:00

2023-

12-

31T23:

30:00

TBD

2

0

2

3

10
1

0

2140354

8412354

1

-

3.8

245

40.8

952

30.

5
12 0 null 5 42 9 7 1800 LTE

2023-

07-

20T12:3

4:56

null TBD

2

0

2

3

10
1

0

213

I.8 CELL LOCATIONS WITH PHYSICAL PROPERTIES – CLEANED

NAME SILVERNETWORKDATAOBJECT

Description
Contains syntactically cleaned information about the location and physical properties of network

cells for a specific day.

Object/Unit/Record Characteristic of a specific cell

Contents

Mandatory fields:

• cell_id:

o Type: String

o Description: Code uniquely identifying one cell.

• latitude:

o Type: Float

o Description: Latitude of cell location (location of the antenna).

• longitude:

o Type: Float

o Description: Longitude of cell location (location of the antenna).

• altitude:

o Type: Float, nullable

o Description: Altitude (meters) of the antenna base from the sea level.

• antenna_height:

o Type: Float, nullable

o Description: Height of the antenna in meters from ground

• directionality:

o Type: Integer, nullable

o Description: 0 for omnidirectional antennas and 1 for directional antenas.

• azimuth_angle:

o Type: Float, nullable

o Description: angle in degrees of the main propagation direction with respect to

the North clockwise; for directional cells only.

• elevation_angle:

o Type: Float, nullable

o Description: Antenna placement angle; also known as tilt

• horizontal_beam_width:

o Type: Float, nullable

o Description: The angular extent of the cell beam in the horizontal plane

• vertical_beam_width:

o Type: Float, nullable

o Description: The angular extent of the cell beam in the vertical plane

• power:

o Type: Float, nullable

o Description: W

• range:

o Type: Float, nullable

o Description: maximum coverage range of the cell, in metres

• frequency:

o Type: Integer, nullable

o Description: MHz

• technology:

o Type: String, nullable

o Description: Technology of the cell.

• valid_date_start:

o Type: String, nullable

o Description: Start of time window in which the antenna is operational in this

location. Period start timestamp is included within the time window.

214

NAME SILVERNETWORKDATAOBJECT

• valid_date_end:

o Type: String, nullable

o Description: End of time window in which the antenna is operational in this

location. Period end timestamp is excluded from the time window.

• cell_type:

o Type: String, nullable

o Description: normal, picocell, femtocell, etc.

• year:

o Type: Integer 16.

o Description: Year corresponding to the register.

• month:

o Type: Integer 8.

o Description: Month correspoding to the register.

• day:

o Type: Integer 8.

o Description: Day corresponding to the register.

215

\ EXAMPLE

cell_id

lat

itu

de

long

itud

e

alt

itu

de

antenn

a_heig

ht

direct

ionali

ty

azimut

h_angl

e

elevati

on_angl

e

horizontal

_beam_widt

h

vertical_

beam_widt

h

po

we

r

freq

uenc

y

tech

nolo

gy

valid_d

ate_sta

rt

valid_

date_e

nd

cell

_typ

e

y

e

a

r

mo

nt

h

d

a

y

2140304

1203893

1

-

3.6

295

8

40.5

1873

20.

0
42 1 90 4 65 9 3 3500 LTE

2023-

07-

20T10:0

0:00

2023-

12-

31T23:

30:00

norm

al

2

0

2

3

07
0

1

2140354

8412354

1

-

3.8

245

40.8

952

30.

5
12 0 null 5 42 9 7 1800 LTE

2023-

07-20
null

micr

ocel

l

2

0

2

3

07
0

1

216

I.9 MNO NETWORK TOPOLOGY DATA QUALITY METRICS

NAME SILVERNETWORKDATAQUALITYMETRICSBYCOLUMN

Description Quality metrics produced by NetworkCleaning.

Object/Unit/Record Quality metrics

Contents

Mandatory fields:

• result_timestamp:

o Type: Timestamp

o Requirements: -

o Description: Timestamp of the start of the process when the metrics were

produced. One process can generate multiple metrics.

• date:

o Type: Date

o Requirements: -

o Description: Date of the dataset to which the quality metrics refer (not from

topology data but from parameters)

• field_name:

o Type: String

o Requirements: Either null or same as the name of a column present in input

data

o Description: Name of the field to which the metric refers to. Value is null if the

metric refers to multiple fields.

• type_code:

o Type: Integer

o Requirements: One value from the type codes (see table below).

o Description: Numeric code indicating the type of the metric. See table below.

• value:

o Type: Integer

o Requirements: -

o Description: Numeric value of the metric.

• year:

o Type: Integer 16

o Description: Year the event took place. Partition column

• month:

o Type: Integer 8

o Description: Month the event took place. Partition column.

• day:

o Type: Integer 8

o Description: Day the event took place. Partition column.

\ CODE TYPES

CODE SHORT DESCRIPTION DESCRIPTION

0 no errors

1 value is null

2 value is not within the set of accepted values

3 unsupported input data type

4 unable to parse correctly

100 total rows at the start of method

101 total rows at the end of method

217

\ EXAMPLE

result_timestamp date field_name type_code value year month day

2023-06-12 12:00:00 01-01-2023 cell_id 0 1900 2023 1 1

2023-06-12 12:00:00 01-01-2023 cell_id 1 95 2023 1 1

2023-06-12 12:00:00 01-01-2023 cell_id 2 5 2023 1 1

2023-06-12 12:00:00 01-01-2023 - 100 2000 2023 1 1

2023-06-12 12:00:00 01-01-2023 - 101 1900 2023 1 1

218

I.10 MNO NETWORK TOPOLOGY DATA QUALITY WARNINGS – LOG TABLE

NAME SILVERNETWORKDATASYNTACTICQUALITYWARNINGSLOGTABLE

Description Quality warnings log table produced by NetworkQualityWarnings.

Object/Unit/Record Quality Warning logs

Contents

Mandatory fields:

• title:

o Type: String

o Requirements: ‘MNO Network Topology Data Quality Warnings’.

o Description: Title of the log table warnings.

• timestamp:

o Type: Timestamp

o Requirements: -

o Description: Timestamp of the start of the process when the quality warnings

were produced.

• date:

o Type: Date

o Requirements: -

o Description: Date of the dataset to which the quality metrics analysed refer to

(contained in their own ‘date’ field).

• measure_definition:

o Type: String

o Requirements: -

o Description: Name of the metric or measure that was studied in order to raise a

warning.

• daily_value:

o Type: Float

o Requirements: Non-negative value.

o Description: Value that the metric that raised this warning had in this date.

• condition:

o Type: String

o Requirements: -

o Description: Logical condition that the daily_value had to verify in order to raise

a warning.

• parameter_time:

o Type: String

o Requirements: ‘week’, ‘month’, or ‘quarter’.

o Description: Lookback period length used to compute the average and sample

standard deviation of the metric being studied.

• condition_value:

o Type: Float

o Requirements: Non-negative value

o Description: Threshold value that the daily_value was compared with in order to

fulfill the condition of this warning.

• warning_text:

o Type: String

o Requirements: -

o Description: Verbose description of what this warning means and implies.

219

\ CODE TYPES

CODE SHORT DESCRIPTION DESCRIPTION

0 no errors

1 value is null

2 value is not within the set of accepted values

3 unsupported input data type

4 unable to parse correctly

100 total rows at the start of method

101 total rows at the end of method

\ EXAMPLE

title
timesta

mp
date

measure_de

finition

daily_v

alue
condition

parameter

_time

condition_

value
warning_text

MNO

Networ

k

Topolo

gy

Data

Qualit

y

Warnin

gs

2024-

02-01

10:00:0

0

2024

-01-

29
Error rate 3.73

Error rate is

over the upper

control limit

calculated on

the basis of

average and

standard

deviation of

the

distribution of

the error rate

in the previous

period. Upper

control limit =

3.70.

week 3.70

The error

rate after

syntactic

checks

application

is

unexpectedly

high with

respect to

previous

period,

taking into

account its

usual

variability

220

I.11 REFERENCE GRID

DESCRIPTION INSPIRE GRID GEOMETRY WITH ADDITIONAL INFORMATION

Object/Unit/Record Grid centroid geometry with additional information

Contents

Mandatory fields:

• grid_id:

o Type: String

o Requirements: string following INSPIRE specification format

o Description: Code uniquely identifying one grid tile.

• geometry:

o Type: Binary

o Requirements: ETRS89 Lambert Azimuthal Equal Area coordinate reference

system (EPSG:3035)

o Description: grid centroids point geometry

Optional fields:

• elevation:

o Type: Float

o Requirements:

o Description: Elevation of a grid centroids

• land_use_main

o Type: string

o Main land use category

• prior_probabilty_value

o Type: float

o Prior probability value.

\ EXAMPLE

grid_id elevation land_use_main prior_probabilty_value geometry

100mN4056000E5275300 12.1 RURAL 0.00 POINT()

100mN4056000E5275400 11.9 URBAN 0.70 POINT()

https://inspire-mif.github.io/technical-guidelines/data/gg/dataspecification_gg.pdf

221

I.12 CELLS SIGNAL STRENGTHS

DESCRIPTION THE SIGNAL STRENGTH VALUES PER CELL PER GRID TILE

Object/Unit/Record Cell / grid tile combination

Contents

Mandatory fields:

• cell_id

o Type: String

o Description: Unique ID of cell

• grid_id

o Type: String

o Description: Unique ID of grid tile

• valid_date_start

o Type: Timestamp

o Description: Start date of validity period (inclusive)

• valid_date_end

o Type: Timestamp

o Description: End date of validity period (exclusive)

• signal_strength

o Type: Float

o Description: Signal strength in dBm

• year:

o Type: Integer 16.

o Description: Year the intersection group determined.

• month:

o Type: Integer 8.

o Description: Month the intersection group determined.

• day:

o Type: Integer 8.

o Description: Day the intersection group determined.

Optional fields:

• distance_to_cell

o Type: Integer

o Description: Distance of grid tile to cell location may be necessary for some

calculation during the Location Assignation Module (e.g., taking into account

the Timing Advance parameter of the MNO event data).

\ EXAMPLE

cell_id grid_id
valid_date_s

tart

valid_date_

end

signal_stren

gth

distance_to_

cell

yea

r

mont

h

da

y

214030412038

931

123231342131

341
2023-01-01 2023-01-01 -120 4623

202

3
01 01

214030412038

931

123231342131

342
2023-01-01 2023-01-01 -78 4627

202

3
01 01

214030412038

932

123231342131

341
2023-02-01 2023-02-01 -59 4629

202

3
02 01

222

I.13 CELL FOOTPRINTS

DESCRIPTION THE SIGNAL DOMINANCE (CELL FOOTPRINT) VALUES PER GRID TILE

Object/Unit/Record Cell / grid tile combination

Contents

Mandatory fields:

• cell_id

o Type: String

o Description: Unique ID of cell

• grid_id

o Type: String

o Description: Unique ID of grid tile

• valid_date_start

o Type: Date

o Description: Start date of validity period (inclusive)

• valid_date_end

o Type: Date

o Description: End date of validity period (exclusive)

• signal_dominance

o Type: Float

o Description: Signal dominance value (0 to 1)

• year:

o Type: Integer 16.

o Description: Year the intersection group determined.

• month:

o Type: Integer 8.

o Description: Month the intersection group determined.

• day:

o Type: Integer 8.

o Description: Day the intersection group determined.

\ EXAMPLE

cell_id grid_id
valid_date_star

t

valid_date_en

d

signal_dominanc

e

yea

r

mont

h

da

y

12345678910111

2

12323134213134

1
2023-01-01 2023-01-02 0.5405

202

3
01 01

12345678910111

2

12323134213134

2
2023-01-01 2023-01-02 0.4193

202

3
01 01

223

I.14 CELL INTERSECTION GROUPS

NAME SILVERCELLINTERSECTIONGROUPSDATAOBJECT

Description

Groups of cells which coverage areas (cell footprints) overlaps. Contains all overlapping

combinations of pairs, triples, quads and so on up to the maximum size of the overlapping cells

cluster.

Object/Unit/Record Groups of cells which coverage areas overlaps for a single day

Contents

Mandatory fields:

• group_id:

o Type: String.

o Description: Intersection group ID.

• cells:

o Type: Array of strings.

o Description: Array of overlapping cells.

• group_size:

o Type: Integer.

o Description: The number of cells in this intersection group.

• valid_date_start

o Type: Timestamp

o Description: Start date of validity period (inclusive)

• valid_date_end

o Type: Timestamp

o Description: End date of validity period (exclusive)

• year:

o Type: Integer 16.

o Description: Year the intersection group determined.

• month:

o Type: Integer 8.

o Description: Month the intersection group determined.

• day:

o Type: Integer 8.

o Description: Day the intersection group determined.

\ EXAMPLE

group_id cells group_size valid_date_start valid_date_end year month day

2_13
[214030412038931,

214030412038932]
2 2023-01-01 2023-01-01 2023 01 01

2_14
[214030412038964,

214030412038965]
2 2023-01-01 2023-01-01 2023 01 01

4_2

[214030412038931,

214030412038932,

214030412038935,

214030412038938]

4 2023-02-01 2023-02-01 2023 02 01

224

I.15 CELL CONNECTION AND POSTERIOR PROBABILITIES

DESCRIPTION CELL CONNECTION AND POSTERIOR PROBABILITY VALUES PER GRID TILE AND CELL_ID.

Object/Unit/Record Cell / grid tile combination

Contents

Mandatory fields:

• cell_id

o Type: String

o Description: Unique ID of cell

• grid_id

o Type: String

o Description: Unique ID of grid tile

• valid_date_start

o Type: Date

o Description: Start date of validity period (inclusive)

• valid_date_end

o Type: Date

o Description: End date of validity period (exclusive)

• cell_connection_probability

o Type: Float

o Description: Connection probability value within range [0, 1]

• posterior_probability

o Type: float

o Posterior probability value within range [0, 1]

• year:

o Type: Integer 16.

o Description: Year the intersection group determined.

• month:

o Type: Integer 8.

o Description: Month the intersection group determined.

• day:

o Type: Integer 8.

o Description: Day the intersection group determined.

\ EXAMPLE

cell_id grid_id
valid_date_

start

valid_dat

e_end

cell_connection_pr

obability

posterior_prob

ability

ye

ar

mon

th

da

y

1234567891

01112

1232313421

31341
2023-01-01

2023-01-

02
0.5405 0.2192

20

23
01 01

1234567891

01112

1232313421

31342
2023-01-01

2023-01-

02
0.4193 0.5411

20

23
01 01

225

I.16 MNO EVENT DATA – SEMANTICALLY CLEANED

NAME SILVEREVENTFLAGGEDDATAOBJECT

Description
Mobile network event data associated to a specific subscriber, after semantic checks has been

completed with semantic error flags.

Object/Unit/Record Mobile network event associated to a specific subscriber with semantic error flags

Contents

Mandatory fields:

• user_id:

o Type: Binary

o Description: Unique pseudonymized identifier of the device.

• timestamp:

o Type: Time

o Description: Point in time where the event took place.

• mcc:

o Type: Integer

o Description: Mobile Country Code derived from the user's IMSI.

• mnc:

o Type: String

o Description: Mobile Network Code, a code of a home operator. It might help to

assess the selectivity bias that is in place due to preferential roaming

agreements between MNOs. This must be string, as it can start with 0 digit.

Possible options can also be 01 or 001, so it cannot be integer.

• plmn:

o Type: Integer

o Requirement: 5- or 6-digits code. Mandatory only for outbound data

o Description: Network identifier of the foreign roaming partner MNO consists of

PLMN=MCC+MNC.

• cell_id:

o Type: String

o Description: Identifier of the cell following CGI and eCGI standards. Optional if

“latitude” and “longitude” are not null.

• latitude:

o Type: Float

o Description: Latitude value of the location of the event. Optional if “cell_id” is

not null.

• longitude:

o Type: Float

o Description: Longitude value of the location of the event. Optional if “cell_id” is

not null.

• error_flag:

o Type: Integer, referring to global error type code

o Description: Error flag referring to a error type code of the specific identified

error

• loc_error:

o Type: Integer

o Description: Location error in meters.

• year:

o Type: Integer 16

o Description: Year the event took place.

• month:

o Type: Integer 8

o Description: Month the event took place.

• day:

o Type: Integer 8

https://arimas.com/2016/10/24/cgi-ecgi/

226

NAME SILVEREVENTFLAGGEDDATAOBJECT

o Description: Day the event took place.

• user_id_modulo

o Type: Integer

o Description: Partition key

227

I.17 MNO DEVICE SEMANTIC QUALITY METRICS

NAME SILVEREVENTSEMANTICQUALITYMETRICS

Description Quality metrics obtained in SemanticCleaning.

Object/Unit/Record Quality metric

Contents

Mandatory fields:

• result_timestamp:

o Type: Timestamp

o Requirements: -

o Description: Timestamp of the start of the process when the metrics were

produced. One process can generate multiple metrics.

• variable:

o Type: String

o Requirements: Same as the name of a column present in input data

o Description: Name of the field to which the metric refers to. Value is null if the

metric refers to multiple fields.

• type_of_error:

o Type: Integer

o Requirements: One value from the type codes (see table below).

o Description: Numeric code indicating the type of the metric. See table below.

• value:

o Type: Integer

o Requirements: -

o Description: Numeric value of the metric.

• year:

o Type: Integer 16

o Requirements: Integer of 16 bits.

o Description: Year of the datasets used.

• month:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Month of the datasets used.

• day:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Day of the datasets used.

\ CODE TYPES

CODE
SHORT

DESCRIPTION
DESCRIPTION

0 No error

1 Cell ID non-existent Event made a reference to a non-existent cell ID

2 Invalid cell ID
Event made a reference to an existent cell ID, but the cell was not operative when the

event was registered

3
Incorrect event

location

4
Suspicious event

location

5
Different location

duplicate

Event has the same timestamp for the same user on either a previous or following row,

but not identical values in the columns cell_id, longitude, latitude.

228

\ EXAMPLE

result_timestamp variable type_of_error value year month day

2024-03-01T09:03:08.432637Z cell_id 3 50 2024 02 19

2024-03-01T09:03:08.432637Z cell_id 2 103 2024 02 19

229

I.18 MNO EVENT DATA AT DEVICE LEVEL SEMANTIC QUALITY WARNINGS – LOG

TABLE

NAME SILVEREVENTSEMANTICQUALITYWARNINGSLOGTABLE

Description Quality warnings log table produced by SemanticQualityWarnings.

Object/Unit/Record Quality Warning logs

Contents

Mandatory fields:

• date:

o Type: Date

o Requirements: -

o Description: Date of the datasets that produced the quality metrics.

• Error 1:

o Type: Float

o Requirements: -

o Description: Percentage of the error type 1 over the total of events in this date.

• Error 2:

o Type: Float

o Requirements: -

o Description: Percentage of the error type 2 over the total of events in this date.

• Error 3:

o Type: Float

o Requirements: -

o Description: Percentage of the error type 3 over the total of events in this date.

• Error 4:

o Type: Float

o Requirements: -

o Description: Percentage of the error type 4 over the total of events in this date.

• Error 5:

o Type: Float

o Requirements: -

o Description: Percentage of the error type 5 over the total of events in this date.

• Error 1 upper control limit:

o Type: Float

o Requirements: Can be null if there any date of the lookback period was missing.

o Description: Threshold value that the percentage of this error type must surpass

in order to raise a warning.

• Error 2 upper control limit:

o Type: Float

o Requirements: Can be null if there any date of the lookback period was missing.

o Description: Threshold value that the percentage of this error type must surpass

in order to raise a warning.

• Error 3 upper control limit:

o Type: Float

o Requirements: Can be null if there any date of the lookback period was missing.

o Description: Threshold value that the percentage of this error type must surpass

in order to raise a warning.

• Error 4 upper control limit:

o Type: Float

o Requirements: Can be null if there any date of the lookback period was missing.

o Description: Threshold value that the percentage of this error type must surpass

in order to raise a warning.

• Error 5 upper control limit:

o Type: Float

230

NAME SILVEREVENTSEMANTICQUALITYWARNINGSLOGTABLE

o Requirements: Can be null if there any date of the lookback period was missing.

o Description: Threshold value that the percentage of this error type must surpass

in order to raise a warning.

• Error 1 display warning:

o Type: Boolean

o Requirements: -

o Description: Whether a warning regarding error type 1 was raised.

• Error 2 display warning:

o Type: Boolean

o Requirements: -

o Description: Whether a warning regarding error type 2 was raised.

• Error 3 display warning:

o Type: Boolean

o Requirements: -

o Description: Whether a warning regarding error type 3 was raised.

• Error 4 display warning:

o Type: Boolean

o Requirements: -

o Description: Whether a warning regarding error type 4 was raised.

• Error 5 display warning:

o Type: Boolean

o Requirements: -

o Description: Whether a warning regarding error type 5 was raised.

• year:

o Type: Integer 16

o Requirements: Integer of 16 bits.

o Description: Year of the datasets used.

• month:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Month of the datasets used.

• day:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Day of the datasets used.

• execution_id

o Type: Timestamp

o Requirements: -

o Description: execution ID of the calculation of a given row of warnings by using

the moment in time they were computed as identifier.

231

\ EXAMPLE

dat

e
Error 1 Error 2 Error 3 Error 4

Error 1

upper

control

limit

Error 2

upper

control

limit

Error 3

upper

control

limit

Error 4

upper

control

limit

Error

1

displ

ay

warni

ng

Error

2

displ

ay

warni

ng

Error

3

displ

ay

warni

ng

Error

4

displ

ay

warni

ng

yea

r

mon

th

da

y
execution_id

202

3-

07-

15

0.00002

3%

0.01380

8%

0.02377

9%

0.00659

2%
 FALSE FALSE FALSE FALSE

202

3
7 15

2024-03-

01T09:03:08.43

2637Z

202

3-

07-

16

0.00003

3%

0.01250

8%

0.02798

5%

0.00631

6%
 FALSE FALSE FALSE FALSE

202

3
7 16

2024-03-

01T10:03:08.43

2637Z

202

3-

07-

17

0.00001

5%

0.01191

2%

0.00909

5%

0.00508

9%

0.00003

8%

0.01568

6%

0.03166

0%

0.00771

1%
FALSE FALSE FALSE FALSE

202

3
7 17

2024-03-

01T11:03:08.43

2637Z

202

3-

07-

18

0.00001

6%

0.01356

9%

0.00852

7%

0.00687

9%

0.00003

7%

0.01576

1%

0.03240

0%

0.00750

4%
FALSE FALSE FALSE FALSE

202

3
7 18

2024-03-

01T12:03:08.43

2637Z

202

3-

07-

19

0.00000

3%

0.01245

9%

0.00562

6%

0.00686

2%

0.00003

4%

0.01563

0%

0.03395

2%

0.00773

1%
FALSE FALSE FALSE FALSE

202

3
7 19

2024-03-

01T13:03:08.43

2637Z

202

3-

07-

20

24.8601

63%

0.01508

0%

4.69375

5%

0.00498

5%

0.00003

6%

0.01517

1%

0.03209

8%

0.00761

3%
TRUE FALSE TRUE FALSE

202

3
7 20

2024-03-

01T14:03:08.43

2637Z

202

3-

07-

21

0.00002

3%

3.11589

8%

0.01108

8%

3.52202

7%

20.9499

44%

0.01519

6%

3.95776

2%

0.00769

9%
FALSE TRUE FALSE TRUE

202

3
7 21

2024-03-

01T15:03:08.43

2637Z

232

I.19 DEVICE ACTIVITY STATISTICS

DESCRIPTION METRICS PRODUCED BY THE METHOD DEVICE ACTIVITY STATISTICS

Object / Unit /

Record
Metrics / statistics

Contents

Description of the metrics computed for the specific device along with their values and the choice of

period parameter (if needed).

• user_id:

o Type: Binary

o Requirements: 32 bytes (256 bits) field.

o Description: Unique pseudonymized identifier of the device.

• year:

o Type: Integer 16

o Requirements: Integer of 16 bits.

o Description: Year the metrics refer to in the local timezone.

• month:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Month the metrics refer to in the local timezone.

• day:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Day the metrics refer to in the local timezone.

• event_cnt:

o Type: Integer 32

o Requirements: Integer of 32 bits.

o Description: Number of events per day.

• unique_cell_cnt:

o Type: Integer 16

o Requirements: Integer of 16 bits.

o Description: Number of unique cells per day.

• unique_location_cnt:

o Type: Integer 16

o Requirements: Integer of 16 bits.

o Description: Number of different locations per day (based on the location point of

the cell).

• sum_distance_m:

o Type: Integer 32

o Requirements: Integer of 32 bits.

o Description: Sum of the distances between the events (based on the location point

of the cell).

• unique_hour_cnt:

o Type: Integer 8

o Requirements: Integer of 8 bits. Up to 24.

o Description: Number of unique hours in the date with events.

• mean_time_gap:

o Type: Integer 32

o Requirements: Integer of 32 bits.

o Description: Average time gap between events (in seconds).

• stdev_time_gap:

o Type: Float

o Requirements: Float

o Description: Standard deviation of the time gap between events (in seconds).

233

DESCRIPTION METRICS PRODUCED BY THE METHOD DEVICE ACTIVITY STATISTICS

Notes

• All the indicators are calculated per device per day. When longer period assessment of the

device activity is needed (e.g., for specific use case), then this must be done by combining the

metrics for different dates that are inside the necessary period. For simplicity and optimisation

reasons, this longer-period aggregates are not stored in this data object. This is also necessary

due to the requirement of periodical deletion of historical device-level data that can be

successfully done using the ‘date’ here but could not be done very well with longer periods.

234

\ EXAMPLE

device_i

d

yea

r

mont

h

da

y

event_cn

t

unique_cell_cn

t

unique_location_cn

t

sum_distance_

m

unique_hour_cn

t

mean_time_ga

p

stdev_time_ga

p

A
202

3
1 1 12 10 10 45778 10 5090 2951.61

A
202

3
1 2 8 2 2 7592 7 5118 3169.484

B
202

3
1 1 12 10 10 45036 8 4358 3614.575

C
202

3
1 1 11 1 1 0 10 5939 4039.195

C
202

3
1 2 20 1 1 0 14 4173 3017.242

C
202

3
1 3 12 1 1 0 10 7313 3111.024

C
202

3
1 4 7 1 1 0 5 4062 1536.541

D
202

3
1 1 112 80 80 1035035 9 276 163.491

E
202

3
1 1 142 37 37 13083 2 28 17.225

F
202

3
1 1 41 1 1 0 1 33 13.647

G
202

3
1 1 24 13 13 51061 24 3600 0

H
202

3
1 1 1 1 1 0 1 0 0

235

I.20 DAILY CONTINUOUS TIME SEGMENTS

NAME SILVERTIMESEGMENTSDATAOBJECT

Description

Daily time segments of a specific user covering the 24 hours of a specific date under study. The

individual MNO data events are grouped into time segments. Four categories are supported: (i)

stay (set of events that are close in time and space during a minimum dwell time), (ii) unknown

(gap of information), (iii) undetermined (punctual events that are not possible to classify either as

stay or move) and (iv) move (rest of the day that it is not classified as any other group).

Object/Unit/Record Time segment

Contents

• user_id:

o Type: Binary.

o Description: Unique pseudonymized identifier of the device.

• time_segment_id:

o Type: Integer.

o Description: Unique identifier of the time segment associated to a specific user.

• start_timestamp:

o Type: timestamp (‘YYYY-MM-DD hh:mm:ss’) in UTC standard.

o Description: the date and time of the first event of the time segment.

• end_timestamp:

o Type: timestamp (‘YYYY-MM-DD hh:mm:ss’) in UTC standard.

o Description: the date and time of the last event of the time segment.

• mcc:

o Type: Integer.

o Description: Mobile Country Code derived from the user's IMSI.

• cells:

o Type: Array of strings.

o Description: set of cells identifiers associated to the time segment.

• state:

o Type: String.

o Description: type of time segment (stay, move, undetermine or unknown).

• is_last:

o Type: Boolean.

o Description: If the time segment is the last time segment of a user in a day.

• year:

o Type: Integer 16.

o Description: Year the event took place.

• month:

o Type: Integer 8.

o Description: Month the event took place.

• day:

o Type: Integer 8.

o Description: Day the event took place.

• user_id_modulo

o Type: Integer.

o Description: Partition key.

236

\ EXAMPLE

time_segment_id device_id start_timestamp end_timestamp cells state is_last

1 1
2023-01-01

00:00:00

2023-01-01

06:45:01

[214030412038931,

214030412038932,

214030412038935,

214030412038938]

stay false

2 1
2023-01-01

06:45:01

2023-01-01

07:16:21

[214030412038940,

214035484123541,

214035484123544]

move false

3 1
2023-01-01

07:16:21

2023-01-01

22:16:15
null unknown false

4 1
2023-01-01

22:16:15

2023-01-01

23:59:59

[214030412038931,

214030412038932]
stay true

1 2
2023-01-01

00:00:00

2023-01-01

11:49:35

[214030412038964,

214030412038965]
stay false

… … … … … … …

237

I.21 DAILY PERMANENCE SCORE

NAME DAILYPERMANENCESCOREDATAOBJECT

Description
Contains each user’s stay time at each cell during each of the time slots of each date, calculated

from events data.

Object/Unit/Record Stay duration in seconds of a given user in a given cell and a given time slot.

Contents

Mandatory fields:

• user_id:

o Type: Binary

o Description: Unique pseudonymized identifier of the device.

• grid_id:

o Type: String

o Description: Unique ID of grid tile, or “unknown”.

• time_slot_initial_time:

o Type: Timestamp

o Description: Initial time of time slot.

• time_slot_end_time:

o Type: Timestamp

o Description: Final time of the time slot.

• dps:

o Type: Integer 8

o Description: Daily permanence score.

• year:

o Type: Integer 16

o Description: Year the event took place.

• month:

o Type: Integer 8

o Description: Month the event took place.

• day:

o Type: Integer 8

o Description: Day the event took place.

• user_id_modulo:

o Type: Integer 16

o Description: Partition key

• id_type:

o Type: String

o Description: Partition key that takes two values: grid whenever the "grid_id" field

contains an actual grid ID of the INSPIRE 100x100m grid, or unknown when the

"grid_id" field contains the value unknown.

\ EXAMPLE

user_id grid_id
time_slot_initial

_time

time_slot_dura

tion

dp

s

yea

r

mon

th

da

y

user_id_mod

ulo

000000000000

..01

100mN4056000E52

75300
10:00 3600 1

202

4
01 15 511

000000000000

..01

100mN4056100E52

75300
10:00 3600 2

202

4
01 15 511

000000000000

..01

100mN4056000E52

75300
11:00 3600 4

202

4
01 15 511

238

I.22 MNO EVENT DATA QUALITY WARNINGS – FOR PLOTS

NAME SILVEREVENTDATASYNTACTICQUALITYWARNINGSFORPLOTS

Description

The data object is meant to store the data needed for plot creation, the plots' data are

differentiated in three categories

• daily ‘Total initial frequency’ along with its average and the control limits computed

based on lookback period

• daily ‘Total final frequency’ along with its average and the control limits computed based

on lookback period

• ‘Error rate by date’ along with its average and only upper control limit computed based

on lookback period

In the future releases it is planned to add a report creation option.

Object/Unit/Record Quality warnings

Contents

Mandatory fields:

• date:

o Type: Date

o Description: date of a value and its statistics were taken/computed.

• type_of_qw:

o Type: String

o Description: Indicator of what type of data is stored, could be raw_data_size,

clean_data_size, error_rate.

• lookback_period:

o Type: String

▪ Description: The text representation of a lookback period, e.g. ‘week’

meaning 7 days

• daily_value:

o Type: Float

o Description: The value of either initial frequency, final frequency, or error rate

calculated on this date.

• average:

o Type: Float

o Description: mean computed based on a lookback period

• LCL:

o Type: Float

o Description: Low Control limit, mean - X*std computed based on a lookback

period (applicable only for data size values).

• UCL:

o Type: Float

o Description: Upper Control limit, mean + X*std computed based on a lookback

period

\ EXAMPLE

date type_of_qw lookback_period daily_value average LCL UCL

2024-01-29 Error rate week 23.41 20.2 None 22.48

239

I.23 MNO NETWORK SYNTACTIC QUALITY WARNINGS LINE PLOT DATA

NAME SILVERNETWORKSYNTACTICQUALITYWARNINGSLINEPLOTDATA

Description

The data object is meant to store the data needed for line plots that show the daily evolution of

the number of rows before and after the syntactic checks, as well as the overall error rate.

• Number of rows before syntactic cleaning: data for a line plot containing said number of

rows for the lookback period and the study date, together with the average, upper

control limit, and lower control limit over the lookback period.

• Number of rows after syntactic cleaning: data for a line plot containing said number of

rows for the lookback period and the study date, together with the average, upper

control limit, and lower control limit over the lookback period.

Error rate: data for a line plot containing the error rate of the dataset (i.e., percentage of non-

erroneous rows) for the lookback period and the study date, together with the average and upper

control limit over the lookback period.

Object/Unit/Record Quality Warnings

Contents

Mandatory fields:

• date:

o Type: Date

o Description: date that the ‘daily_value’ in this row refers to.

• daily_value:

o Type: Float

o Description: Value that the variable of this row takes in the date ‘date’.

• average:

o Type: float

▪ Description: Average of the variable of this row over the lookback

period.

• LCL:

o Type: Float, nullable

o Description: The lower control limit of the variable of this row over the lookback

period. This value is null and not recorded for the error rate.

• UCL:

o Type: Float

o Description: The upper control limit of the variable of this row over the lookback

period. This value is null and not recorded for the error rate.

• variable:

o Type: String

o Description: Variable that the data in this row refers to. Can be one of

rows_before_syntactic_check, rows_after_syntactic_check, and error_rate.

Partition column.

• year:

o Type: Integer 16

o Description: year of the study date of the execution of the quality warnings

component. Partition column.

• month:

o Type: Integer 8

o Description: month of the study date of the execution of the quality warnings

component. Partition column.

• day:

o Type: Integer 8

o Description: day of the study date of the execution of the quality warnings

component. Partition column.

• timestamp:

o Type: Timestamp

240

NAME SILVERNETWORKSYNTACTICQUALITYWARNINGSLINEPLOTDATA

o Description: timestamp of the execution of the quality warnings component

that produced this data object, serving as a execution ID. Partition column.

241

\ EXAMPLE

date daily_value average LCL UCL variable year month day timestamp

2023-01-01 62.071918 61.818996 62.011372 null error_rate 2023 1 8 2024-03-14 17:57:41.958112

2023-01-02 61.904762 61.818996 62.011372 null error_rate 2023 1 8 2024-03-14 17:57:41.958112

2023-01-03 61.616955 61.818996 62.011372 null error_rate 2023 1 8 2024-03-14 17:57:41.958112

2023-01-04 61.681549 61.818996 62.011372 null error_rate 2023 1 8 2024-03-14 17:57:41.958112

2023-01-05 61.911556 61.818996 62.011372 null error_rate 2023 1 8 2024-03-14 17:57:41.958112

2023-01-06 61.575344 61.818996 62.011372 null error_rate 2023 1 8 2024-03-14 17:57:41.958112

2023-01-07 61.970898 61.818996 62.011372 null error_rate 2023 1 8 2024-03-14 17:57:41.958112

2023-01-08 61.460957 61.818996 62.011372 null error_rate 2023 1 8 2024-03-14 17:57:41.958112

2023-01-01 443.000000 511.571442 560.655884 462.486938 rows_after_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-02 464.000000 511.571442 560.655884 462.486938 rows_after_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-03 489.000000 511.571442 560.655884 462.486938 rows_after_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-04 515.000000 511.571442 560.655884 462.486938 rows_after_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-05 534.000000 511.571442 560.655884 462.486938 rows_after_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-06 561.000000 511.571442 560.655884 462.486938 rows_after_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-07 575.000000 511.571442 560.655884 462.486938 rows_after_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-08 612.000000 511.571442 560.655884 462.486938 rows_after_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-01 1168.000000 1339.714233 1466.644287 1212.784180 rows_before_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-02 1218.000000 1339.714233 1466.644287 1212.784180 rows_before_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-03 1274.000000 1339.714233 1466.644287 1212.784180 rows_before_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-04 1344.000000 1339.714233 1466.644287 1212.784180 rows_before_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-05 1402.000000 1339.714233 1466.644287 1212.784180 rows_before_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-06 1460.000000 1339.714233 1466.644287 1212.784180 rows_before_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

2023-01-07 1512.000000 1339.714233 1466.644287 1212.784180 rows_before_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

242

date daily_value average LCL UCL variable year month day timestamp

2023-01-08 1588.000000 1339.714233 1466.644287 1212.784180 rows_before_syntactic_check 2023 1 8 2024-03-14 17:57:41.958112

243

I.24 MNO NETWORK SYNTACTIC QUALITY WARNINGS PIE PLOT DATA

NAME SILVERNETWORKSYNTACTICQUALITYWARNINGSPIEPLOTDATA

Description
The data object is meant to store the data needed for pie plots that show the counts of each type

of error for each of the fields of the Network Topology data.

Object/Unit/Record Quality Warnings

Contents

Mandatory fields:

• type_of_error:

o Type: String

o Description: name of the type of error this row refers to.

• value:

o Type: Integer

o Description: Count of this type of error for the variable this row refers to.

• variable:

o Type: String

o Description: Variable that the data in this row refers to. Can be one of the fields

of I.8 Cell Locations with Physical Properties – Cleaned. Partition column.

• year:

o Type: Integer 16

o Description: year of the study date of the execution of the quality warnings

component. Partition column.

• month:

o Type: Integer 8

o Description: month of the study date of the execution of the quality warnings

component. Partition column.

• day:

o Type: Integer 8

o Description: day of the study date of the execution of the quality warnings

component. Partition column.

• timestamp:

o Type: Timestamp

o Description: timestamp of the execution of the quality warnings component

that produced this data object, serving as a execution ID. Partition column.

\ EXAMPLE

type_of_error value variable year month day timestamp

NULL_VALUE 145 altitude 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 145 antenna_height 2023 1 8 2024-03-14 17:57:41.958112

OUT_OF_RANGE 78 antenna_height 2023 1 8 2024-03-14 17:57:41.958112

OUT_OF_RANGE 35 azimuth_angle 2023 1 8 2024-03-14 17:57:41.958112

OUT_OF_RANGE 69 cell_id 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 72 cell_id 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 145 cell_type 2023 1 8 2024-03-14 17:57:41.958112

OUT_OF_RANGE 358 cell_type 2023 1 8 2024-03-14 17:57:41.958112

OUT_OF_RANGE 59 directionality 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 145 directionality 2023 1 8 2024-03-14 17:57:41.958112

244

type_of_error value variable year month day timestamp

OUT_OF_RANGE 63 elevation_angle 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 145 elevation_angle 2023 1 8 2024-03-14 17:57:41.958112

OUT_OF_RANGE 63 frequency 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 145 frequency 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 145 horizontal_beam_width 2023 1 8 2024-03-14 17:57:41.958112

OUT_OF_RANGE 62 horizontal_beam_width 2023 1 8 2024-03-14 17:57:41.958112

OUT_OF_RANGE 41 latitude 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 78 latitude 2023 1 8 2024-03-14 17:57:41.958112

OUT_OF_RANGE 676 longitude 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 68 longitude 2023 1 8 2024-03-14 17:57:41.958112

OUT_OF_RANGE 63 power 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 145 power 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 145 technology 2023 1 8 2024-03-14 17:57:41.958112

CANNOT_PARSE 19 valid_date_end 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 689 valid_date_end 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 162 valid_date_start 2023 1 8 2024-03-14 17:57:41.958112

CANNOT_PARSE 25 valid_date_start 2023 1 8 2024-03-14 17:57:41.958112

NULL_VALUE 145 vertical_beam_width 2023 1 8 2024-03-14 17:57:41.958112

OUT_OF_RANGE 77 vertical_beam_width 2023 1 8 2024-03-14 17:57:41.958112

245

I.25 EVENT DATA AT DEVICE LEVEL SEMANTIC QUALITY WARNINGS BAR PLOT

DATA

NAME SILVER EVENT SEMANTIC QUALITY WARNINGS BAR PLOT DATA

Description

The object is meant to store the data needed for bar plots that show the daily evolution of the

number of occurrences and percentage of each type of error flag in the semantic checks of the

MNO Event Data at Device Level.

Object/Unit/Record Quality Warnings

Contents

Mandatory fields:

• date:

o Type: Date

o Description: date that the “daily_value” in this row refers to.

• type_of_error:

o Type: String

o Description: name of the type of error this row refers to.

• value:

o Type: Float

o Description: Count or percentage of this type of error for the variable this row

refers to.

• variable:

o Type: String

o Description: Variable that the data in this row refers to. Can be either

Percentage or Number of occurrences. Partition column.

• year:

o Type: Integer 16

o Description: year of the study date of the execution of the quality warnings

component. Partition column.

• month:

o Type: Integer 8

o Description: month of the study date of the execution of the quality warnings

component. Partition column.

• day:

o Type: Integer 8

o Description: day of the study date of the execution of the quality warnings

component. Partition column.

• timestamp:

o Type: Timestamp

o Description: timestamp of the execution of the quality warnings component

that produced this data object, serving as a execution ID. Partition column.

\ EXAMPLE

date type_of_error value variable year month day timestamp

2023-01-

03
Error 3 2.0

Number of

occurrences
2023 1 3

2024-03-15

10:25:58.734726

2023-01-

03
Error 4 10.0

Number of

occurrences
2023 1 3

2024-03-15

10:25:58.734726

2023-01-

03
No Error 11.0

Number of

occurrences
2023 1 3

2024-03-15

10:25:58.734726

2023-01-

03
Error 2 1.0

Number of

occurrences
2023 1 3

2024-03-15

10:25:58.734726

246

date type_of_error value variable year month day timestamp

2023-01-

03
Error 1 1.0

Number of

occurrences
2023 1 3

2024-03-15

10:25:58.734726

2023-01-

03
Error 3 8.0 Percentage 2023 1 3

2024-03-15

10:25:58.734726

2023-01-

03
Error 4 40.0 Percentage 2023 1 3

2024-03-15

10:25:58.734726

2023-01-

03
No Error 44.0 Percentage 2023 1 3

2024-03-15

10:25:58.734726

2023-01-

03
Error 2 4.0 Percentage 2023 1 3

2024-03-15

10:25:58.734726

2023-01-

03
Error 1 4.0 Percentage 2023 1 3

2024-03-15

10:25:58.734726

247

I.26 MNO NETWORK TOPOLOGY TOP FREQUENT ERROS

NAME SILVERNETWORKDATATOPFREQUENTERRORS

Description

Most frequent errors found in the MNO network topology data syntactic cleaning, together with

their absolute frequency and their contribution to the total number of errors found. Data is sorted

from most to least frequent error.

Object/Unit/Record Value of the error found, together with its absolute frequency and accumulated error percentage.

Contents

Mandatory fields:

• result_timestamp:

o Type: Timestamp

o Description: Timestamp of the start of the process when the metrics were

produced. One process can generate multiple metrics.

• field_name:

o Type: String

o Requirements: Either null or same as the name of a column present in input

data

o Description: Name of the field to which the metric refers to. Value is null if the

metric refers to multiple fields.

• type_code:

o Type: Integer

o Requirements: One value from the type codes (see table below).

o Description: Numeric code indicating the type of the metric. See table below.

• error_value:

o Type: String

o Description: erroneous value found in the field in question during syntactic

cleaning. The values can be either null, if the invalid value was null or if it refers

to an error concerning more than one field, or a string parsing of the erroneous

value found.

• error_count:

o Type: Integer

o Description: number of times that this error_value was found in the raw data.

• accumulated_percentage:

o Type: Float

o Description: Accumulated percentage with respect to the total number of

invalid values, accumulated from the most frequent error up to this one,

included.

• year:

o Type: Integer 16

o Description: Year the event took place.

• month:

o Type: Integer 8

o Description: Month the event took place.

• day:

o Type: Integer 8

o Description: Day the event took place.

248

\ CODE TYPES

CODE SHORT DESCRIPTION DESCRIPTION

0 no errors

1 value is null

2 value is not within the set of accepted values

3 unsupported input data type

4 unable to parse correctly

100 total rows at the start of method

101 total rows at the end of method

\ EXAMPLE

result_timest

amp

field_na

me

type_co

de

error_val

ue

error_cou

nt

accumulated_percen

tage

yea

r

mont

h

da

y

2024-01-07

10:00:00
cell_id 2 000000 400 40.0 202

3
1 1

2024-01-07

10:00:00
cell_id 1 null 300 70.0 202

3
1 1

2024-01-07

10:00:00
cell_id 2 123456789 200 90.0 202

3
1 1

2024-01-07

10:00:00
cell_id 2 xxx123 50 95.0 202

3
1 1

2024-01-07

10:00:00
cell_id 2 AVSADD 50 100.0 202

3
1 1

249

I.27 MNO NETWORK TOPOLOGY ROW ERROR METRICS

NAME SILVERNETWORKROWERRORMETRICS

Description

Metrics regarding the number of rows that are deleted during the syntactic cleaning process and

the number of rows that had any erroneous field, be it in a mandatory one (so it is deleted) or in an

optional one (it is replaced by the null value).

Object/Unit/Record Number of rows.

Contents

Mandatory fields:

• result_timestamp:

o Type: Timestamp

o Description: Timestamp of the start of the process when the metrics were

produced. One process can generate multiple metrics.

• variable:

o Type: String

o Requirements: “rows_with_some_error” or “rows_deleted”.

o Description: What the count of rows of this record refers to: either to rows that

had any erroneous value, or rows that were deleted because of an unavoidable

erroneous value in a mandatory field.

• value:

o Type: Integer

o Description: Number of rows.

• year:

o Type: Integer 16

o Description: Year the event took place.

• month:

o Type: Integer 8

o Description: Month the event took place.

• day:

o Type: Integer 8

o Description: Day the event took place.

\ EXAMPLE

result_timestamp variable value year month day

2024-01-07 10:00:00 rows_with_some_error 400 2023 1 1

2024-01-07 10:00:00 rows_deleted 300 2023 1 1

2024-01-07 10:00:00 rows_with_some_error 200 2023 1 2

2024-01-07 10:00:00 rows_deleted 50 2023 1 2

250

I.28 INSPIRE GRID

NAME SILVERGRIDDATAOBJECT

Description INSPIRE grid geometry

Object/Unit/Record grid centroid geometry with additional information

Contents

Mandatory fields:

• grid_id:

o Type: String

o Requirements: string following INSPIRE specification format

o Description: Code uniquely identifying one grid tile.

• geometry:

o Type: Binary

o Requirements: ETRS89 Lambert Azimuthal Equal Area coordinate reference

system (EPSG:3035)

o Description: grid centroids point geometry

• quadkey:

o Type: String

o Requirements: String of integers of fixed length

o Description: Quadkey of a fixed length to which grid centroid belongs to. Used

for explicit spatial partitioning

\ EXAMPLE

grid_id geometry quadkey

100mN4056000E5275300 POINT() 1201303

100mN4056000E5275400 POINT() 1201304

https://inspire-mif.github.io/technical-guidelines/data/gg/dataspecification_gg.pdf

251

I.29 COUNTRIES

NAME BRONZECOUNTRIESDATAOBJECT

Description Dataset with countries polygons

Object/Unit/Record A country polygon with additional information

Contents

Mandatory fields:

• iso2:

o Type: String

o Requirements: 2 capital characters string

o Description: ISO2 code of a country

• name:

o Type: Integer

o Requirements:

o Description: Name of a country

• geometry:

o Type: Binary

o Requirements:

▪ ETRS89 Lambert Azimuthal Equal Area coordinate reference system

(EPSG:3035)

▪ Has to be topologically valid (polygons without self-intersections,

polygons of the same level don’t overlap)

▪ Hierarchical administrative units have to have one-to-one child to

parent relationships

o Description: polygon geometry which represents country

\ EXAMPLE

iso2 name geometry

ES Spain POLYGON (24.36...

ES Spain POLYGON (24.37...

ES Spain POLYGON (24.37...

252

I.30 SYNTHETIC DIARIES

NAME BRONZESYNTHETICDIARIESDATAOBJECT

Description
Contains user_id based diaries that describe the movement or stays over a period of time for a

given set of users.

Object/Unit/Record Description of a movement diary for a specific subscriber and given time interval.

Contents

Mandatory fields:

• year:

o Type: Integer 16

o Requirements: Integer of 16 bits.

o Description: Year of the time for which to generate events for. Partition key.

• month:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Month of the time for which to generate events for. Partition key.

• day:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Day of the time for which to generate events for. Partition key.

• user_id:

o Type: Binary

o Requirements: 32 bytes (256 bits) field.

o Description: Unique pseudonymized identifier of the device, generated by

hashing the user's IMSI using the SHA-256 function.

• activity_type:

o Type: String

o Requirements: either “stay” or “move”

o Description: Labels the row of either a movement or stay diary description.

• stay_type:

o Type: String

o Requirement: one of “home, “work”, “other”

o Description: The type of stay, signifying that the user is either in their home

location, work location or some other location.

• longitude:

o Type: Float

o Requirements: Longitude value in WGS84 system. Value has to be within

WGS84 bounds. Optional if “cell_id” is not null.

o Description: Longitude value of the location of the event.

• latitude:

o Type: Float

o Requirements: Latitude value in WGS84 system. Value has to be within WGS84

bounds. Optional if “cell_id” is not null.

o Description: Latitude value of the location of the event.

• initial_timestamp

o Type: String

o Requirements: String with date and time following ISO:8601 format: YYYY-MM-

DDThh:mm.ss

o Description: Start of time for which to generate events with the current stay and

activity types for the given user.

• final_timestamp

o Type: String

o Requirements: String with date and time following ISO:8601 format: YYYY-MM-

DDThh:mm.ss

253

NAME BRONZESYNTHETICDIARIESDATAOBJECT

o Description: End of time for which to generate events with the current stay and

activity types for the given user.

\ EXAMPLE

user_id activity_type stay_type initial_timestamp final_timestamp longitude latitude year month day

1 stay 'home' 2024-01-01

00:00:00

2024-01-01

10:00:00

40.41740 -

3.69303

2024 1 1

1 move null 2024-01-01

10:00:00

2024-01-01

10:26:20

null null 2024 1 1

1 stay 'work' 2024-01-01

10:26:20

2023-01-01

16:26:20

40.44566 -

3.62655

2024 1 1

1 move null 2023-01-01

16:26:20

2023-01-01

16:34:17

null null 2024 1 1

1 stay 'other' 2023-01-01

16:34:17

2023-01-01

18:34:17

40.44325 -

3.70723

2024 1 1

1 move null 2023-01-01

18:34:17

2023-01-01

19:00:17

null null 2024 1 1

1 stay 'home' 2023-01-01

19:00:17

2023-01-01

23:59:59

40.41740 -

3.69303

2024 1 1

254

I.31 ENRICHED GRID

NAME ENRICHED GRID

Description INSPIRE grid geometry with additional information

Object/Unit/Record Grid centroid geometry with additional information

Contents

Mandatory fields:

• grid_id:

o Type: String

o Requirements: string following INSPIRE specification format

o Description: Code uniquely identifying one grid tile.

• geometry:

o Type: Binary

o Requirements: ETRS89 Lambert Azimuthal Equal Area coordinate reference

system (EPSG:3035)

o Description: grid centroids point geometry

• elevation:

o Type: Float

o Requirements:

o Description: Elevation of a grid centroids

• prior_probability

o Type: float

o Requirements:

o Description: Prior probability value. Sum of weighted landuse ratios normalized

to 1 over the whole grid

• environment_ple_coefficient

o Type: Float

o Requirements:

o Description: Sum of weighted landuse ratios

• quadkey:

o Type: String

o Requirements: String of integers of fixed length

o Description: Quadkey of a fixed length to which grid centroid belongs to. Used

for explicit spatial partitioning

\ EXAMPLE

grid_id geometry elevation prior_probability environment_ple_

coefficient

quadkey

100mN4056000E52753

00

POINT() 12.1 0.00001 0.01 1201303

100mN4056000E52754

00

POINT() 11.9 0.00034 0.05 1201304

https://inspire-mif.github.io/technical-guidelines/data/gg/dataspecification_gg.pdf

255

I.32 LANDUSE

NAME BRONZELANDUSEDATAOBJECT

Description Dataset with landuse information.

Object/Unit/Record Landuse polygons categorized into predefined set of classes

Contents

Mandatory fields:

• category:

o Type: String

o Requirements: class name from the predefined list

o Description: Name of a class which represents high-level landuse type.

• geometry:

o Type: Binary

o Requirements: ETRS89 Lambert Azimuthal Equal Area coordinate reference

system (EPSG:3035)

o Description: polygon geometry representing landuse class

• year:

o Type: Integer 16

o Requirements: Integer of 16 bits.

o Description: Year of dataset extraction.

• month:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Month of dataset extraction.

• day:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Day of dataset extraction.

Optional fields:

• quadkey:

o Type: String

o Requirements: String of integers of fixed length

o Description: Quadkey of a fixed length to which a geometry centroid belongs

to. Used for explicit spatial partitioning

\ CATEGORY NAMES

CATEGORY SHORT DESCRIPTION

residential_builtup Built-up areas mostly occupied by residential buildings

other_builtup Built-up areas occupied by non-residential buildings

open_area Open areas with minimal human activities (agriculture, parks, golf fields etc)

forest Forests

water Water bodies and wetlands

\ EXAMPLE

category geometry year month day quadkey

residential_builtup POLYGON (24.36... 2024 04 01 033111001

forest POLYGON (24.37... 2024 04 01 033111001

256

I.33 TRANSPORTATION

NAME BRONZETRANSPORTATIONDATAOBJECT

Description Dataset with roads and railroads.

Object/Unit/Record Transportation segments categorized into predefined set of classes

Contents

Mandatory fields:

• category:

o Type: String

o Requirements: class name from the predefined list

o Description: Name of a class which represents hierarchy of a road.

• geometry:

o Type: Binary

o Requirements: ETRS89 Lambert Azimuthal Equal Area coordinate reference

system (EPSG:3035)

o Description: linestring geometry representing roads or railroads

• year:

o Type: Integer 16

o Requirements: Integer of 16 bits.

o Description: Year of dataset extraction.

• month:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Month of dataset extraction.

• day:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Day of dataset extraction.

Optional fields:

• quadkey:

o Type: String

o Requirements: String of integers of fixed length

o Description: Quadkey of a fixed length to which a geometry centroid belongs

to. Used for explicit spatial partitioning

\ CATEGORY NAMES

CATEGORY SHORT DESCRIPTION

primary Major highways

secondary Main streets in cities, towns and minor highways

tertiary Minor streets in cities, towns, villages

pedestrian Cycling paths, footpaths and other ways not accessible to motorized vehicles

rail Railroads

\ EXAMPLE

category geometry year month day quadkey

primary LINESTRING (24.36... 2024 04 01 033111001

secondary LINESTRING (24.37... 2024 04 01 033111001

257

I.34 ADMINISTRATIVE UNITS

NAME BRONZEADMINUNITSDATAOBJECT

Description Dataset with administrative units

Object/Unit/Record An administrative unit polygon with additional information

Contents

Mandatory fields:

• id:

o Type: String

o Requirements: has to be unique for the whole dataset

o Description: unique identifier of an administrative unit

• name:

o Type: String

o Requirements: English transliteration

o Description: Name of administrative unit

• level:

o Type: Integer

o Requirements: Starting from 0 representing the whole country. Can be null if

administrative unit dataset not hierarchical

o Description: Level of the administrative unit. Example: 0 - whole country, 1 -

municipalities, 2 - districts, and so on

• parent_id

o Type: String

o Requirements: can be null if administrative units dataset is not hierarchical

o Description: id of the parent administrative unit

• counry_iso2_code

o Type: String

o Requirements: 2 capital characters string

o Description: ISO2 code of a country

• geometry:

o Type: Binary

o Requirements:

▪ ETRS89 Lambert Azimuthal Equal Area coordinate reference system

(EPSG:3035)

▪ Must be topologically valid (polygons without self-intersections,

polygons of the same level don’t overlap)

▪ Hierarchical administrative units have to have one-to-one child to

parent relationships

o Description: polygon geometry which represents administrative unit

• dataset_id:

o Type: String

o Requirements: Must be unique for each administrative units dataset

o Description: Unique dataset identifier

• year:

o Type: Integer 16

o Requirements: Integer of 16 bits.

o Description: Year of the datasets used.

• month:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Month of the datasets used.

• day:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Day of the datasets used.

258

\ EXAMPLE

id name level parent_id counry_iso2_code geometry dataset_id year month day

01 Estonia 0 null EE POLYGON

(24.36...

ETAK 2024 04 01

0103 Tartu

Maakond

1 01 EE POLYGON

(24.37...

ETAK 2024 04 01

010302 Tartu

Vald

2 0103 EE POLYGON

(24.37...

ETAK 2024 04 01

259

I.35 GEOGRAPHIC ZONES

NAME BRONZEGEOGRAPHICZONESDATAOBJECT

Description Dataset with geographical zones. Can be any geographic divisions.

Object/Unit/Record A geographic zone polygon with additional information

Contents

Mandatory fields:

• zone_id:

o Type: String

o Requirements: must be unique for the whole dataset

o Description: unique identifier of a zone

• name:

o Type: String

o Requirements: English transliteration

o Description: Name of administrative unit

• level:

o Type: Integer

o Requirements: Starting from 0 representing the whole country. Can be null if

zoning dataset is not hierarchical

o Description: Level of the administrative unit. Example: 0 - whole country, 1 -

municipalities, 2 - districts, and so on

• parent_id

o Type: String

o Requirements: can be null if administrative units dataset is not hierarchical

o Description: id of the parent administrative unit

• iso2

o Type: String

o Requirements: 2 capital characters string

o Description: ISO2 code of a country

• geometry:

o Type: Binary

o Requirements:

▪ ETRS89 Lambert Azimuthal Equal Area coordinate reference system

(EPSG:3035)

▪ Has to be topologically valid (polygons without self-intersections,

polygons of the same level don’t overlap)

▪ Hierarchical administrative units have to have one-to-one child to

parent relationships

o Description: polygon geometry which represents zonning unit

• dataset_id:

o Type: String

o Requirements: Has to be unique for each geographic zones dataset

o Description: Unique dataset identifier

• year:

o Type: Integer 16

o Requirements: Integer of 16 bits.

o Description: Year of the datasets used.

• month:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Month of the datasets used.

• day:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Day of the datasets used.

260

\ EXAMPLE

id name level parent_id iso2 geometry dataset_id year month day

ES53 Illes

Balears
2 ES5 ES POLYGON

(24.36...
nuts 2024 04 01

ES5 Este 1 ES ES POLYGON

(24.37...
nuts 2024 04 01

ES532 Mallorca 3 ES53 ES POLYGON

(24.37...
nuts 2024 04 01

261

I.36 ZONES – GRID MAP

NAME SILVERGEOZONESGRIDMAPDATAOBJECT

Description Dataset with geographical zones ids to grid ids mapping

Object/Unit/Record zoning unit id to grid id map

Contents

Mandatory fields:

• grid_id:

o Type: String

o Requirements: String following INSPIRE specification

o Description: Code uniquely identifying one grid tile

• zone_id:

o Type: String

o Requirements: Unique identifier. If dataset hierarchical has to be the lowest level

o Description: Unique identifier of a zoning unit.

• hierarchical_id:

o Type: String

o Requirements: Combination of identifiers in hierarchy. Each zone level id

separated by |.

o Description: Unique identifiers of a zoning units in hierarchy. If zoning dataset

hierarchical, id will be combined from ids of all zones in a hierarchy, each level

id separated by |. If zoning dataset is not hierarchical, id will be same as zone_id

• dataset_id:

o Type: String

o Requirements: Has to be unique for each zoning dataset

o Description: Unique dataset identifier

• year:

o Type: Integer 16

o Requirements: Integer of 16 bits.

o Description: Year of the mapped dataset

• month:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Month of the mapped dataset.

• day:

o Type: Integer 8

o Requirements: Integer of 8 bits.

o Description: Day of the mapped dataset.

\ EXAMPLE

grid_id zone_id hierarchical_id dataset_id year month day

100mN4056000E5275300 ES532 ES5|ES53|ES532 nuts 2024 4 1

100mN4056000E5275400 ES532 ES5|ES53|ES532 nuts 2024 4 1

100mN4056000E5275500 ES532 ES5|ES53|ES532 nuts 2024 4 1

262

I.37 UE LABELS

NAME UE LABELS

Description
Grid tiles that have been determined to be part of the usual environment of a given device / user

with meaningful location labeling

Object/Unit/Record Usual Environment grid tile.

Contents

Mandatory fields:

• user_id:

o Type: Binary

o Description: Unique pseudonymized identifier of the device.

• grid_id:

o Type: String

o Description: ID of grid tile

• label:

o Type: String

o Description: Label that has been inferred for this usual environment. Options

are: home, second_home, work, and no_label.

• ue_label_rule:

o Type: String

o Description: Code of a rule based on which UE label was assigned. Has to be

predefined list of rules with unique codes.

• location_label_rule:

o Type: String

o Description: Code of a rule based on which meaningful location label was

assigned. Has to be predefined list of rules with unique codes.

• start_date

o Type: date

o Description: Start date (inclusive) of the label period. Partition key.

• end_date

o Type: date

o Description: End date (inclusive) of the label period. Partition key.

• user_id_modulo:

o Type: Integer 16

o Description: Partition key

\ UE LABEL RULE CODES

CODE RULE DESCRIPTION

ue_1
If the device was observed all days: all intervals period in top tiles at least ue_ps_threshold (default is 70% of

total_assigned_ps) such tiles are labeled as UE tiles.

ue_2
For tiles which have not got UE label in previous step perform the same check for all other combinations of day

types and periods. If condition is met for any of the combinations, label tiles as UE tiles.

ue_na No label UE label assigned

\ LOCATION LABEL RULE CODES

CODE RULE DESCRIPTION

h_1
If the device was observed in all days: all intervals period in top tiles at least home_ps_threshold (default is 80% of

total_assigned_ps). Such tiles are labeled as Home tiles.

h_2
If no home label being assigned, repeat this condition check for all days: night-time period. Tiles that fulfilled this

condition are labeled as Home tiles.

263

CODE RULE DESCRIPTION

h_3
If no home label being assigned, check if the device was in the tiles at least home_ndays_threshold (default value

is 80% of total_observed_days). Tiles that fulfilled this condition are labeled as Home tiles.

w_1
If the device was observed in working_days: daytime period in top tiles at least work_ps_threshold (default is 70%

of total_assigned_ps). Such tiles are labeled as Work tiles.

w_2

If no work label being assigned, check if the device in working_days: daytime period was in the tiles at least

work_ndays_threshold (default value is 70% of total_observed_days). Tiles that fulfilled this condition are labeled

as Work tiles.

loc_na No location label assigned

\ EXAMPLE

user_id grid_id label ue_label

_rule

location_la

bel_rule

end_date end_date user_id_

modulo

00000000000

0..01
100mN4056000E5

275300
home ue_1 h_1 2024-02-

01
2024-07-

31
1

00000000000

0..01
100mN4056000E5

275301
home ue_2 h_1 2024-02-

01
2024-07-

31
1

00000000000

0..01
100mN4056050E5

275300
work ue_1 w_2 2024-02-

01
2024-07-

31
1

00000000000

0..01
100mN4056030E5

275390
no_la

bel
ue_1 na 2024-02-

01
2024-07-

31
1

264

I.38 MID-TERM PERMANENCE METRICS

NAME MID-TERM PERMANENCE METRICS

Description

Mid-term permanence score for grid tiles over a predefined subset of day types (sub-monthly time

intervals) (weekdays, weekends, holidays) and a predefined subset of sub-daily time intervals

(nighttime, daytime, working hours, …)

Object/Unit/Record Mid-term permanence metrics per user_id, grid_id, sub_monthly and sub_daily period.

Contents

Mandatory fields:

• user_id:

o Type: Binary

o Description: Unique pseudonymized identifier of the device.

• grid_id:

o Type: String

o Description: Unique ID of grid tile. Takes a valid grid ID value whenever

“id_type” is equal to grid; and values unknown or device_observation when the

indicators refer to the unknown location or the global device observation,

respectively.

• mps:

o Type: Integer

o Description: midterm permanence score, the result of adding up the daily

permanence scores of this grid_id and user_id over the specified day_type and

time_interval.

• frequency:

o Type: Integer

o Description: absolute count of the number of days of this day_type for which

the daily permanence score was not null in the specified time_interval.

• regularity_mean:

o Type: Float

o Description: mean of the number of days between two consecutive non-null

daily permanence scores in the specified day_type and time_interval.

• regularity_std:

o Type: Float

o Description: standard deviation of the number of days between two consecutive

non-null daily permanence scores in the specified day_type and time_interval.

• day_type:

o Type: String

o Requirements: A value from predefined set: all, workdays, weekends, holidays,

Mondays, Tuesdays, Wednesdays, Thursdays, Fridays, Saturdays, Sundays.

o Description: Name of the type of days over which the midterm permanence

metrics are computed. Partition key.

• time_interval:

o Type: String

o Requirements: A value from predefined set: all, working_hours, night_time,

evening_time.

o Description: Name of the sub-daily interval over which the midterm

permanence metrics are computed. Partition key.

• year:

o Type: Integer 16

o Description: year of the month for which this midterm permanence score was

computed. Partition key.

• month:

o Type: Integer 8

o Description: month for which this midterm permanence score was computed.

Partition key.

265

NAME MID-TERM PERMANENCE METRICS

• user_id_modulo:

o Type: Integer

o Requirements: Integer of 8 bits.

o Description: Modulo division result, as applied to the integer part of the user_id

column. Partition key.

• id_type:

o Type: String

o Description: Partition key that takes one of three values: grid whenever the

“grid_id” field contains an actual grid ID of the INSPIRE 100x100m grid;

unknown when the "grid_id" field contains the value unknown; or

device_observation when the “grid_id” field contains the value

device_observation.

\ EXAMPLE

user_id grid_id day_

type

time_in

terval

m

p

s

freq

uenc

y

regularit

y_mean

regular

ity_std

ye

ar

mo

nt

h

user_id

_modulo

id_

typ

e

00000000

0000..01

100mN40560

00E5275300

all all 8

9

6

26 1.0714285

71428571

1 20

24

2 23 gri

d

00000000

0000..01

100mN40560

00E5275300

week

end

all 2

5

6

7 5.45 3.12321

3

20

24

2 23 gri

d

00000000

0000..01

100mN40560

00E5275300

all night_t

ime

8

8

0

24 1.1428571

42857143

1 20

24

2 23 gri

d

00000000

0000..01

100mN40560

00E5275300

week

end

night_t

ime

2

3

3

7 6.5 4.17347 20

24

2 23 gri

d

266

I.39 LONG-TERM PERMANENCE METRICS

NAME LONG-TERM PERMANENCE METRICS

Description

Long-term permanence score for grid tiles over a predefined subset of seasons (sub-yearly time

intervals: spring, summer…), day types (sub-monthly time intervals: weekdays, weekends, holidays)

and a predefined subset of sub-daily time intervals (nighttime, daytime, working hours, …)

Object/Unit/Record Long-term permanence metrics per user_id, grid_id, sub_yearly, sub_monthly and sub_daily period.

Contents

Mandatory fields:

• user_id:

o Type: Binary

o Description: Unique pseudonymized identifier of the device.

• grid_id:

o Type: String

o Description: Unique ID of grid tile

• lps:

o Type: Integer

o Description: long term permanence score, the result of adding up the monthly

permanence scores of this grid_id and user_id over the specified season,

day_type and time_interval.

• total_frequency:

o Type: Integer

o Description: absolute count of the number of days of this day_type during

specified season for which the monthly permanence score was not null in the

specified time_interval.

• frequency_mean

o Type: Float

o Description: mean of monthly frequency of this day_type during specified

season for the specified time_interval.

• frequency_std

o Type: Float

o Description: standard deviation of monthly frequency of day_type during

specified season for the specified time_interval.

• regularity_mean:

o Type: Float

o Description: mean of the monthly regularity_mean in the specified season for

day_type and time_interval.

• regularity_std:

o Type: Float

o Description: standard deviation of the monthly regularity_mean in the specified

season for day_type and time_interval.

• season

o Type: String

o Requirements: A value from predefined set: all, summer, autumn, winter, spring

o Description: Name of the type of season over which the long-term permanence

metrics are computed. Partition key.

• day_type:

o Type: String

o Requirements: A value from predefined set: all, workdays, weekends, holidays,

Mondays, Tuesdays, Wednesdays, Thursdays, Fridays, Saturdays, Sundays.

o Description: Name of the type of days over which the long-term permanence

metrics are computed. Partition key.

• time_interval:

o Type: String

267

NAME LONG-TERM PERMANENCE METRICS

o Requirements: A value from predefined set: all, working_hours, night_time,

evening_time.

o Description: Name of the sub-daily interval over which the long-term

permanence metrics are computed. Partition key.

• start_date

o Type: date

o Description: Start date (inclusive) of the period for which long-term permanence

metrics were computed. Partition key.

• end_date

o Type: date

o Description: End date (inclusive) of the period for which long-term permanence

metrics were computed. Partition key.

• user_id_modulo:

o Type: Integer

o Requirements: Integer of 8 bits.

o Description: Modulo division result, as applied to the integer part of the user_id

column. Partition key.

• id_type:

o Type: String

o Description: Partition key that takes one of three values: grid whenever the

“grid_id” field contains an actual grid ID of the INSPIRE 100x100m grid;

unknown when the "grid_id" field contains the value unknown; or

device_observation when the “grid_id” field contains the value

device_observation.

\ EXAMPLE

user_

id

grid_i

d

se

as

on

da

y_

ty

pe

time

_int

erva

l

l

p

s

total

_freq

uency

freq

uenc

y_me

an

freq

uenc

y_st

d

regul

arity

_mean

regu

lari

ty_s

td

sta

rt_

dat

e

en

d_

da

te

user

id

modu

lo

id

_t

yp

e

00000

00000

00..0

1

100mN4

056000

E52753

00

al

l

al

l

all 8

9

6

26 20 8 1.071

42857

14285

71

1 202

4-

02-

01

20

24

-

07

-

31

10 gr

id

00000

00000

00..0

1

100mN4

056000

E52753

00

su

mm

er

we

ek

en

ds

all 2

5

6

7 7 1 ?? ?? 202

4-

02-

01

20

24

-

07

-

31

10 gr

id

00000

00000

00..0

1

100mN4

056000

E52753

00

wi

nt

er

al

l

nigh

t_ti

me

8

8

0

24 18 2 1.142

85714

28571

43

1 202

4-

02-

01

20

24

-

07

-

31

10 gr

id

00000

00000

00..0

1

100mN4

056000

E52753

00

su

mm

er

we

ek

en

ds

nigh

t_ti

me

2

3

3

7 6 1 ?? ?? 202

4-

02-

01

20

24

-

07

-

31

10 gr

id

268

I.40 HOLIDAY DATES CALENDAR

NAME HOLIDAY DATES CALENDAR

Description Contains a row of type Date for each day that is a holiday for a country and its name.

Object/Unit/Record Date (a date that is considered a holiday).

Contents

Mandatory fields:

• iso_a2:

o Type: String

o Description: ISO A2 country code.

• date:

o Type: Date

o Description: Date that is a holiday.

• name:

o Type: String

o Description: Holiday name.

\ EXAMPLE

iso_a2 date name

IT 2024-05-16 Holiday name

ES 2024-12-24 Holiday name

269

I.41 PRESENT POPULATION ZONE LEVEL

NAME PRESENTPOPULATIONZONEDATAOBJECT

Description Estimation of the population present at a given time at the level of some zoning system.

Object/Unit/Record Number of people present in a given zone at a given time

Contents

Mandatory fields:

• zone_id:

o Type: String

o Description: Unique ID of the zone

• population:

o Type: Float

o Description: Number of estimated present population for this grid tile at this

time of day.

• timestamp:

o Type: Time

o Description: Time for which the present population is estimated.

• year:

o Type: Integer 16

o Description: Year of the present population estimation.

• month:

o Type: Integer 8

o Description: Month of the present population estimation.

• day:

o Type: Integer 8

o Description: Day of the present population estimation.

\ EXAMPLE

zone population timestamp year month day

CityX_DistrictA 1232131.3 12:05:03 2024 01 01

CityX_DistrictB 65645.0 12:05:03 2024 01 01

CityX_DistrictC 628357.4 12:05:03 2024 01 01

270

I.42 PRESENT POPULATION

NAME PRESENTPOPULATIONDATAOBJECT

Description Estimation of the population present at a given time at the grid tile level.

Object/Unit/Record Number of people present in a given tile at a given time

Contents

Mandatory fields:

• grid_id:

o Type: String

o Description: Unique ID of grid tile

• population:

o Type: Float

o Description: Number of estimated present population for this grid tile at this

time of day.

• timestamp:

o Type: Time

o Description: Time for which the present population is estimated.

• year:

o Type: Integer 16

o Description: Year of the present population estimation.

• month:

o Type: Integer 8

o Description: Month of the present population estimation.

• day:

o Type: Integer 8

o Description: Day of the present population estimation.

\ EXAMPLE

grid_id population timestamp year month day

100mN4056000E5275300 156.3 12:05:03 2024 01 01

100mN4056000E5275301 2.3 12:05:03 2024 01 01

100mN4056000E5275302 123.4 12:05:03 2024 01 01

271

I.43 LABELING QUALITY METRICS

NAME LABEL QUALITY METRICS

Description Quality metrics for UE and meaningful locations labeling process

Object/Unit/Record A metric, number of devices/tiles and time period

Contents

Mandatory fields:

• metric

o Type: String

o Requirements: A string value from predefine list of metrics.

o Description: Metric name.

• count

o Type: Integer

o Description: Counts of devices/labels assigned.

• start_date

o Type: date

o Description: Start date (inclusive) of the label period. Partition key.

• end_date

o Type: date

o Description: End date (inclusive) of the label period. Partition key.

\ POSSIBLE METRICS

CODE DESCRIPTION

ue_1_rule Number of tiles with assigned labels based on ue_1 rule

ue_2_rule Number of tiles with assigned labels based on ue_2 rule

h_1_rule Number of tiles with assigned labels based on h_1 rule

h_2_rule Number of tiles with assigned labels based on h_2 rule

h_3_rule Number of tiles with assigned labels based on h_3 rule

w_1_rule Number of tiles with assigned labels based on w_1 rule

w_2_rule Number of tiles with assigned labels based on w_2 rule

ue_na_rule Number of tiles without UE label assigned

loc_na_rule Number of tiles without any location label assigned

h_non_ue Number of tiles which are labeled as home, but are not part of UE

w_non_ue Number of tiles which are labeled as work, but are not part of UE

device_filter_1_rule Number of devices which were filtered out as rarely observed based on device_fitler_1 rule

device_filter_2_rule Number of devices which were filtered out as rarely observed based on device_fitler_2 rule

\ EXAMPLE

metric count start_date end_date

device_filter_1_rule 5000 2023-06-01 2023-11-31

ue_1_rule 1000 2023-06-01 2023-11-31

272

I.44 AGGREGATED USUAL ENVIRONMENTS

NAME AGGREGATEDUSUALENVIRONMENTS

Description Number of weighed devices that have usual environments in grid tiles

Object/Unit/Record Weighed device counts that have usual environment per grid tile.

Contents

Mandatory fields:

• grid_id

o Type: String

o Description: Unique ID of grid tile.

• weighted_device_count

o Type: Float

o Description: Count of weighed devices with usual environment assigned to this

grid tile.

• label

o Type: String

o Description: type of aggregate - ue, home, work. Partition key.

• start_date

o Type: date

o Description: Start date (inclusive) of the period for which the usual environment

was computed. Partition key.

• end_date

o Type: date

o Description: End date (inclusive) of the period for which the usual environment

was computed. Partition key.

• season

o Type: String

o Description: season of the period for which the usual environment was

computed. Partition key.

\ EXAMPLE

grid_id weighted_device_count label start_date end_date season

100mN4052000E5271300 50.95 ue 2024-01-01 2024-06-30 winter

100mN4056500E5270500 120.33 ue 2024-01-01 2024-06-30 winter

100mN4053100E5275200 60.09 home 2024-01-01 2024-06-30 winter

100mN4056400E5274400 20.65 work 2024-01-01 2024-06-30 winter

… … … … … …

273

ANNEX II – NOTES FOR FUTURE

REVISION

The next version of D4.2 (version v2 - planned for October 2024) will include:

• Technical documentation of the pending software modules for the generation of the output indicators

for Present Population and Usual Environment use cases (i.e. aggregation, k-anonimity and merging of

different MNOs at aggregated level).

• For Present Population and Usual Environment use cases, a complete pipeline schema of the process

representing the orchestation of different software modules and the temporal scale of the calculation

(i.e. daily, mid-term, long-term, etc.).

• Possible modifications based on the re-factoring analysis being performed in a local laboratory before

the deployment in the MNO premises.

• In general terms, D4.2 (v2) will contain the software status before the first testing phase in MNO

premises.

The following version of D4.3 (version v1 - planned for December 2024) will include:

• Technical documentation of new software modules (at least, the ones needed to cover a total of 6

UCs).

• Quality metrics for the different software modules.

• Evaluation of incorporting intra-day cell footprint variations.

• Functionality to stop the execution based on quality warning rules.

