
JOCONDE D2.1
Technology Survey and
Analysis
Technical report

Version 1.0

30.12.2024

D-16-468

Public

Project JOCONDE (Joint On-demand COmputation with No Data Exchange)
https://cros.ec.europa.eu/joconde

https://cros.ec.europa.eu/joconde

D-16-468
Public

Project Managers: Fabio Ricciato (Eurostat)

Baldur Kubo (Cybernetica)

Authors (Cybernetica): Pille Pullonen-Raudvere,

Armin Daniel Kisand,

Riivo Talviste,

Kert Tali

Cybernetica AS, Mäealuse 2/1, 12618 Tallinn, Estonia.

E-mail: info@cyber.ee, Web: https://www.cyber.ee, Phone: +372 639 7991.

Copyright © 2024 European Union – Licensed under EUPL

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
2 / 95

mailto:info@cyber.ee
https://www.cyber.ee
tel:+3726397991

D-16-468
Public

Date Version Description

11.10.2024 0.1 Draft for initial review

22.10.2024 0.2 Advanced draft for review

30.12.2024 1.0 Revised version for publication

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
3 / 95

D-16-468
Public

Disclaimer

This document was prepared by Cybernetica AS as part of a procured project under Service Con-
tract No ESTAT 2023.0400.

The opinions expressed in this document are those of the authors. They do not purport to reflect
the opinions, views or official positions of the European Commission.

î The field of secure private computation is very active and evolving fast, both on the side of
research and practical implementations and deployments. For this reason, we plan to issue

an update to this report at the end of the JOCONDE project in March 2026.

L We encourage readers to provide feedback. If you notice inaccuracies, omissions, or would
like to suggests corrections and improvement, please let the authors know by writing to

joconde@cyber.ee. Please include sources that we can reference in future updates to this docu-
ment, including e.g. academic publications, news items, software documentation, or open-source
repositories.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
4 / 95

mailto:joconde@cyber.ee

D-16-468
Public

Table of Contents

1 Introduction. 9

2 Secure Multiparty Computation. 10
2.1 Main Properties . 10

2.1.1 Number of Parties and Threshold . 11

2.1.2 Adversary Models . 11

2.1.3 Security Assumptions . 12

2.1.4 Additional Security Properties . 13

2.1.5 Relations Between Security Properties . 13

2.1.6 Converting Between Security Models . 14

2.1.7 Online-Offline Paradigm. 15

2.2 Core Secure Multiparty Computation Methods . 16

2.2.1 Secret Sharing . 16

2.2.2 Function Secret Sharing and Homomorphic Secret Sharing . 16

2.2.3 Garbled Circuits. 17

2.2.4 Homomorphic Encryption . 17

2.3 Protocol Families . 18

2.3.1 Additive Secret Sharing . 18

2.3.2 Shamir’s secret sharing . 20

2.3.3 Function Secret Sharing . 21

2.3.4 Garbled Circuits. 21

2.3.5 Homomorphic Encryption . 23

2.3.6 Mixed-mode protocols . 24

2.4 Secure Computation Tools . 25

2.4.1 Asterisk. 25

2.4.2 Carbyne Stack . 25

2.4.3 CBMC-GC . 26

2.4.4 CipherCompute . 26

2.4.5 CirC . 26

2.4.6 COMBINE . 26

2.4.7 Conclave. 26

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
5 / 95

D-16-468
Public

2.4.8 Demeter . 27

2.4.9 Divvi Up and Prio. 27

2.4.10 EMP. 27

2.4.11 EasySMPC. 27

2.4.12 EzPC . 27

2.4.13 Fairplay. 28

2.4.14 FANNG-MPC. 28

2.4.15 FBPCP . 28

2.4.16 FRESCO. 28

2.4.17 Frigate . 29

2.4.18 FudanMPL . 29

2.4.19 Helium . 29

2.4.20 FUSE . 29

2.4.21 HybrTC . 29

2.4.22 HyCC . 30

2.4.23 JIFF . 30

2.4.24 Lattigo . 30

2.4.25 LIBSCAPI. 30

2.4.26 Manticore. 30

2.4.27 MOTION and ABY . 30

2.4.28 MP-SPDZ. 31

2.4.29 MPyC . 31

2.4.30 Obliv-C . 32

2.4.31 ObliVM . 32

2.4.32 OpenFHE . 32

2.4.33 PICCO . 32

2.4.34 PySyft, SyMPC and Sycret . 33

2.4.35 SCALE-MAMBA. 33

2.4.36 SEAL . 33

2.4.37 Secrecy . 33

2.4.38 SecretFlow . 34

2.4.39 SEEC . 34

2.4.40 Sequre . 34

2.4.41 Senate . 34

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
6 / 95

D-16-468
Public

2.4.42 SEPIA . 35

2.4.43 Sharemind MPC. 35

2.4.44 Silent Compute . 36

2.4.45 Swanky . 36

2.4.46 Symphony . 36

2.4.47 Tandem . 36

2.4.48 TASTY . 37

2.4.49 TF-Encrypted . 37

2.4.50 TinyGarble . 37

2.4.51 TNO-MPC . 37

2.4.52 VIFF . 38

2.4.53 Virtual Data Lake . 38

2.4.54 Wysteria . 38

2.4.55 XOR. 38

2.4.56 XSCE . 39

2.5 Overview and Comparison of the Secure Multiparty Computation Tools 39

2.5.1 Prior Comparisons . 39

2.5.2 Classification . 40

2.6 Published MPC Projects Using Large Scale Real Data . 46

3 Trusted Execution Environments . 49
3.1 Fundamentals of TEE Technologies . 49

3.2 Security Challenges . 53

3.3 TEE Technologies on the Market . 55

3.3.1 Overview . 55

3.3.2 Intel SGX. 58

3.3.3 Intel TDX. 60

3.3.4 AMD SEV-SNP . 61

3.3.5 ARM CCA . 62

3.3.6 AWS Nitro Enclave . 63

3.4 TEE Software Ecosystem . 64

3.5 TEE Availability in the Cloud . 65

4 Considerations for the JOCONDE System . 68
4.1 Secure Multiparty Computation . 68

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
7 / 95

D-16-468
Public

4.2 Trusted Execution Environments . 69

4.3 Combining Secure Multiparty Computation and Trusted Execution Environments 70

Bibliography . 72

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
8 / 95

D-16-468
Public

1 Introduction
The goal of this document is to introduce the main foundations of Secure Private Computation
(SPC), namely Secure Multiparty Computation (MPC) and Trusted Execution Environments (TEE),
that are envisioned to be relevant to the JOCONDE project. MPC uses cryptographic techniques
to ensure data confidentiality in cases where multiple parties are jointly computing on sensitive
data. TEE ensures security through specialised hardware. The JOCONDE project focuses on col-
laborative computation scenarios where (i) multiple parties make their data available as inputs
to the computation (input parties), and at the same time (ii) multiple parties actually carry out the
computation process (computing parties). In other words, the collaborative, or equivalently mul-
tiparty nature of the JOCONDE scenario is to be intended in the dual sense of distributed inputs
and distributed computation. It is important to not assume that in JOCONDE the input parties
and computing parties overlap, although they may.

This document introduces both MPC and TEE approaches and gives a thorough overview of the
current state of the art. Our analysis considers the level of development and maturity of these
technologies as of October 2024. We describe the strengths and advantages of these technolo-
gies and their potential limitations. This document informs the design and specification of the
envisioned Multiparty Secure Private Computation-as-a-Service (MPSPCaaS) system [1]. The lat-
ter will be referenced hereafter as the JOCONDE System.

For MPC, this report covers the basics of the main methods used to build secure multiparty com-
putation protocols. It then delves deeper into examples of concrete protocols and existing tools
and services, that are the main focus of the document. We compare MPC tools based on their
main purposes, security guarantees, and functionalities. Additionally, we present research where
MPC and TEE are combined to improve the security guarantees of the resulting system. We also
include the growing list of previous and ongoing projects that have deployed MPC solutions to
work on real-world data.

For TEE, we cover the fundamentals and the main benefits of this technology for the JOCONDE
project. We describe the available technologies and compare their capabilities. It is important to
note that there are also many software tools that support and enable the use of secure hardware.
This report also gives an overview of the relevant software components. Finally, we describe TEE
adoption in the cloud.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
9 / 95

D-16-468
Public

2 Secure Multiparty Computation
Secure Multiparty Computation (MPC) refers to a set of technologies enabling the execution of
collaborative computations on confidential input data without revealing any data except the final
computation output. Three main methods are typically employed for ensuring secure computa-
tion: garbled circuits, homomorphic encryption, and secret sharing. All these are introduced in
the following.

The participants in the computation process can act in three different roles [2]: input parties,
computing parties, and output parties. Notably, the same participant may play multiple roles.
The input parties make their data available as input to the computation process. The distributed
computation protocol is carried out by the computing parties. At the end of the computation
process, the final computation result is revealed to the output parties. A large part of the MPC
literature considers the particular scenario where the computing parties act also as input parties
and output parties. However, real-world deployments often require more separation between
the roles, especially in the context of MPC-as-a-service solutions. Usually the set of computing
parties is fixed at the beginning and does not change during the computation process, but there
are also approaches like [3] that consider a dynamically changing set of parties.

While powerful theoretical results were already obtained in the 1980s, the work on practical
MPC deployment started decades later. The first real-life deployment took place in 2008 with
the Danish sugar beet auction [4]. Since then, the acceleration in the performance and scope
of the technology has been outstanding, leading to a large number of companies working in
this space. Section 2.1 below gives an overview of the core principles and parameters of secure
multiparty computation. Next, Section 2.2 introduces the core secure computation methods.
Section 2.3 then goes into more detail regarding the concrete versions of how the main secure
computation methods are used to enable secure multiparty computation for various settings,
and Section 2.4 lists existing implementations of tools that bring secure multiparty computation
to life. Section 2.5 summarises the main contributions of this chapter with a comparison of the
main frameworks. Finally, Section 2.6 considers cases where real data were processed by MPC
applications to showcase the highest level of practical use reached insofar.

2.1 Main Properties
There are various aspects to consider when defining the security of MPC protocols. This section
summarises the most prominent of these properties.

First note that discussions and formal proofs of the security of MPC protocols commonly consider
a single adversary. The adversary, or attacker, is a generalisation of various attacks. The actions
that the adversary is allowed to make without breaking the system collectively specify the security
properties of the system. This descriptive approach is well in line with the real life notion of
an external attacker infiltrating computation participants, either by hacking their IT system or
corrupting their staff. However, the single adversary model also captures the case of an internal
attacker from within the MPC setup, either acting alone or in collusion with other machines or
parties.

The single adversary assumption absorbs the case of multiple adversaries acting in a coordinate
manner. In fact, this represents a sort of worst case, since a set of multiple independent and unco-
ordinated adversaries would be collectively less powerful than a coordinated set of adversaries,

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
10 / 95

D-16-468
Public

or equivalently a single adversary gathering their total capabilities. In other words, demonstrat-
ing security against a single powerful adversary is sufficient to achieve security against multiple,
less powerful adversaries. In the common adversary model, any party in the computation pro-
cess may be corrupted by the central adversary. In practice, this covers both the cases where the
party is corrupted due to its own volition or due to external infiltration.

Any MPC system displays a combination of security guarantees along the different dimensions
presented below, but not all combinations of security guarantees are feasible. A comprehensive
overview with several feasibility and impossibility results can be found in [5].

2.1.1 Number of Parties and Threshold
Two important parameters of any MPC system are the total number of participating computing
parties and the maximum number of corrupted computing parties that can be tolerated by the
system. In general, each MPC scheme sets a number of (computing) parties n and a threshold
t < n such that at least t parties must remain honest (uncorrupted) in order for any security
guarantees to hold. In other words, the system is secure against up to n−t corrupted (dishonest)
parties.

A common division is between schemes requiring an honest majority, for which t > n/2, and
schemes secure against a dishonest majority, for which t < n/2. In the latter class, the case
t = 1, sometimes called the full-threshold case, is of special interest, as in such a case the system
can tolerate up to n − 1 corrupted parties while still upholding the privacy guarantees for the
remaining honest participant.

The threshold model can be generalised to more advanced access structures that specify in detail
which sets of parties can be corrupted together [6]. These are most relevant for cases where the
roles of the parties are not symmetric. A newer line of work also considers MPC with a dynami-
cally changing set of parties [3]; however, this approach is not discussed further in this overview,
as it is not much used for practical solutions.

2.1.2 Adversary Models
Overall, MPC considers three different kinds of adversaries: passive, active, and covert. At one
extreme, the strongest active adversary (also known as a malicious adversary) represents an ad-
versary who aims at breaking the system by taking any possible action against the MPC protocols.
At the other extreme, the passive adversary (also known as semi-honest or honest-but-curious)
represents an adversary that follows the protocol but tries to deduce as much as possible from
the information gathered during the protocol execution. As an intermediate between these two
models, the covert adversary model represents an adversary ready to carry out active attacks
against the protocol only to the extent that such actions do not reveal him. In other words, the
difference between the active and covert models is that an active adversary would try to break
the protocol at all costs, while the covert adversary would abstain from taking actions that would
get him caught.

A protocol is said to achieve active, passive, or covert security if it ensures privacy and integrity
in the presence of the respective type of adversary. A secure computation protocol offering
active security (also known as malicious security) preserves both privacy and integrity even in
the presence of active adversaries. Conversely, a protocol providing passive security (or semi-
honest/honest-but-curious security) ensures both the privacy and accuracy of computations,

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
11 / 95

D-16-468
Public

granted that all participants follow the protocol. A protocol offers covert security if the prob-
ability of detecting active actions against the protocol is reasonably high.

A separate dimension relates to whether the set of corrupted parties can dynamically change
during the computation. In the static adversary model, the corrupted parties remain the same
throughout the computation. In the adaptive adversary model, the adversary may corrupt more
parties during the protocol execution and the decision as to whom to corrupt may be based on
the computation process. Finally, the mobile adversary (also known as proactive security) repre-
sents the case where new parties can be corrupted and some parties may become uncorrupted
during the computation. However, the latter model is not very common among current MPC
frameworks.

2.1.3 Security Assumptions
Security of MPC can be based on various assumptions. The first of these is the assumption re-
garding the network. It is most common to assume point-to-point secure channels between
participants. In other words, we exclude the network eavesdropper, which is in practice achieved
using standard tools like mutually authenticated TLS channels. Some protocols also require a
broadcast channel where a message can be sent so that all parties are guaranteed to receive
the same message. This is achieved using a protocol for secure broadcast, e.g. [7, 8, 9], that,
depending on the setting and the specific protocol, introduces its own assumptions.

Independently of the network setup, the protocol itself can achieve either information-theoretic
security or computational security. In the latter case, security is linked to some computationally
difficult problem, and if an efficient algorithms to solve this problem is found, the MPC protocol
will be easily broken. Generally speaking, attacks against such computationally secure proto-
cols benefit from the availability of more computational power by the attacker. In the case of
information-theoretic security, the bound on security is fixed by a concrete parameter specified
by some mathematical problem where the ability to solve the problem does not depend on the
available computational power. For example, security can be equivalent to correctly guessing a
random number from the field where the computations are executed, in which case the field size
would represent the parameter that determines the security of the system.

Again, some (in)feasibility results apply to the combination of security features. It is known that
information-theoretic security cannot be achieved in the general case for a dishonest majority
setting [10]. This means that not all operations can be computed with information-theoretic
security for a dishonest majority.

With point-to-point secure channels, information-theoretic security with guaranteed output de-
livery can be achieved for passive security on the assumption of an honest majority, and for
active security, on the assumption that no more than a third of the parties are corrupted [10].
Conversely, with a broadcast channel, information-theoretic active security can be achieved for
an honest majority [11].

Computationally secure protocols are always possible and, in particular, two-party computation
can only be computationally secure.

It should be noted that the security level of the protocol is always defined by its weakest com-
ponents. For example, a protocol consisting of information-theoretically secure addition and
computationally secure multiplication is to be considered computationally secure overall.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
12 / 95

D-16-468
Public

2.1.4 Additional Security Properties
The previous lists covered the main properties that define the security of the MPC protocols.
In addition to those, there are other aspects that should be considered but receive less explicit
treatment in this document.

For models where adversary behaviour can affect the execution of the protocol, the protocols
can be further classified into security with abort, fair protocols, and protocols with guaranteed
output delivery (GOD). Active security with abort ensures that the protocol either provides an
accurate output, or the participants realise that the outcome is erroneous and abort the protocol
execution without producing any result. Some of such protocols allow to identify the cheating
party while others do not. Fair protocols dictate that all parties, without exception, either learn
the correct result or none at all. In an unfair protocol, certain parties might get the correct result
while others miss out. In particular, the adversarial parties may learn the output while others
do not learn anything. GOD protocols ensure that the honest parties always receive the correct
result. Well-known impossibility results establish that neither fairness nor GOD properties can be
achieved for certain protocol setups and functionalities. In particular, for generic functionalities,
fairness and GOD are only possible for the honest-majority security model [12].

A central component of active security is verifiability which ensures that the honest parties can
detect if the computation process or the output is incorrect. Verifiability is typically associated
with the ability of participating parties to detect violations. When this ability is given to external
parties, it is called auditability or public verifiability [13]. For example, the auditing approach has
been proposed for the SPDZ protocol in [14]. Auditing strengthens secure computation in that it
allows to discover when all parties participating to the computation are corrupted.

Protocols that have security with abort can end in a state of failure if the verification does not
succeed. Active security ensures that the honest parties learn that the protocol failed. In such
cases, it is preferred for the protocol to achieve identifiable abort, meaning that all honest parties
agree that the protocol failed and they are able to identify at least one corrupted party [15]. The
idea is that the honest parties could then exclude this corrupted party and attempt to perform
the computation again. Identifying cheaters for protocols with dishonest majority is known to
be more complicated than simply achieving protocols with abort [16]. This security notion is also
extended to completely identifiable abort where all cheating parties are identified by the honest
computing parties, and completely identifiable auditability where an external party can determine
all cheating parties [17]. The process of identifying the misbehaving party is called cheater detec-
tion and can also be applied in GOD protocols.

Protocols secure against actively corrupted input parties also have to ensure input independence.
A basic assumption in secure computation is that all input parties provide their inputs to the
protocol based on true input data values. However, an actively corrupted input party may try
to modify its input based on what is provided by the other parties. Note that ensuring input
independence is a separate goal from ensuring privacy of the input data. For example, input in-
dependence would ensure than in a privacy-preserving auction, one party can not simply outbid
another other by crafting an input to the protocol that represents x+1, where x is the undisclosed
input from another party.

2.1.5 Relations Between Security Properties
As discussed above, components of a protocol can actually correspond to different security mod-
els and properties but the security level of the combined protocol is determined by the weakest

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
13 / 95

D-16-468
Public

components. Table 1 summarises the discussed properties in terms of which would be more
or less preferable. It is important to note that this is a simplification and not all combinations
of these properties can be achieved in one protocol. For instance, what would appear to be
the strongest case, namely the combination of active security, dishonest majority, information-
theoretic security, and guaranteed output delivery, is known to be generally unfeasible. On the
other hand, the properties labelled as weaker tend to be relevant in practical applications and
common in MPC protocols.

Often, higher security guarantees imply higher complexity, hence lower performances and scal-
ability. However, MPC research keeps proposing ever more efficient protocols and implementa-
tions, and also conversions between the security properties (see Section 2.1.6) so that the theo-
retical difference in complexity is not always reflected in the practical solutions.

Table 1. Summary of MPC protocol properties

Property Strong Intermediate Weak

Adversary behaviour Active Covert Passive

Amount of corrupted parties Dishonest majority Honest majority

Output delivery Guaranteed output delivery Fairness Abort

Knowledge after abort Completely identifiable abort Identifiable abort No cheater detection

Corruption model Mobile Adaptive Static

Security assumption Information-theoretic Computational

2.1.6 Converting Between Security Models
Concrete protocols proposed in the literature and implemented by frameworks specify some
of the previously mentioned parameters. However, another line of work studies converting be-
tween different settings. A first natural goal is to lift passively secure protocols to deliver ac-
tive security. However, keeping some of the impossibility results in mind, the conversions may
need to change the threshold or security assumptions of the protocols. The classical result
in [18] achieves security by incorporating zero-knowledge proofs in order to verify each step. Zero-
knowledge proofs enable the prover to convince the verifier that a statement is true, so that the
verifier only learns this fact and nothing else other than the given statement. Several other effi-
cient approaches for converting from passive to the active security model also exist, such as [19,
20, 21].

It is possible to convert from honest majority to dishonest majority and ensure passive security
of the output [22], or to convert a protocol to a corresponding publicly verifiable protocol as
shown by [23]. It is also possible to extend any protocol in the preprocessing model to a protocol
with cheater detection [16].

The rise of TEE technologies (see Chapter 3) has also triggered interest in the combination of MPC
and TEE [24, 25], in addition to proposals to fully replace MPC protocol with TEEs [26, 27]. One
possible combination approach is to create a trusted dealer for the precomputation phase (see
Section 2.1.7) using TEE [28]. Another possibility is to combine MPC and TEE executions based
on efficiency or level of trust [29, 30]. Another approach is to increase the security level of the
MPC protocol by executing some of the computing party’s code inside TEEs [31, 32]. This works
particularly well when the passively secure MPC protocols lose only their integrity guarantees

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
14 / 95

D-16-468
Public

in the presence of active attackers, but retain confidentiality [33, 34]. Wrapping such protocols
in TEEs that provide integrity can provide security against active adversaries without the need
of expensive modifications to the MPC protocols themselves. In this case, the confidentiality
is ensured both by the MPC protocol and TEEs, while the integrity of the computations in TEEs
enables all parties to verify that others computed all their protocol messages as required. This
approach to achieving active security is applied in [35]. It is also possible to achieve fairness when
combining an unfair MPC protocol with TEEs [36]. Two real-world examples of combining MPC
and TEEs are Signal and Coinbase [37]. It is likely that the approaches to using TEE in MPC will,
in the near future, give interesting results for both the theory and practice of secure multiparty
computation.

2.1.7 Online-Offline Paradigm
Many modern MPC protocols execute in what is called the online-offline paradigm, or equivalently
the preprocessing model. The idea is that the execution of the protocol can be divided into two
phases. The offline phase (or preprocessing) takes place before the input parties provide their in-
puts to the computation. Note that in most cases this is still an interactive protocol and requires
network communication. The offline phase is used to prepare for the upcoming computation, for
example by producing correlated randomness to be used later in the online phase. The online
phase is the part using the actual inputs and performing the desired computation. Overall, the
goal is to push as much of the expensive computations to the offline phase (precomputation) as
possible, thus enabling leaner and faster execution of the online phase. A common example of
execution with precomputation is a multiplication protocol using Beaver triples [38]. The precom-
putation itself can be considered either computation-dependent or computation-independent.
In the former, the computation in the online phase can be freely chosen and the precomputa-
tion simply prepares for all possible operations. Computation-dependent precomputation can
be used to efficiently prepare for the execution of some specific program or algorithm which
is determined beforehand. The online-offline paradigm facilitates the decoupling of the devel-
opment of the two computation phases in the MPC framework, allowing for their independent
optimisation. Note that in some settings the set of parties performing the precomputation may
differ from the set of parties executing the online computation phase.

Some of the following solutions are in the trusted dealer setting where the precomputation re-
sults are provided by a trusted entity and it is left up to the concrete deployment to decide how
to implement this trusted third party. Very often the goal is to design the online phase with
information-theoretic security and very efficient simple operations. However, the offline phase
supporting this efficient online phase requires costlier computations and ensures computational
security. In that case, the protocol combining the online and offline phases is computationally
secure.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
15 / 95

D-16-468
Public

2.2 Core Secure Multiparty Computation Methods
This section lists the main methods used as a basis for secure computation – secret sharing,
garbled circuits, and homomorphic encryption. The goal of this section is to give a high-level
overview of the foundations of MPC. More details on how these are used for secure computation
are presented in Section 2.3.

2.2.1 Secret Sharing
Secret Sharing (SS) is a data protection method initially developed by [39, 40] that allows the
encoding of a confidential value (secret) in a set of so-called shares, with each share being held by
a different party. Any individual share reveals nothing about the confidential value to its holder.
For a perfect secret sharing scheme, at least k out of n shares are required to reveal the secret
value, meaning that if k or more parties collaborate, then the secret can be reconstructed. The
currently most common SS scheme is additive secret sharing, where a secret x is divided into a
set of n shares {xi, i = 1, . . . , n} such that x =

∑n
i=1 xi. Additive secret sharing can be used for

values x in any finite ring or field. This scheme implies that the reconstruction of the secret value
requires the combination of all shares, i.e. k = n. Note that the threshold k for reconstructing
the secret is related to the threshold t of honest parties to preserve MPC security guarantees
presented earlier in Section 2.1.1.

In general, t = n + 1 − k for computations based on a threshold secret sharing scheme. In
other words, the system could be secure against up to n− t = k − 1 corrupted parties. However,
individual computation protocols using secret sharing as a basis may lower the threshold t as
the protocol itself may tolerate less corrupted parties than the secret sharing scheme.

Many SS schemes, like additive secret sharing and Shamir’s secret sharing [40], are linear, imply-
ing that in addition to hiding the values they can be used for secure computation. Some of these
computations, such as addition for additive secret sharing, can be performed locally by each
party. These SS schemes and the local operations ensure information-theoretic security. In con-
trast, most computations need specialised interactive protocols, meaning that every computing
party must be online throughout the protocol. These protocols may also introduce computa-
tional security assumptions. An insightful overview of SS-based secure computation is available
in [41].

2.2.2 Function Secret Sharing and Homomorphic Secret Sharing
Function Secret Sharing (FSS), a specialised form of secret sharing proposed by [42], facilitates
the evaluation of specific functions. The initial step involves sharing the function f() amongst the
parties, each receiving a share fi of the function. If these parties select a common input x and
each of them evaluates yi = fi(x) locally, the outcome forms an additive share of f(x) =

∑
yi.

Notably, the evaluation phase for fi(x) is non-interactive. Secure computation based on FSS often
combines it with calculations using additive secret sharing, e.g. computing non-linear operations
using FSS and linear layers with additive secret sharing. The functions are defined by keys, with
the primary objective of ensuring the description is both succinct and conceals the function. The
current literature for function secret sharing schemes is mostly focusing on the two-party case.
However, multiparty versions of FSS are emerging [43, 44, 45].

Homomorphic secret sharing (HSS) [46] refers to secret sharing schemes where values are shared
in a way that enables computing parties to locally evaluate some specific known function. HSS
may be seen as the dual of FSS. Currently, the limiting factor of using HSS is the set of functions

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
16 / 95

D-16-468
Public

that can be supported [47], but their number is likely to increase and change the MPC landscape
in the future.

2.2.3 Garbled Circuits
Historically the first approach to secure computation, referred to as garbled circuits (GC), is cred-
ited to [48] and further explored and formalised by [49]. This protocol allows two parties, known
as the garbler and the evaluator, to securely evaluate a binary circuit. Initially, the garbler en-
codes the binary values (0 and 1) onto circuit wires and encrypts the circuit’s truth tables. This
garbled circuit, together with the input encodings, is then sent to the evaluator. The garbler can
simply send the encodings corresponding to its own input bits. For the inputs of the evaluator,
the garbler and sender use the oblivious transfer (OT) protocol. Oblivious transfer is a two-party
protocol between a sender and a receiver where the sender has two messages and the received
asks for one of them. As the output of OT, the receiver learns the desired message and the
sender does not learn anything. In the OT protocol used for garbled circuits, the garbler acts
as the sender and inputs the encodings of the input bits. The evaluator acts as the receiver and
inputs its input bit in order to retrieve the encoding of the input bit. Using the input encodings,
the evaluator can decrypt the circuit on a gate-by-gate basis. For each gate, the evaluator knows
only the input encodings corresponding to the actual input values and can therefore only decrypt
only the row containing the output encoding. The evaluator repeats the decryption steps until it
reaches all the output gates of the binary circuit.

A significant advantage of the garbled circuits method is its universal applicability to any binary
circuit, requiring only communication for circuit and key transportation. By default, the eval-
uation is secure against a passive garbler and an actively corrupted evaluator. The garbler is
required to be passive because otherwise it could simply garble the wrong circuit. On the other
hand, given an encrypted circuit, a misbehaving evaluator still could not learn extra informa-
tion unless it breaks the underlying encryption scheme. The security of the protocol depends
on the encryption scheme and the guarantees of the oblivious transfer protocol and therefore is
computationally secure.

There are standard techniques available to optimise the circuits for garbling, such as [50, 51],
along with optimisation of the garbling procedures themselves, such as the free-XOR method
described in [52]. Other advancements anchor on the accomplishment of active security [53,
54].

2.2.4 Homomorphic Encryption
Encryption schemes typically define algorithms for converting a secret into a ciphertext through
encryption and for retrieving the original secret through decryption. Security measures make
sure that only parties holding the decryption key can decrypt the secret in the ciphertext. Ho-
momorphic Encryption (HE) schemes extend this functionality by allowing computations to be
performed on ciphertexts, with the result being a ciphertext that contains the outcome of the
computation. For an asymmetric HE scheme, there is a keypair containing a public and a private
key, the encryption algorithm uses the public key, whereas the decryption requires the private
key.

Certain encryption schemes are homomorphic for specific operations. For instance, additively
homomorphic encryption schemes like the Paillier encryption scheme [55] support addition.
Fully Homomorphic Encryption (FHE) schemes, first introduced in [56], support both addition

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
17 / 95

D-16-468
Public

and multiplication, allowing for the evaluation of arithmetic circuits under encryption. Com-
monly used FHE schemes include BGV [57, 58], BFV [59, 60], FHEW [61], TFHE [62], CKKS [63],
LMKCDEY [64]. Both fully and additively homomorphic encryption continue to serve as founda-
tional structures in secure computation algorithms. For example, an additively homomorphic
encryption scheme can be used to build a secure two-party multiplication protocol and used as a
building block to enable multiplication of secret shared values [65]. Within current MPC schemes,
multiplication protocols based on HE schemes are mostly used in the preprocessing phase to pre-
compute multiplication operations of random values that can be used for efficient operations in
the online phase. Recently, FHE has also found much use in privacy-preserving machine learn-
ing research [66, 67]. Secure computation with FHE offers passive security in the computational
security model. Zero-knowledge proofs about the correctness of the computation or plaintext
knowledge are used to achieve security against an active adversary.

Some HE schemes support threshold decryption. In such case the public key is known but the
private key is distributed between parties during key generation. During decryption, the parties
use their parts of the key to compute parts of the decryption that can be used to derive the
decryption results.

Multi-key HE (MKHE) [68] is a variation of homomorphic encryption that allows parties to use
different public keys for encryption while still allowing homomorphic operations with the cipher-
texts. The decryption procedure requires the collaboration of all participants. Each party uses
the private key they know to compute a share of the decryption and the shares are combined to
produce the decryption result.

Both threshold and multi-key variants of HE enable schemes where no party alone has the power
to decrypt and are therefore well suited to be used in multiparty settings. However, it is important
to note that the basic model where a party defines its own keypair is also used as a building block
in some MPC protocols.

2.3 Protocol Families
This section highlights some of the protocols used for secure computation. The focus here is
on the theoretical ideas on how the core methods are applied to achieve protocols for different
settings. They are divided to sections based on the core methods from Section 2.2 and the level
of security they offer. This list of protocols is by no means exhaustive, but the aim is to cover
the main approaches currently deployed by practical frameworks, especially those mentioned
in Section 2.4. This document is focused on secure computation protocols that support generic
computations. There are also many works targeting protocols for specific applications, like pri-
vate set intersection (PSI) or oblivious RAM (ORAM), that are not considered here.

2.3.1 Additive Secret Sharing
Additive secret sharing is a version of secret sharing where each value x ∈ R in ring R is mapped
to a set of shares {xi, i = 1, . . . , n} such that x =

∑n
i=1 xi. and the i-th party holds xi ∈ R. As all

shares are needed to reconstruct the secret, privacy of the shared value is ensured as long as at
least one party remains honest (t = 1 and k = n). Simple addition in R can be computed locally.
It is also possible to devise protocols that map some other simple operation to addition (e.g.
multiplication can be mapped to addition via logarithmic transformation), however in general
any combination of additions and multiplications requires an interactive protocol.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
18 / 95

D-16-468
Public

The secret sharing scheme itself, as well as the local addition protocols and, therefore, compu-
tations of linear combinations of shared values are information-theoretically secure. However,
depending on the setting, the multiplication protocol and other computation protocols may be
computationally secure.

2.3.1.1 Passive Security

GMW. The basic GMW protocol [18] operates on the Boolean values and secret sharing. AND
gates are evaluated using oblivious transfer and XOR gates are computed locally. Additive se-
cret sharing can be seen as an extension of this idea where additions are computed locally and
multiplications require a dedicated protocol that used oblivious transfer. In this case, oblivious
transfer protocols work in the computational security model.

Beaver triples. The Beaver triple-based multiplication protocol [38] is especially relevant for ad-
ditively shared values as there is no other generic way to compute multiplication of additively
shared values. This protocol enables efficient multiplication of shared values assuming there ex-
ists a precomputed triple of secret shared values a, b and ab. This protocol idea is also the basis
for the online-offline paradigm of secure computation and it is applicable to all kinds of linear
secret sharing methods. The actual triple itself can be prepared in various ways, for example
using the GMW protocol or homomorphic encryption.

Replicated secret sharing. In addition to Beaver triples, replication can be used to achieve mul-
tiplication using additive secret sharing. In case of replication, each party holds several of the
additive shares xi. However, this means that fewer parties are needed to fully reconstruct the
secret. For example, computation using replicated secret sharing for n parties is considered
in [69]. Three parties with one corruption protocol in [70] is geared to achieve high-throughput
for multiplication. It extends the idea of replicated secret sharing where value v gives shares
(xi, xi−1 − v) for x1 + x2 + x3 = 0. The shares of 0 must be precomputed but multiplication can
then be computed by each party sending just one value.

2.3.1.2 Active Security

Achieving active security with additive secret sharing requires adding some form of authenti-
cation or verification to either verify the shares or the shared value. Some examples are listed
below.

GMW compiler. The first proposal showcasing that actively secure computation is possible was
the GMW protocol [18] with the additional idea that its correctness can be verified using zero-
knowledge proofs.

SPDZ. The SPDZ (pronounced Speedz) protocol was initially proposed in [71], with updates to the
online computation in [72]. In addition to these variations, the precomputation method has been
revised several times, a detailed overview of the developments is given in [73]. Since the latter
overview, new precomputation approaches have been considered in [74, 75]. SPDZ offers active
or covert security in the security with abort model for dishonest majority. However, versions with
fairness, cheater detection and other properties have also been studied, see [76] for an overview.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
19 / 95

D-16-468
Public

Overall, the SPDZ protocol uses additive secret sharing in two layers: each value x is shared
additively as x =

∑
xi and then a message authentication code (MAC) αx is computed and also

shared as αx =
∑

yi. Each party i then holds the pair (xi, yi) as a share. In addition, the key α is
also shared additively and each party holds one αi. During the publishing operation, the parties
verify that the MAC of the published output is computed correctly. The protocol works for any
number of n ≥ 2 parties and offers active or covert security so that up to n − 1 parties can be
corrupted. All values and shares are in some finite field, the size of the field defines the security
level, as overall the protocol is as secure as hard it is to guess the random MAC key α.

The protocol works in the precomputation paradigm. At the minimum, the precomputation
phase produces Beaver triples for multiplication, shares of random values for inputs, and the
shared MAC key. The core of the online phase supports linear combinations and multiplication.
However, various algorithms have been developed for this version. There is also a version of
SPDZ with function-dependent preprocessing proposed in [77].

SPDZ2k . SPDZ2k [78, 79] (pronounced Speedz 2k) is a variation of the SPDZ protocol for the case
of rings, specially computation modulo 2k. Overall, the protocol and share representation are
very similar to that of SPDZ; however, extra care is needed in analysis and fixing needed share
sizes to account for zero divisors in the ring and maintain the desired level of security.

TinyTables. TinyTables [80] is a two-party secret sharing-based protocol for Boolean values in the
preprocessing model. Active security is achieved by adding a MAC to the shared value. The pre-
processing model provides a multiplication triple used to evaluate AND gates, while XOR and NOT
gates are non-interactive. A passively secure version of the protocol is implemented in FRESCO
(see Section 2.4.16). The idea is to generate lookup tables for efficient computation in the online
phase.

TinyOT. TinyOT [81, 82, 83] uses MACs similar to SPDZ but is focused on using oblivious transfer
for computations. It has affected the precomputation of SPDZ, SPDZ2k and TinyTables and been
extended to various other protocols, see [83]. This protocol leverages OT extensions to produce
authenticated bits which serve as a basis for the rest of the computations.

2.3.2 Shamir’s secret sharing
In Shamir’s secret sharing scheme [40] a secret v is shared as evaluations of a polynomial f(x) =
at−1x

t−1 + . . . a1x + v. Each party learns f(xi) for a publicly known xi. The party computing the
shares picks the t − 1 random coefficients ai, meaning that t evaluation points are necessary to
learn the secret v. Addition operations can be computed by each party locally. Multiplication can
be evaluated for honest majority, i.e. t < n/2.

2.3.2.1 Passive Security

BGW protocol. The BGW protocol [10, 84, 85] uses Shamir’s sharing with honest majority to
provide information-theoretically secure MPC. It follows the blueprint that all parties share their
inputs and all operations are computed using secret shares. Additions can be computed locally
and multiplications are computed collaboratively. Each party multiplies their respective shares
and then secret shares the result between all parties. The parties then do some local computation
to derive the correct shares for the multiplication output.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
20 / 95

D-16-468
Public

2.3.2.2 Active Security

For thresholds less than n/3, Shamir’s secret sharing can be used with active security so that
honest parties can verify correctness thanks to replication using the BGW protocol [10]. More
generally, this applies to all multiplicative linear secret sharing schemes [86].

2.3.3 Function Secret Sharing
2.3.3.1 Passive Security

Function secret sharing with preprocessing is considered in [87, 88]. The dealer picks a ran-
dom mask for each of the wires in a circuit. This mask is used to hide the real values in the
evaluation. Both computing parties see the masked value. FSS is used the evaluate the compu-
tation gates, both parties input the masked input wire to the functionality and learn the masked
output as a result. The dealer is the one generating the FSS for each of the gates. It can be seen
as a generalisation of the TinyTables protocol. The dealer can be replaced by a circuit-dependent
preprocessing phase. This can be extended to circuit-independent case. Similarly, this can be
extended to multiparty computation and active security.

2.3.3.2 Active Security

Pika [89] uses FSS for an honest-majority actively secure protocol with abort in order to compute
non-linear functions with constant rounds. Achieving active security requires ensuring that FSS
keys are well formed. This protocol builds on the lookup table ideas from TinyTables protocol.

2.3.4 Garbled Circuits
Note that the general idea of garbling is secure against an actively corrupted evaluator but only
secure against a passively secure garbler. The following distinguishes methods based on the
corruption of the garbler.

2.3.4.1 Passive Security

For passively secure garbled circuits the main question is to enhance the efficiency of the garbling
either by choosing suitable encryption methods or by reducing the amount of data needed to
encrypt the gates.

Free XOR. The idea of the Free-XOR method [52] is that instead of encrypting XOR gates, the
new label is computed directly from the labels of the inputs. Hence, XOR gates do not require
any cryptographic operations to garble or to evaluate.

Garbled row reduction. The garbled row reduction idea [90] proposes methods to not send
either one or two rows of the full garbled circuit. The reduction of one row can be combined with
the free XOR idea.

Half gates. The half gates approach [91] enables garbling XOR gates for free and sending only
two times the length of the ciphertext for each of the AND gates. The cited paper also establishes
that this result is optimal for linear garbling.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
21 / 95

D-16-468
Public

Three-halves. The three-halves approach [92] proposes a way to slice each wire label in half;
different computations can be used to derive the halves. This slicing allows them to bypass the
lower bound by [91] and achieves a lower bound for a more general class of garbling opera-
tions [93]. In addition, this approach is compatible with the free XOR method.

Stacked garbling. Stacked garbling [94, 95] improves garbling of functions with conditional
branching. The number of ciphertexts needed in the garbling is proportional to the longest
execution path rather than the whole circuit.

Multiparty garbling. The two-party garbled circuits approach is lifted to a multiparty protocol
in the BMR protocol [96]. The core idea is that an MPC protocol is used to generate the garbling
and then all parties evaluate the circuit on their own. The free XOR version of the BMR protocol
is described in [97].

2.3.4.2 Active Security

Ensuring security against an actively corrupted garbler requires verifying that the circuit is actu-
ally correctly garbled.

Cut-and-choose. The idea of the cut-and-choose method is that the garbler generates many
circuits and sends these to the evaluator. The evaluator chooses a subset of these to be opened
and verifies that these are correct. If all verified circuits are correct, the evaluator evaluates all the
unopened circuits and uses the majority output as the output of the computation. This approach
was proposed by [98] with various works improving on specific parameters.

LEGO. The idea of the Large Efficient Garbled-circuit Optimisation (LEGO) [53, 99, 100] protocol is
to do the cut-and-choose at the gate level and then solder these together to fault-tolerant buck-
ets for each gate. Versions of this approach work with free XOR and row reduction optimisations.

DUPLO. DUPLO [101] merges the whole circuit cut-and-choose and the LEGO approaches, allow-
ing to perform cut-and-choose for arbitrary subcircuits.

Multiparty garbling. Garbled circuits is usually a two-party protocol; however, there exist sev-
eral approaches to lift this to the multiparty setting following the BMR approach. Recent work [102]
achieved a communication efficient multiparty garbling scheme for honest majority where com-
munication complexity decreases as the number of parties increases.

Authenticated garbling. The authenticated garbling approach [103, 104, 105] generates au-
thenticated secret shared wire labels and executes the semi-honest version of garbled circuits
protocol, after which the evaluator can verify the correctness of each evaluated AND gate. In
essence, it combines actively secure authenticated secret sharing with passively secure garbled
circuits. The authenticated garbling protocol [106] combines the ideas of [103] and TinyOT. Au-
thenticated garbling can also be used for multiparty garbling.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
22 / 95

D-16-468
Public

2.3.5 Homomorphic Encryption
The basic idea of using fully homomorphic encryption for MPC is that all parties encrypt their
inputs with a threshold encryption scheme, the result can be computed publicly and then all
parties carry out the threshold decryption. This offers passive security. Active security requires
ensuring that that inputs are formed correctly and the decryption is computed correctly. How-
ever, concrete proof methods need to be tailored for the protocols in order to achieve efficiency.

2.3.5.1 Passive Security and Semi-Malicious Security

In the semi-malicious model, the adversary can pick its own randomness but all messages have to
be computed following the protocol using this randomness [107]. This model thus lies between
the passive and active security models.

Multi-Key HE. The benefit of using Multi-key HE (MKHE) for secure computation is that each
joining party can set up its own keypair. It can especially be used to create round-efficient MPC
protocols. For example, [108] obtains a two-round MPC protocol where active security is achieved
with non-interactive zero-knowledge proofs. The setup requirements for this approach are fur-
ther studied in [109] with extra rounds added to compute the setup. A three-round protocol
without setup is developed in [110]. Note that the latter is secure in the semi-malicious model.
MKHE is sometimes also called multiparty HE.

Threshold FHE. A threshold version of BFV is used in [111] to achieve a passively secure dishon-
est majority MPC protocol. This work generalises the approaches of threshold and multi-key FHE
schemes and proposes an efficient MPC computation method based on the efficiency advances
of FHE schemes.

Multi-Group HE. A generalisation of MKHE and threshold HE called multi-group HE is derived
in [112]. In this case, a joint key is generated like in the threshold HE case but homomorphic
operations are allowed also with ciphertexts obtained using different keys like in MKHE. This is
then used to propose MPC for semi-malicious adversaries with dishonest majority.

2.3.5.2 Active Security

Threshold FHE. A robust MPC protocol with active security is proposed in [113]. This protocol
allows for at most third of the computing parties to be corrupted. The goal of this work is to
use efficient FHE components like threshold FHE to obtain a programmable MPC protocol that
allows intermediate publishing. A focus is also on evaluating a pseudorandom function under
encryption. This protocol uses transciphering to reduce the overhead that large FHE ciphertexts
and zero-knowledge proofs add to the storage of secure data. In transciphering, the (usually
symmetric) encryption is computed using the homomorphic properties. It can be used to store
long term data or parties can encrypt their inputs using the symmetric encryption scheme and
only encrypt the key using the FHE scheme. The computing parties can then transform the inputs
to FHE as needed.

PELTA. PELTA [114] focuses on proposing mechanisms to protect threshold, multi-key, and multi-
group HE schemes against an active adversary. They combine commitments and zero-knowledge

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
23 / 95

D-16-468
Public

proofs to verify correctness of each computation local step and propose another proof for prov-
ing correct aggregation. This is geared towards lattice-based commitments, encryption and
proof systems.

Verifiable computation. In the verifiable computation model, the computing machine produces
a proof of correct computation. One way to achieve this is using zero-knowledge proofs. Recent
work [115] extends this by combining homomorphic succinct non-interactive argument of knowl-
edge (SNARK) with hashing to prove correctness of the homomorphic evaluation. The limitation
of such approaches is that it only supports limited depth computations because the verification
does not apply to relinearisation.

2.3.6 Mixed-mode protocols
The BMR protocol described for multiparty garbling is already an example of a protocol com-
bining several ideas. However, various other combinations can be considered. This section lists
some more established and promising approaches. In general, the term mixed-mode protocol
(or hybrid protocol) refers to any computation allowing a protocol to be represented as differ-
ent modes of computation, either a combination of arithmetic and Boolean or a combination of
secure computation techniques. It is a whole line of research of its own to derive efficient mixed-
mode protocols, a good overview is given in [116]. It is also a separate line of work to analyse the
cost of the protocols and compile a specific operation to the most efficient MPC protocol [117].

2.3.6.1 Arithmetic-Boolean-Yao

Arithmetic-Boolean-Yao (ABY) [118, 119] is a two-party passively secure framework for combin-
ing additive secret sharing over rings and Booleans with the garbled circuits computation. Its
strength is proposing efficient protocols to convert from one data representation to another. Its
extension ABY3 [120] works for three parties with one actively corrupted party. ABY itself inher-
ited many ideas from TASTY [121].

2.3.6.2 Secure Multiparty Computation and Trusted Execution Environments

Homomorphic encryption and trusted execution environments are combined in [122] to enable a
system that achieves security against actively corrupted clients and servers for a machine learn-
ing application. The privacy of the clients is ensured by HE and the service providers protect their
models using TEE even when using public services to host the computation. TEEs are also used
to provide integrity of the computation. However, using HE for client inputs also means that the
clients do not need to trust TEEs with their privacy. Similar combination to use MPC for privacy
and TEEs for integrity is taken by [35].

2.3.6.3 Function and Additive Secret Sharing

It is possible to combine FSS and SS so that FSS is applied over secret shared inputs to produce
shared outputs as in [87]. The parties would reconstruct a masked input based on the shared
input and use this as an input to the FSS scheme. This way, FSS can be used to compute the parts
of the computation that are otherwise complicated to be computed with secret shares.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
24 / 95

D-16-468
Public

2.3.6.4 Garbling Mixed Circuits

An extension of the garbled circuits approach focuses on garbling circuits that combine Boolean
operations and arithmetic operations as well as bit-decomposition of the arithmetic values [123].
This line of work was started by the idea of garbling arithmetic circuits [124].

2.4 Secure Computation Tools
The previous section focused on the core technology and protocols. This section lists some com-
mon tools and frameworks for secure multiparty computation in alphabetical order. The goal
is to cover main historical approaches as well as currently active developments. Note that the
amount of information available for each of the tools varies; the goal of this section is thus to
simply list relevant tools and provide references. A summary and comparison of these tools can
be found in Section 2.5. In fact, this section can be seen as serving as a glossary for Section 2.5.
Note that this list is not exhaustive: most importantly, MPC solutions clearly geared towards
blockchain applications or specific machine learning tasks are not included as the focus of this
report is on data analysis and more general frameworks.

2.4.1 Asterisk
Asterisk [125]1 explores achieving active security with dishonest majority with a semi-honest
helper party. The helper party also allows this setting to achieve fairness. Secure computation
is based on authenticated additive shares. This implementation is focused on large-scale secure
computation, with benchmarks showing 100-party computation.

2.4.2 Carbyne Stack
The Carbyne Stack project2 is an effort to create a technology stack supporting the deployment
of MPC applications in a cloud-native manner. Carbyne Stack is a platform-based approach to
MPC seeking to create a well-integrated environment supplementing the interfacing needs of
the actual MPC runtime (i.e. the program executing MPC protocols). Its key offerings include
orchestration, like provisioning and discovery of MPC processing nodes within Kubernetes clus-
ters, storage for secret data, and MPC offline phase facilities. Altogether, it forms an ecosystem
with its own client applications and infrastructure automation to easily deploy and use MPC.

In essence, Carbyne Stack could wrap any MPC runtime which can operate in the secure outsourc-
ing model – i.e. where data is provided to a fixed set of computing parties to run the computation
on behalf of the clients – and can accommodate the necessary interfaces. At the time being, only
MP-SPDZ (Section 2.4.28) is supported, with an integration roadmap ready for incorporating the
Sharemind MPC protocol core (Section 2.4.43) [126]. Work has also been done towards integrat-
ing Secrecy3 (Section 2.4.37).

This open source project is an initiative launched by Bosch Research which has led the devel-
opment publicly since September 2021. However, once Carbyne Stack has gotten more trac-
tion, they are considering transitioning to a community-based maintenance and decision-making

1Asterisk https://github.com/cris-coders-iisc/Asterisk Last accessed: October 2024
2Carbyne Stack. https://carbynestack.io/ Last accessed: October 2024
3Bosch Tube: John Liagouris. Secrecy: Secure collaborative analytics in untrusted clouds, 2022. https:

//bosch-ext.mediaspace.de.kaltura.com/media/SecrecyA+Secure+collaborative+analytics+in+
untrusted+clouds/0_j66zkevf Last accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
25 / 95

https://github.com/cris-coders-iisc/Asterisk
https://carbynestack.io/
https://bosch-ext.mediaspace.de.kaltura.com/media/SecrecyA+Secure+collaborative+analytics+in+untrusted+clouds/0_j66zkevf
https://bosch-ext.mediaspace.de.kaltura.com/media/SecrecyA+Secure+collaborative+analytics+in+untrusted+clouds/0_j66zkevf
https://bosch-ext.mediaspace.de.kaltura.com/media/SecrecyA+Secure+collaborative+analytics+in+untrusted+clouds/0_j66zkevf

D-16-468
Public

model to provide a common neutral platform for different MPC deployments4. Independent con-
tributors currently include Honda Research and University of Technology Sydney among others.

2.4.3 CBMC-GC
CBMC-GC [50, 127]5 is a compiler to get Boolean circuits from a subset of ANSI-C. It outputs
circuits in formats suitable for TinyGarble (Section 2.4.50) and Fairplay (Section 2.4.13). It also
included tools to run the protocols using ABY.

2.4.4 CipherCompute
CipherCompute6 is based on SCALE-MAMBA (Section 2.4.35) and is a free version of the Cosmian
Collaborative Confidential Computing tool7. Applications for CipherCompute can be developed
in Rust.

2.4.5 CirC
CirC8 stands for Circuit Compiler and is a tool for compiling high-level languages to circuits for
various tools. Silph [128]9 is a variation of CirC for generating mixed-mode MPC protocols using
two-party ABY as a backend but is intended to support more backends.

2.4.6 COMBINE
COMBINE [129]10 (COMpilation and Backend-INdependent vEctorisation) proposes backend-independent
compilation and optimisation of secure computation protocols. They focus on optimising SIMD
operations. COMBINE currently supports MOTION (Section 2.4.27) and MP-SPDZ (Section 2.4.28)
as backends.

2.4.7 Conclave
Conclave [130]11 is a query compiler for MPC. The goal of Conclave is to separate the computa-
tion to parts that can be executed publicly and parts needing an MPC backend. Conclave devel-
opment was led by Boston University but is no longer active. It uses Oblic-C (Section 2.4.30) and
Sharemind MPC (Section 2.4.43) frameworks as secure computation backends.

Note that there is also Conclave platform12 for trusted execution environments for secure data
collaboration across multiple parties. It was developed by R3 but has been discontinued.

4Bosch Tube: Dr. Sven Trieflinger. Towards an Ecosystem for Open Cloud-Native Secure Multiparty Computa-
tion, 2023. https://bosch-ext.mediaspace.de.kaltura.com/media/Towards+an+Ecosystem+for+Open+
Cloud-Native+Secure+Multiparty+Computation/0_3yk5mxli Last accessed: October 2024

5GBMC-GC https://gitlab.com/securityengineering/CBMC-GC-2 Last accessed: October 2024
6CipherCompute https://github.com/Cosmian/CipherCompute Last accessed: October 2024
7Cosmian https://cosmian.com/ Last accessed: October 2024
8CirC https://github.com/circify/circLastaccessed:October2024
9Silph https://github.com/edwjchen/Silph Last accessed: October 2024

10COMBINE https://github.com/milana2/ParallelizationForMPC Last accessed: October 2024
11Conclave https://github.com/multiparty/conclave Last accessed: October 2024
12R3 Conclave https://github.com/R3Conclave Last accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
26 / 95

https://bosch-ext.mediaspace.de.kaltura.com/media/Towards+an+Ecosystem+for+Open+Cloud-Native+Secure+Multiparty+Computation/0_3yk5mxli
https://bosch-ext.mediaspace.de.kaltura.com/media/Towards+an+Ecosystem+for+Open+Cloud-Native+Secure+Multiparty+Computation/0_3yk5mxli
https://gitlab.com/securityengineering/CBMC-GC-2
https://github.com/Cosmian/CipherCompute
https://cosmian.com/
https://github.com/circify/circ Last accessed: October 2024
https://github.com/edwjchen/Silph
https://github.com/milana2/ParallelizationForMPC
https://github.com/multiparty/conclave
https://github.com/R3Conclave

D-16-468
Public

2.4.8 Demeter
Demeter is a MPC-as-a-service platform by Partisia Blockchain13. It uses a MPC protocol called
REAL14. REAL is based on Boolean values and support for arithmetic protocols is in its roadmap.
Details for the implementation of this protocol are not publicly available. Partisia is part of a
project to create a privacy-preserving platform for health data in Denmark15 but information
about their protocols or frameworks is not available.

2.4.9 Divvi Up and Prio
Divvi Up16 it a system for privacy-preserving aggregate statistics used for collecting telemetry
data. It is based on Prio [131]17, an actively private framework for computing aggregate statis-
tics. Privacy of the inputs is ensured as long as one participant is honest; on the other hand,
correctness is only ensured if all computing parties are honest. The idea is that the client sends
the query and generates the precomputed values for the computing parties to use. Divvi Up
is developed by the Internet Security Research Group (ISRG) and used by Mozilla Firefox 18 and
Horizontal19. A fork of Divvi Up is used by Tinfoil for browser data collection20.

2.4.10 EMP
Efficient Multi-Party Computation (EMP) toolkit21 implements garbled circuits with different secu-
rity models. For example, the toolkit also includes a multiparty authenticated garbled circuit pro-
tocol [106] for malicious security. EMP has been used for clinical research to power VaultDB [132].

2.4.11 EasySMPC
EasySMPC [133]22 is a no-code tool simplifying the practical application of secure multiparty com-
putation. Its secure computation is based on additive secret sharing and the arithmetic extension
of GMW protocol for the passive security case. The goal of EasySMPC is to demonstrate that MPC
can be made easy to use and deploy and it currently only supports computing sums.

2.4.12 EzPC
EzPC [134]23 (pronounced easy-peasy) offers a C-like language for secure machine learning with
a compiler and several secure computation frameworks. EzPC supports secret sharing, garbled
circuits, and function secret sharing. Its initial version used ABY as a backend but it now contains

13Demeter https://partisiablockchain.com/demeter-mpc-as-a-service/ Last accessed: October 2024
14REAL protocol https://partisiablockchain.com/roadmap-spotlight-3-arithmetic-mpc-real-

protocol/ Last accessed: October 2024
15Oscar project https://www.oscar-project.com/about Last accessed: October 2024
16Divvi Up https://divviup.org/, source code in https://github.com/divviup Last accessed: October 2024
17Prio https://crypto.stanford.edu/prio/ Last accessed: October 2024
18Divvi Up blog. Divvi Up is providing privacy-preserving metrics for Firefox 2023 https://divviup.org/blog/

divvi-up-in-firefox/ Last accessed: October 2024
19Divvi Up blog. Bringing Privacy-respecting Telemetry to Human Rights Defenders 2023 https://divviup.org/

blog/horizontal/ Last accessed: October 2024
20Divvi Up and Tinfoil software https://github.com/divviup/janus Last accessed: October 2024
21EMP https://github.com/emp-toolkit Last accessed: October 2024
22EasySPMC https://github.com/easy-smpc/easy-smpc Last accessed: October 2024
23EzPC repository https://github.com/mpc-msri/EzPC, project page https://www.microsoft.com/en-us/

research/project/ezpc-easy-secure-multi-party-computation/ Last accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
27 / 95

https://partisiablockchain.com/demeter-mpc-as-a-service/
https://partisiablockchain.com/roadmap-spotlight-3-arithmetic-mpc-real-protocol/
https://partisiablockchain.com/roadmap-spotlight-3-arithmetic-mpc-real-protocol/
https://www.oscar-project.com/about
https://divviup.org/
https://github.com/divviup
https://crypto.stanford.edu/prio/
https://divviup.org/blog/divvi-up-in-firefox/
https://divviup.org/blog/divvi-up-in-firefox/
https://divviup.org/blog/horizontal/
https://divviup.org/blog/horizontal/
https://github.com/divviup/janus
https://github.com/emp-toolkit
https://github.com/easy-smpc/easy-smpc
https://github.com/mpc-msri/EzPC
https://www.microsoft.com/en-us/research/project/ezpc-easy-secure-multi-party-computation/
https://www.microsoft.com/en-us/research/project/ezpc-easy-secure-multi-party-computation/

D-16-468
Public

several of its own secure computation implementations. Notably, its Aramis component uses
trusted hardware to lift passively secure protocols to active security and GPU-MPC runs function
secret sharing accelerated on GPUs. It supports protocols for two and three parties. EzPC sup-
ports signed and unsigned integers as well as Boolean values. EzPC is developed by Microsoft
Research India.

2.4.13 Fairplay
Fairplay [135] was one of the first MPC frameworks, demonstrating a two-party implementation
of garbled circuits. FairplayMP [136]24 extend this to an n-party setting by implementing a BMR
protocol with the setup from honest-majority BGW protocol. Both versions of Fairplay supported
a language called SFDL to program the secure computation. It is no longer being maintained.

2.4.14 FANNG-MPC
FANNG-MPC [137]25 is a framework for actively secure MPC. It is geared towards machine-learning-
as-a-service applications with secure two-party computation. It is a successor of SCALE-MAMBA
(Section 2.4.35) that is data focused, adds support for databases, and contains many optimisa-
tions toward machine learning. It considers the online-offline paradigm for mixed-mode pro-
tocols. Its goal is to decouple these phases and allow conversion from different precomputed
values to online protocol, for example MPC precomputation for two-party online phase. Pre-
computation of triples is using FHE, bits is using OT and also circuit garbling can be computed
in preprocessing. FANNG supports Boolean, integer and fixed point arithmetic. FANNG is devel-
oped by Cryptography Research Centre in Technology Innovation Institute in Abu Dhabi.

2.4.15 FBPCP
The Facebook Private Computation Platform (FBPCP)26 uses the FBPCF [138]27 framework for
secure two-party computation. The framework uses a mixed-mode EMP toolkit (Section 2.4.10)
and Boolean secret sharing based on GMW while also implementing ORAM. No new features are
currently being added to this project. It is developed by Meta Research and has been used to
analyse ad performance28.

Note that Meta is also behind the development of a research tool for privacy-preserving machine
learning called CrypTen [139]29.

2.4.16 FRESCO
FRamework for Efficient and Secure COmputation (FRESCO)30 is a computation framework that
supports the TinyTables protocol for passive security and SPDZ and SPDZk

2 protocols for active
security. FRESCO supports fixed-point, Boolean, and integer computations and implements sup-

24FairplayMP https://github.com/FaiplayMP/FairplayMP Last accessed: October 2024
25FANNG-MPC https://github.com/Crypto-TII/FANNG-MPC Last accessed: October 2024
26FBPCP https://github.com/facebookresearch/fbpcp Last accessed: October 2024
27FBPCF https://github.com/facebookresearch/fbpcf Last accessed: October 2024
28Meta news. What Are Privacy-Enhancing Technologies (PETs) and How Will They Apply to Ads? 2021 https://about.

fb.com/news/2021/08/privacy-enhancing-technologies-and-ads/ Last accessed: October 2024
29CrypTen https://crypten.ai/ Last accessed: October 2024
30FRESCO documentation https://fresco.readthedocs.io/, source https://github.com/aicis/fresco

Last accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
28 / 95

https://github.com/FaiplayMP/FairplayMP
https://github.com/Crypto-TII/FANNG-MPC
https://github.com/facebookresearch/fbpcp
https://github.com/facebookresearch/fbpcf
https://about.fb.com/news/2021/08/privacy-enhancing-technologies-and-ads/
https://about.fb.com/news/2021/08/privacy-enhancing-technologies-and-ads/
https://crypten.ai/
https://fresco.readthedocs.io/
https://github.com/aicis/fresco

D-16-468
Public

port for external input and output parties. FRESCO supports Boolean circuits in the Bristol for-
mat31. FRESCO is developed by Alexandra Institute. It has been used for financial benchmark-
ing [140].

2.4.17 Frigate
Frigate [141] is a compiler from a C-like language to circuits. It supports the DUPLO protocol for
garbled circuit evaluation.

2.4.18 FudanMPL
FudanMPL32 offers various tools for secure multiparty computation for machine learning. They
have implementations of homomorphic encryption and garbled circuits, and they are also using
MP-SPDZ (Section 2.4.28). FudanMPL is developed by the Data Security and Governance Research
Group at Fudan University.

2.4.19 Helium
Helium [142]33 is a secure computation platform based on multiparty homomorphic encryption.
Helium is built using Lattigo (Section 2.4.24). It achieves passive security.

2.4.20 FUSE
FUSE [143]34 is a framework for unifying and optimising secure computation implementations. It
is a layer between the compiled circuit and secure computation execution. FUSE supports HyCC
(Section 2.4.22), Bristol circuit format and MOTION (Section 2.4.27) circuits as inputs that can be
converted to FUSE representation. FUSE then uses MOTION and MP-SPDZ as secure computation
backends for executing the computation. The goal of FUSE is to ensure efficient storage for
the circuits and enable interoperability of MPC compilers and computation frameworks. FUSE is
developed by the Cryptography and Privacy Engineering Group at TU Darmstadt.

2.4.21 HybrTC
HybrTC [30] considers a hybrid approach between MPC and TEE execution allowing the partici-
pants to pick an execution scheme depending on which level of trust they are willing to put to the
guarantees given by TEEs. On the MPC side, HybrTC supports BMR protocol for garbled circuits,
secret sharing with BGW protocol and homomorphic encryption. Any of the computing parties
can be actively corrupted on the assumption that the adversary can not access the root key used
for the TEEs. The input and output parties can be passively corrupted. The input and output
parties can be semi-honestly corrupted.

31Bristol format https://nigelsmart.github.io/MPC-Circuits/ Last accessed: October 2024
32FuranMPL https://github.com/FudanMPL Last accessed: October 2024
33Helium https://github.com/ChristianMct/helium Last accessed: October 2024
34FUSE https://github.com/encryptogroup/FUSE Last accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
29 / 95

https://nigelsmart.github.io/MPC-Circuits/
https://github.com/FudanMPL
https://github.com/ChristianMct/helium
https://github.com/encryptogroup/FUSE

D-16-468
Public

2.4.22 HyCC
HyCC compiler [144]35 compiles C to a mixed-mode MPC protocol for GMW and garbled circuits
protocols. Outputs of HyCC can be evaluated by ABY and MOTION (Section 2.4.27). HyCC is based
on GBMC-GC (Section 2.4.3).

2.4.23 JIFF
JIFF36 is a Javascript library tailored for MPC protocol prototyping and development of privacy-
preserving web applications. It provides passive security with secret sharing. JIFF is developed
by Boston University. It has been used for a Boston wage cap study [145].

2.4.24 Lattigo
Lattigo37 is a lattice-based multiparty homomorphic encryption library written in Go. It imple-
ments BFV, BGV, and CKKS in their multiparty versions. It is used to implement [112] and the
PELTA protocol. Lattigo is developed by Tune Insight.

2.4.25 LIBSCAPI
Libscapi38 (where SCAPI means Secure Computation API) is a secure computation API in C++
for implementing both two-party and multiparty computation. It has been used for various re-
search systems for garbled circuits, replicated sharing based computation, the GMW protocol,
and more39. Libscapi is developed by Bar Ilan University.

2.4.26 Manticore
Manticore [146, 147] combines passively secure additive secret sharing and garbled circuits with
half-gates and free XOR optimisations. The protocol has passive security with dishonest majority.
Manticore operates in the online-offline paradigm where the offline phase is carried out by a
trusted dealer or by the computing parties using an interactive protocol. In the trusted dealer
model, the trusted party is the garbler and the computing parties all evaluate the garbled circuits.
Manticore supports fixed-point and Boolean arithmetic.

2.4.27 MOTION and ABY
MOTION [148]40 is a framework for mixed-protocol secure computation. It combines arithmetic
and Boolean GMW over rings and OT-based BMR protocol [97], introducing conversions between
the protocols. MOTION uses integer and Boolean values. This results in a dishonest-majority pas-
sively secure framework. MOTION implements asynchronous evaluation where each gate in the
circuit can be computed as soon as its inputs are available. MOTION uses HyCC (Section 2.4.22)
to compile C code to MPC protocols.

35HyCC https://gitlab.com/securityengineering/HyCC Last accessed: October 2024
36JIFF https://github.com/multiparty/jiff Last accessed: October 2024
37Lattigo https://github.com/tuneinsight/lattigo Last accessed: October 2024
38Libscapi https://github.com/cryptobiu/libscapi Last accessed: October 2024
39MPC benchmarking tool https://github.com/cryptobiu/MPC-Benchmark Last accessed: October 2024
40MOTION https://github.com/encryptogroup/MOTION Last accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
30 / 95

https://gitlab.com/securityengineering/HyCC
https://github.com/multiparty/jiff
https://github.com/tuneinsight/lattigo
https://github.com/cryptobiu/libscapi
https://github.com/cryptobiu/MPC-Benchmark
https://github.com/encryptogroup/MOTION

D-16-468
Public

MOTION2NX 41 extends MOTION by adding different two-party passively secure protocols. MOTION-
FD [149]42 enhances MOTION with function-dependent preprocessing for honest-majority three-
party protocols. MOTION-FD also supports fixed-point computation.

MOTION is also a successor of ABY (Section 2.3.6.1)43, especially implementing ideas from [119].
However, the implementation of ABY3[120]44 is independent. Both MOTION and ABY are devel-
oped by Cryptography and Privacy Engineering Group at TU Darmstadt.

2.4.28 MP-SPDZ
Multi-Protocol SPDZ (MP-SPDZ) [150]45 is a framework to compare and benchmark MPC proto-
cols. It has implementations of a vast set of protocols for different security models and compu-
tation methods, including SPDZ, SPDZ2k , BMR, and replicated secret sharing. All these protocols
can be used with a common programming interface. Programs in MP-SPDZ are written in Python
and compiled into bytecode specific to the MP-SPDZ virtual machine. The standard library sup-
ports operations on secret integers, fixed-point numbers, and floating-point numbers.

A notable feature of MP-SPDZ is support for a subset of the Keras interface for private neural
network training and evaluating. Also, an ORAM protocol enables accessing arrays with a secret
index. MP-SPDZ does not support database operations, or table joins, and all application data
must fit into memory.

MP-SPDZ is developed by CSIRO Data61 Engineering & Design.

2.4.29 MPyC
Multiparty Computation in Python (MPyC)46 is a framework for passively secure n-party computa-
tion with honest majority with Shamir’s secret sharing in the BGW protocol. MPyC is a follow-up to
VIFF (Section 2.4.52). Protocols for MPyC can be written in Python and the goal is to mimic Python
built-in functions with an MPC backend. MPyC supports integer, fixed-point, floating-point, and
finite field arithmetic. It also supports group arithmetic used for threshold cryptography. MPyC
also supports lists and arrays, including lists with oblivious access.

A variation of this framework called hMPC47 is also implemented in Haskell. An extension to
verifiable version of MPyC that uses zero-knowledge proofs is in development48. MPyC has also
been ported for use in web browsers49.

MPyC has been used by TNO to develop a privacy-preserving system to predict heart failure50.
41MPOTION2NX https://github.com/encryptogroup/MOTION2NX Last accessed: October 2024
42MOTION-FD https://github.com/encryptogroup/MOTION-FD Last accessed: October 2024
43ABY https://github.com/encryptogroup/ABY Last accessed: October 2024
44ABY3 https://github.com/ladnir/aby3 Last accessed: October 2024
45MP-SPDZ https://github.com/data61/MP-SPDZ Last accessed: October 2024
46MPyC documentation https://www.win.tue.nl/~berry/mpyc/, source code https://github.com/

lschoe/mpyc Last accessed: October 2024
47hMPC https://github.com/nickvgils/hMPC Last accessed: October 2024
48Verifiable MPyC https://github.com/toonsegers/verifiable_mpc/ Last accessed: October 2024
49MPyC for web applications https://github.com/e-nikolov/mpyc-web Last accessed: October 2024
50Marie Beth van Egmond. Identifying heart failure patients at high risk using MPC 2020 https://medium.

com/applied-mpc/identifying-heart-failure-patients-at-high-risk-using-mpc-ab8900e75295 Last
accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
31 / 95

https://github.com/encryptogroup/MOTION2NX
https://github.com/encryptogroup/MOTION-FD
https://github.com/encryptogroup/ABY
https://github.com/ladnir/aby3
https://github.com/data61/MP-SPDZ
https://www.win.tue.nl/~berry/mpyc/
https://github.com/lschoe/mpyc
https://github.com/lschoe/mpyc
https://github.com/nickvgils/hMPC
https://github.com/toonsegers/verifiable_mpc/
https://github.com/e-nikolov/mpyc-web
https://medium.com/applied-mpc/identifying-heart-failure-patients-at-high-risk-using-mpc-ab8900e75295
https://medium.com/applied-mpc/identifying-heart-failure-patients-at-high-risk-using-mpc-ab8900e75295

D-16-468
Public

2.4.30 Obliv-C
Obliv-C secure computation compiler51 is a C extension for two-party garbled circuit execution. It
adds an obliv qualifier to C types. It was used to build the Absentminded Crypto Kit52 to support
MPC. Obliv-C was used to design a system to match students to sororities [151]. The library is no
longer being maintained.

2.4.31 ObliVM
ObliVM [152]53 provides a Java-like language for programming secure computation for a backend
using garbled circuits. ObliVM is no longer being maintained.

2.4.32 OpenFHE
OpenFHE [153]54 is an open source project and initiative for implementing post-quantum fully
homomorphic encryption. OpenFHE contains all the capabilities of the PALISADE55 library for
homomorphic encryption. In addition, it contains features of HElib [154]56 and HEAAN57. It im-
plements BGV, BFV, CKKS, LMKCDEY and FHEW schemes. It also contains threshold variants of
BGV, BFV and CKKS for multiparty use. In addition, it supports switching between some of the
encryption schemes and computing more complex operations. OpenFHE is extended by Intel
HEXL Acceleration58 to accelerate some of its operations.

OpenFHE is used by Duality to build their Duality Query Engine for secure data collaboration59.

2.4.33 PICCO
PICCO (Private dIstributed Computation COmpiler) [155, 156]60 is a compiler for an extension
of C to a Shamir’s secret sharing-based MPC protocol. It supports passive security for an arbi-
trary number of parties with honest majority. Another implementation that corresponds with
the PICCO formalisation is also available61. PICCO supports Boolean, integer, and floating-point
computations.

51Obliv-C https://github.com/samee/obliv-c/ Last accessed: October 2024
52Absentminded Crypto Kit https://bitbucket.org/jackdoerner/absentminded-crypto-kit/ Last ac-

cessed: October 2024
53ObliVM https://github.com/oblivm Last accessed: October 2024
54OpenFHE initiative https://www.openfhe.org/, source code https://github.com/openfheorg Last ac-

cessed: October 2024
55PALISADE FHE library https://palisade-crypto.org/ Last accessed: October 2024
56Helib https://github.com/homenc/HElib Last accessed: October 2024
57HEAAN https://heaan.it/ source code https://github.com/snucrypto/HEAAN Last accessed: October

2024
58Intel HEXL Acceleration for OpenFHE https://github.com/openfheorg/openfhe-hexl Last accessed: Octo-

ber 2024
59Duality Query Engine by Duality https://dualitytech.com/platform/duality-query/ Last accessed: Oc-

tober 2024
60PICCO https://github.com/applied-crypto-lab/picco Last accessed: October 2024
61Alternative implementation of PICCO https://github.com/applied-crypto-lab/formal-picco Last ac-

cessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
32 / 95

https://github.com/samee/obliv-c/
https://bitbucket.org/jackdoerner/absentminded-crypto-kit/
https://github.com/oblivm
https://www.openfhe.org/
https://github.com/openfheorg
https://palisade-crypto.org/
https://github.com/homenc/HElib
https://heaan.it/
https://github.com/snucrypto/HEAAN
https://github.com/openfheorg/openfhe-hexl
https://dualitytech.com/platform/duality-query/
https://github.com/applied-crypto-lab/picco
https://github.com/applied-crypto-lab/formal-picco

D-16-468
Public

2.4.34 PySyft, SyMPC and Sycret
PySyft62 is a framework for privacy-preserving machine learning and data science.

SyMPC63 is a library extending PySyft with secure multiparty computation features. It supports
the ABY3 and Falcon [157] protocols for both active and passive security, and FSS and SPDZ com-
putation for passive security. The focus of the project is on training and evaluating neural net-
works.

Sycret64 is a function secret sharing library with Rust backend used in PySyft. It also makes use
of AES-NI hardware acceleration. It is not yet production ready.

PySyft and related tools are part of the OpenMined open-source software for privacy-preserving
data analysis. They have been used by the United Nations PET Lab to analyse international
trade65.

2.4.35 SCALE-MAMBA
The framework called Secure Computation Algorithms from LEuven Multiparty AlgorithMs Basic
Argot (SCALE-MAMBA)66 started out as a follow-up to earlier SPDZ protocol developments but
later was expanded to support computations with various secure computation methods. For
example, it combines linear secret sharing and garbled circuits. Applicatio programming is done
in Rust. Some implemented protocols provide support for data types such as 64-bit integers,
integers modulo a prime, fixed-point numbers, and IEEE floating point numbers. The standard
library contains common math operations, oblivious memory access, and programmable input-
output. SCALE-MAMBA uses a multi-threaded architecture for the precomputation phase.

Support for SCALE-MAMBA development was discontinued in 2023 [137]. FANNG-MPC (Sec-
tion 2.4.14) is a fork of SCALE-MAMBA seeking to create a new MPC framework which is used,
e.g. by CipherCompute (Section 2.4.4).

2.4.36 SEAL
Microsoft Simple Encrypted Arithmetic Library (SEAL)67 offers implementations of HE schemes
and provides an API for writing protocols. It supports addition and multiplication of encrypted
real numbers and integers. It supports BFV, BGV and CKKS schemes.

2.4.37 Secrecy
Secrecy [158]68 is a passively secure computation framework based on a three-party replicated
secret sharing protocol [70]. The focus of the project is on optimising SQL queries for an MPC
backend. Work has been done towards supporting the MP-SPDZ (Section 2.4.28) backend in Se-

62PySyft https://github.com/OpenMined/PySyft Last accessed: October 2024
63SyMPC https://github.com/OpenMined/SyMPC/ Last accessed: October 2024
64Sycret https://github.com/OpenMined/sycret Last accessed: October 2024
65UN Statistics wiki. United Nations PET Lab: International Trade https://unstats.un.org/wiki/display/

UGTTOPPT/16.+United+Nations+PET+Lab%3A+International+Trade Last accessed: October 2024
66SCALE-MAMBA https://github.com/KULeuven-COSIC/SCALE-MAMBA Last accessed: October 2024
67SEAL https://github.com/microsoft/SEAL Last accessed: October 2024
68Secrecy https://github.com/CASP-Systems-BU/Secrecy Last accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
33 / 95

https://github.com/OpenMined/PySyft
https://github.com/OpenMined/SyMPC/
https://github.com/OpenMined/sycret
https://unstats.un.org/wiki/display/UGTTOPPT/16.+United+Nations+PET+Lab%3A+International+Trade
https://unstats.un.org/wiki/display/UGTTOPPT/16.+United+Nations+PET+Lab%3A+International+Trade
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/microsoft/SEAL
https://github.com/CASP-Systems-BU/Secrecy

D-16-468
Public

crecy, as well as using Carbyne Stack69 (Section 2.4.2). Secrecy is developed by Boston University.
It has been used for a digital health study and secure cross-site analytics70.

2.4.38 SecretFlow
SecretFlow [159, 160]71 is a framework for privacy-preserving data analysis and machine learn-
ing. It has backends using secure multiparty computation, trusted execution environments, and
homomorphic encryption. It also supports differential privacy. Its Secure Processing Unit has a
Python API for ML application development; this is compiled to PPHLO (Privacy-Preserving High-
Level Operations) executed by the backend. The MPC backends include a passively secure varia-
tion of ABY3 for three parties protocols, SPDZ2k for n-parties, and Cheetah [161] for two parties.
It also includes a Secure Collaborative Query Language (SCQL) – a system that translates SQL to
mixed public and MPC computations. SecretFlow also has a homomorphic encryption processing
unit. SecretFlow is developed by Ant Group Co.

2.4.39 SEEC
SEEC [162]72 is a framework for memory safety in passively secure two-party computation. It
uses the GMW protocol and the Boolean part of ABY (Section 2.4.27). It is developed by the
Cryptography and Privacy Engineering Group at TU Darmstadt.

2.4.40 Sequre
Sequre [163]73 is a recent framework proposed for bioinformatics pipelines. It is based on ad-
ditive secret sharing and homomorphic encryption and offers passive security. It operates in a
trusted dealer model where the dealer generates the randomness the online phase needs from
the precomputation phase. It proposes optimisations to the specific cases of the Beaver multi-
plication protocol where the values can be cached and other specialised protocols.

2.4.41 Senate
Senate [164] is an actively secure MPC framework for analytics and SQL queries. The idea is to
divide computations to subcircuits so that only a subset of parties evaluates each circuit. The
secure evaluation uses authenticated multiparty garbled circuits based on [106] implementation
in EMP (Section 2.4.10).

69Bosch Tube: John Liagouris. Secrecy: Secure collaborative analytics in untrusted clouds 2022 https:
//bosch-ext.mediaspace.de.kaltura.com/media/SecrecyA+Secure+collaborative+analytics+in+
untrusted+clouds/0_j66zkevf Last accessed: October 2024

70Bosch Tube: John Liagouris. Secrecy: Secure collaborative analytics in untrusted clouds 2022 https://bosch-
ext.mediaspace.de.kaltura.com/media/SecrecyA+Secure+collaborative+analytics+in+untrusted+
clouds/0_j66zkevf Secrecy is used in https://www.bu.edu/hic/research/focused-research-programs/
continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/
and https://research.redhat.com/blog/research_project/secure-cross-site-analytics-on-
openshift-logs/ Last accessed: October 2024

71SecretFlow https://www.secretflow.org.cn/ source code in https://github.com/secretflow Last ac-
cessed: October 2024

72SEEC https://github.com/encryptogroup/SEEC/ Last accessed: October 2024
73Sequre https://github.com/0xTCG/sequre Last accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
34 / 95

https://bosch-ext.mediaspace.de.kaltura.com/media/SecrecyA+Secure+collaborative+analytics+in+untrusted+clouds/0_j66zkevf
https://bosch-ext.mediaspace.de.kaltura.com/media/SecrecyA+Secure+collaborative+analytics+in+untrusted+clouds/0_j66zkevf
https://bosch-ext.mediaspace.de.kaltura.com/media/SecrecyA+Secure+collaborative+analytics+in+untrusted+clouds/0_j66zkevf
https://bosch-ext.mediaspace.de.kaltura.com/media/SecrecyA+Secure+collaborative+analytics+in+untrusted+clouds/0_j66zkevf
https://bosch-ext.mediaspace.de.kaltura.com/media/SecrecyA+Secure+collaborative+analytics+in+untrusted+clouds/0_j66zkevf
https://bosch-ext.mediaspace.de.kaltura.com/media/SecrecyA+Secure+collaborative+analytics+in+untrusted+clouds/0_j66zkevf
https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/
https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/
https://research.redhat.com/blog/research_project/secure-cross-site-analytics-on-openshift-logs/
https://research.redhat.com/blog/research_project/secure-cross-site-analytics-on-openshift-logs/
https://www.secretflow.org.cn/
https://github.com/secretflow
https://github.com/encryptogroup/SEEC/
https://github.com/0xTCG/sequre

D-16-468
Public

2.4.42 SEPIA
SEPIA [165]74 (SEcurity through Private Information Aggregation), was one of the earlier MPC
frameworks and used Shamir’s secret sharing. It is secure in a passive model with an honest
majority. SEPIA specified an API for programmers but did not include its own programming
language. It is no longer being maintained. An extension of SEPIA with an offline phase [166]
was developed prior to this approach becoming widely used.

2.4.43 Sharemind MPC
Sharemind MPC framework75 is a secure multiparty computation platform based mainly on ad-
ditive secret sharing for both active and passive security. There are prototypes using garbled
circuits and homomorphic encryption as well as support for ABY and FRESCO backends. Share-
mind MPC is maintained by Cybernetica as a commercially available product with documentation
for application developers being public 76 and tools published as open source77.

While original versions of Sharemind MPC were limited to a specific three-party protocol set, the
current release of Sharemind MPC is compatible with multiple secure computing approaches
with varying number of computing parties and security guarantees. An incomplete list is pro-
vided in [167]. The most efficient and further developed protocol suite in the Sharemind MPC
framework is the three-party passively secure protocol based on additive secret sharing over Z2k

that is secure against one corrupted party [168]. It supports integer, fixed-, and floating-point
data, as well as comparison operations [168], bit-shifts, real numbers [169, 170]), AES block ci-
pher invocation [171], shuffling and sorting [172], and oblivious RAM [173].

Some Sharemind MPC protocol implementations are developed using a protocol description lan-
guage (PDSL) [174]. The PDSL optimises the protocols and generates code that is tens of times
more efficient than hand-implemented code [175]. The privacy of protocols implemented using
the PDSL can also be proved automatically using a special tool [34]. SecreC [175], a C-like high-
level language, is used for specifying private computation tasks. Sharemind MPC comes with
a standard library of operations for descriptive statistics, quality control, outlier removal, sta-
tistical testing, regression analysis, and more. The SecreC programming language reference78

and the SecreC standard library reference79 are publicly available online. One potential frontend
for Sharemind MPC is the R-like statistical analysis engine called Rmind [176] which allows data
scientist to explore and analyse a database without being able to see individual records.

74SEPIA https://sites.google.com/view/sepia-mpc/startseite Last accessed: October 2024
75Sharemind MPC. Cybernetica. https://cyber.ee/products/sharemind-mpc Last accessed: October 2024.
76Sharemind Developer Zone https://docs.sharemind.cyber.ee/sharemind-mpc Last accessed: October

2024
77Sharemind software development kit https://github.com/sharemind-sdk Last accessed: October 2024
78SecreC language reference. https://docs.sharemind.cyber.ee/sharemind-mpc/2023.09/

development/secrec-reference.html Last accessed: October 2024
79SecreC Standard Library. https://docs.sharemind.cyber.ee/2023.09/api/secrec-stdlib Last ac-

cessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
35 / 95

https://sites.google.com/view/sepia-mpc/startseite
https://cyber.ee/products/sharemind-mpc
https://docs.sharemind.cyber.ee/sharemind-mpc
https://github.com/sharemind-sdk
https://docs.sharemind.cyber.ee/sharemind-mpc/2023.09/development/secrec-reference.html
https://docs.sharemind.cyber.ee/sharemind-mpc/2023.09/development/secrec-reference.html
https://docs.sharemind.cyber.ee/2023.09/api/secrec-stdlib

D-16-468
Public

Sharemind MPC has been used for statistical studies in Estonia [177, 178], as well as by Asemio
in an antipoverty and early childhood education study in USA80, and in a multi-site clinical study
between hospitals in Germany and Italy81 [179].

2.4.44 Silent Compute
Silent Compute82 is a framework for privacy-preserving data analytics. According to their web-
page, they support basic arithmetic (addition, subtraction, multiplication, division or a function
with a combination of these), querying function (sorting, joining, filtering), and machine learning
based on Shamir’s secret sharing. Silent Compute is developed by Silence Laboratories.

2.4.45 Swanky
Swanky83 is a suite of Rust libraries for secure computation. Swanky currently contains passively
secure garbled circuits for both Boolean and arithmetic case, protocols for secure set intersec-
tion, and tools for zero-knowledge proofs. It aims to cover active security in the future. Swanky
is developed by Galois Inc and has been used for sharing Department of Education data in the
US [180].

2.4.46 Symphony
Symphony [181]84 is an MPC programming language inspired by Wysteria (Section 2.4.54), EMP
(Section 2.4.10) and Obliv-C (Section 2.4.30). Its goal is to combine the best ideas of the previ-
ous languages. Uses EMP (Section 2.4.10) and MOTION (Section 2.4.27) as MPC backends. It is
developed by the Programming Languages Group at University of Maryland.

2.4.47 Tandem
Tandem85 is a framework for actively secure two-party computation using garbled circuits based
on [103]. Applications can be programmed in Garble86, a language for garbled circuits program-
ming. Garble is statically typed, low-level, purely functional and inspired by Rust. Tandem is de-
veloped by the SINE foundation – a think-and-do tank offering solutions for data sharing dilem-
mas.

80Asemio. How Tulsa Is Preserving Privacy and Sharing Data for Social Good 2019 https://asemio.com/wp-
content/uploads/2022/10/How-Tulsa-is-Preserving-Privacy-and-Sharing-Data-for-Social-Good-
2.pdf Last accessed: October 2024

81LMU Munich. Data security: Breakthrough in research with personalized health data, 2024. https:
//www.lmu.de/en/newsroom/news-overview/news/data-security-breakthrough-in-research-with-
personalized-health-data.html Last accessed: October 2024

82Silent Compute https://www.silencelaboratories.com/silent-compute Last accessed: October 2024
83Swanky https://github.com/GaloisInc/swanky Last accessed: October 2024
84Symphony https://github.com/plum-umd/symphony-lang Last accessed: October 2024
85Tandem https://github.com/sine-fdn/tandem Last accessed: October 2024
86Garble https://github.com/sine-fdn/garble-lang Last accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
36 / 95

https://asemio.com/wp-content/uploads/2022/10/How-Tulsa-is-Preserving-Privacy-and-Sharing-Data-for-Social-Good-2.pdf
https://asemio.com/wp-content/uploads/2022/10/How-Tulsa-is-Preserving-Privacy-and-Sharing-Data-for-Social-Good-2.pdf
https://asemio.com/wp-content/uploads/2022/10/How-Tulsa-is-Preserving-Privacy-and-Sharing-Data-for-Social-Good-2.pdf
https://www.lmu.de/en/newsroom/news-overview/news/data-security-breakthrough-in-research-with-personalized-health-data.html
https://www.lmu.de/en/newsroom/news-overview/news/data-security-breakthrough-in-research-with-personalized-health-data.html
https://www.lmu.de/en/newsroom/news-overview/news/data-security-breakthrough-in-research-with-personalized-health-data.html
https://www.silencelaboratories.com/silent-compute
https://github.com/GaloisInc/swanky
https://github.com/plum-umd/symphony-lang
https://github.com/sine-fdn/tandem
https://github.com/sine-fdn/garble-lang

D-16-468
Public

2.4.48 TASTY
TASTY [121] (Tool for Automating efficient Secure Two-partY)87 is a framework combining gar-
bled circuits and homomorphic encryption for secure two-party computation. It was the first
framework to compile circuits for its own use. It is no longer being maintained.

2.4.49 TF-Encrypted
TF-Encrypted88 is a framework for privacy-preserving deep learning in TensorFlow. It has a secure
multiparty computation backend, Moose89, that uses three-party replicated secret sharing in the
passive security model based on [70]. Moose supports integer and fixed-point arithmetic. It also
supports a version of the SPDZ protocol called Pond90 where precomputation is done by a trusted
party, SecureNN [182], and ABY391. TF-Encrypted was created by Cape Privacy (when it was known
as Dropout Labs) and is currently a community project maintained by TF-Encrypted92.

2.4.50 TinyGarble
TinyGarble [183]93 uses hardware circuit generation tools to optimise circuits for garbled circuits.
It also implements a garbled circuits protocol with several optimisations. This work is succeeded
by TinyGarble 2.0 [51]94 for garbled circuit evaluation with both passive and active security that
uses some components of the EMP toolkit (Section 2.4.10). It covers several optimisations as well
as abstractions to ease the use of garbled circuits.

2.4.51 TNO-MPC
TNO-MPC95 is a collection of tools and protocols for MPC. It includes, inter alia, implementations
of Shamir’s secret sharing and Paillier encryption. It also uses the MPyC framework for some
computations. TNO-MPC implements protocols for secure comparison and approximate match-
ing as well as inner joins using Paillier encryption. These tools are developed by the Nether-
lands Organisation for Applied Scientific Research (TNO) PET Lab. TNO has developed privacy-
preserving financial risk score propagation [184]. TNO has also developed an MPC system to
identify heart failure risks96; however, it is unclear if the tools in their open source library were
used.

87TASTY https://github.com/encryptogroup/tasty Last accessed: October 2024
88TF-Encrypted source code https://github.com/tf-encrypted Last accessed: October 2024
89Moose https://github.com/tf-encrypted/moose Last accessed: October 2024
90Ben DeCoste. Announcing SecureNN in tf-encrypted 2018 https://medium.com/dropoutlabs/announcing-

securenn-in-tf-encrypted-9c9c3e8a5a52 Last accessed: October 2024
91TF-Encrypted protocolhttps://github.com/tf-encrypted/tf-encrypted/tree/master/tf_encrypted/

protocol Last accessed: October 2024
92TF-Encrypted https://tf-encrypted.io/ Last accessed: October 2024
93TinyGarble https://github.com/esonghori/TinyGarble Last accessed: October 2024
94TinyGarble2.0 https://github.com/IntelLabs/TinyGarble2.0 Last accessed: October 2024
95TNO-MPC https://github.com/TNO-MPC/ Last accessed: October 2024
96Marie Beth van Egmond. Identifying heart failure patients at high risk using MPC 2020 https://medium.

com/applied-mpc/identifying-heart-failure-patients-at-high-risk-using-mpc-ab8900e75295 Last
accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
37 / 95

https://github.com/encryptogroup/tasty
https://github.com/tf-encrypted
https://github.com/tf-encrypted/moose
https://medium.com/dropoutlabs/announcing-securenn-in-tf-encrypted-9c9c3e8a5a52
https://medium.com/dropoutlabs/announcing-securenn-in-tf-encrypted-9c9c3e8a5a52
https://github.com/tf-encrypted/tf-encrypted/tree/master/tf_encrypted/protocol
https://github.com/tf-encrypted/tf-encrypted/tree/master/tf_encrypted/protocol
https://tf-encrypted.io/
https://github.com/esonghori/TinyGarble
https://github.com/IntelLabs/TinyGarble2.0
https://github.com/TNO-MPC/
https://medium.com/applied-mpc/identifying-heart-failure-patients-at-high-risk-using-mpc-ab8900e75295
https://medium.com/applied-mpc/identifying-heart-failure-patients-at-high-risk-using-mpc-ab8900e75295

D-16-468
Public

2.4.52 VIFF
Virtual Ideal Function Framework (VIFF)[185]97 was the first framework for asynchronous proto-
cols. For asynchronous behaviour, it also featured a scheduler that allowed the evaluation of op-
erations as soon as the inputs were available. The protocol set offers security for active adaptive
corruption of up to n/3 parties using Shamir’s secret sharing in the BGW protocol. The protocol
does not guarantee the success of the preprocessing, but in case of successful preprocessing,
the online protocol has guaranteed output delivery for the honest parties. Implementation sup-
ports 3 or more parties and 32-bit numbers. Protocols for VIFF can be written in Python. VIFF is
no longer being developed.

2.4.53 Virtual Data Lake
Virtual Data Lake (VDL)98 offers an MPC engine and a Python package to interact with it. Their
MPC is based on the BGW protocol using Shamir’s secret sharing and offers semi-honest secu-
rity for honest majority99. VDL supports signed and unsigned integers, Booleans, fixed-point
numbers and strings. Users can use a Python package called crandas100 to get access to data
structures and analysis tools. The crandas package is designed to be similar to the pandas Python
package but for use with the VDL secure computation backend. Operations supported by cran-
das include filtering, shuffling, slicing, merging and joining tables, linear and binomial logistic
regression for statistics. VDL is developed by Roseman Labs and has been used to collect infor-
mation about digital threats101.

2.4.54 Wysteria
Wysteria [186]102 is a high-level functional language with an interpreter running a Boolean-circuit
version of the GMW protocol. Wysteria also automatically verifies that the compiled secure com-
putation protocol indeed has the same functionality as the program implemented by the devel-
oper in the high level language. A verified extension of it called Wys∗ is considered in [187].

2.4.55 XOR
Inpher’s XOR103 is a service by Inpher with a FHE-based backend using TFHE scheme and MPC
backend with Manticore (Section 2.4.26) and a trusted dealer. XOR is mostly directed at privacy-
preserving machine learning. XOR has been used for financial fraud detection104 and financial
intelligence sharing105. It is also an enabling component in an Analytics Network for Asset Man-
agers with CPP Investments and privacy-preserving data collection environment with DataCo.

97VIFF https://github.com/mgeisler/viff Last accessed: October 2024
98Virtual Data Lake by Roseman Labs https://rosemanlabs.com/ Last accessed: October 2024
99Roseman Labs blog. Beyond Apple’s Homomorphic Encryption software 2024 https://rosemanlabs.com/en/

blogs/beyond-apples-homomorphic-encryption-software Last accessed: October 2024
100Roseman Labs blog. About Roseman Labs’ package, crandas 2024 https://rosemanlabs.com/en/blogs/

about-roseman-labs-package-crandas Last accessed: October 2024
101Roseman Labs blog. SecureNed, important building block for Public-Private information sharing 2024

https://rosemanlabs.com/en/blogs/securened-important-building-block-for-public-private-
information-sharing Last accessed: October 2024

102Wysteria https://bitbucket.org/aseemr/wysteria/wiki/Home Last accessed: October 2024
103XOR secret computing https://inpher.io/xor-secret-computing/ Last accessed: October 2024
104https://inpher.io/solutions/by-industry/financial-services/ Last accessed: October 2024
105The Global Coalition to Fight Financial Crime. Future of Financial Intelligence Sharing (FFIS) Innovation

and discussion paper: Case studies of the use of privacy preserving analysis to tackle financial crime 2020

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
38 / 95

https://github.com/mgeisler/viff
https://rosemanlabs.com/
https://rosemanlabs.com/en/blogs/beyond-apples-homomorphic-encryption-software
https://rosemanlabs.com/en/blogs/beyond-apples-homomorphic-encryption-software
https://rosemanlabs.com/en/blogs/about-roseman-labs-package-crandas
https://rosemanlabs.com/en/blogs/about-roseman-labs-package-crandas
https://rosemanlabs.com/en/blogs/securened-important-building-block-for-public-private-information-sharing
https://rosemanlabs.com/en/blogs/securened-important-building-block-for-public-private-information-sharing
https://bitbucket.org/aseemr/wysteria/wiki/Home
https://inpher.io/xor-secret-computing/
https://inpher.io/solutions/by-industry/financial-services/

D-16-468
Public

2.4.56 XSCE
XSCE (XDP Secure Computing Engine)106 is an MPC framework in the XDP platform based on
MP-SPDZ (Section 2.4.28). XSCE combines secret sharing, homomorphic encryption, and trusted
execution environments. XDP is developed by ParityBit Technologies.

2.5 Overview and Comparison of the Secure Multiparty
Computation Tools
The goal of this section is to summarise the information from Section 2.4. First, Section 2.5.1
references some literature that focuses on comparing the listed tools. Section 2.5.2 groups the
tools included in this overview according to their main features. Some of the previously men-
tioned tools are frameworks that enable secure computation while others are tools that support
the development but do not offer full solutions.

2.5.1 Prior Comparisons
Various prior works have attempted to compare some of the secure computation frameworks
and tools. In addition, most MPC framework publications also present their own comparison
to prior works. This section lists some papers that have focused on comparing different secure
computation platforms. Notably, it is the goal of MP-SPDZ [150] to enable efficient benchmarking
of different proposed protocols. Also, [73] gives a good overview of protocols with dishonest
majority in the active security setting.

A comparison of EMP, Obliv-C, ObliVM, TinyGarble, Wysteria, ABY, SCALE-MAMBA, Sharemind
MPC, PICCO, Frigate and GBMC-GC can be found in [188]. This comparison focuses on general
purpose compilers providing a language to describe the functions and executing the secure com-
putation protocols underneath. In addition to functionality and features of the MPC frameworks,
this work also considers usability as an aspect for comparison. More specifically, it focuses on
the expressability of the language used to program MPC applications, core secure computation
method, number of computing parties, security model, level of documentation and available
support. Follow-up work is presented at https://github.com/MPC-SoK/frameworks. Previ-
ously, the Bar Ilan University also used Libscapi to implement comparable versions of different
MPC protocols107. Another tool for MPC benchmarking is also being developed by TU Darm-
stadt108. Currently it contains ABY, MOTION, MP-SPDZ and SEEC but no overview of the findings
has been published.

MP-SPDZ and MPyC are compared and profiled in [189, 190]. Both works benchmark the execu-
tion of basic operations like addition and multiplication and report that MP-SPDZ outperforms
MPyC and has a more optimised compiler. The comparison in [189] notes that the asynchronous
architecture of MPyC can outperform MP-SPDZ for high latency networks.

Lattigo, SEAL, PALISADE, HEAAN, and other tools for fully homomorphic encryption are compared
in [191, 192]. The goal of [192] is to propose benchmarks suitable to evaluate the performance of
the homomorphic computation while [191] focuses on benchmarking specific applications. Both
works compare the implemented encryption algorithms and the language of implementation.

https://www.gcffc.org/wp-content/uploads/2020/06/FFIS-Innovation-and-discussion-paper-
Case-studies-of-the-use-of-privacy-preserving-analysis.pdf Last accessed: October 2024

106XSCE https://github.com/paritybit-ai/XSCE Last accessed: October 2024
107MPC Benchmarking tool https://github.com/cryptobiu/MPC-Benchmark Last accessed: October 2024
108MPC benchmarking tool https://github.com/encryptogroup/mpc-bench Last accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
39 / 95

https://github.com/MPC-SoK/frameworks
https://www.gcffc.org/wp-content/uploads/2020/06/FFIS-Innovation-and-discussion-paper-Case-studies-of-the-use-of-privacy-preserving-analysis.pdf
https://www.gcffc.org/wp-content/uploads/2020/06/FFIS-Innovation-and-discussion-paper-Case-studies-of-the-use-of-privacy-preserving-analysis.pdf
https://github.com/paritybit-ai/XSCE
https://github.com/cryptobiu/MPC-Benchmark
https://github.com/encryptogroup/mpc-bench

D-16-468
Public

[191] also provides an account of the accessibility of the source code and documentation and
their last updates.

An overview of secure computation techniques applied for machine learning can be found in [193].

The correctness of MPC compilers in MP-SPDZ, EzPC and EMP is analysed in [194] which detected
many errors that either crashed the compilers or created incorrect MPC protocols. This work
also proposes a testing framework for such compilers that can be used by follow-up work to
ensure better quality of MPC compilers. A similar line of work for the verification of correctness
of deep learning with MPC with PySyft, TF-Encrypted and CrypTen is carried out in [195]. They
also managed to find several cases where the outputs of the MPC version and public version of
the algorithms deviated.

2.5.2 Classification
The list presented in Section 2.4 covered tools for various aspects of secure multiparty compu-
tation and its use. Many of the tools share common characteristics in terms of functionality or
purpose and some multi-purpose tools cover several aspects at once. The tools listed here can
be classified as those providing compilation or language support for MPC, libraries to develop
MPC, frameworks that facilitate running MPC, and platforms for large scale MPC deployments
as follows.

2.5.2.1 Compilers and Languages

First, a number of compilers and languages exist that enable users to program applications
for secure multiparty computation. Some tools generate circuits from a higher level language:
CBMC-GC, CirC, Frigate, OblivC, ObliVM, Senate. There are also languages like Symphony, Wys-
teria, and Secrecy that can support various MPC backends. Senate can be seen either as a frame-
work or an interface making the EMP toolkit more easy to use for data analytics. Similarly, the
focus of Secrecy is on optimising SQL queries for its MPC backend. Sequre is also a framework,
but the focus is on detecting, which parts of a bioinformatics pipeline need to be executed using
secure computation.

HyCC is a compiler for a mixed-mode MPC protocol enabling to efficiently choose which protocol
to execute. Similar functionality is also supported by the EzPC and SecretFlow frameworks. FUSE
and COMBINE are both recently proposed intermediate representations that enable various op-
timisations of the circuits for secure computation and support mixed-mode protocols. They both
support MP-SPDZ and MOTION as secure computation backends.

Note that many of the frameworks like EMP, PICCO, Sharemind MPC, and Tandem also define
their own languages. For Sharemind MPC, the SecreC language can be used to develop applica-
tions and a PDSL exists for protocol optimisation. While SecreC currently targets Sharemind MPC,
it is open source and support for other MPC backends can be added with a significant amount
of its standard library functionality automatically being ported over. Some other frameworks like
MP-SPDZ, MPyC, SCALE-MAMBA, and Virtual Data Lakes support languages that closely follow
common programming languages like Python, Rust, or C. However, this should not be taken to
mean that one can execute any program in these languages with these MPC frameworks. Rather,
they define languages like the core language or specific packages for these languages that can
then be used to develop code for the MPC applications.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
40 / 95

D-16-468
Public

2.5.2.2 Libraries and APIs

Some tools in Section 2.4 are providing libraries or APIs to enable programming secure multi-
party computation applications. There are various libraries for developing homomorphic encryp-
tion, like Lattigo, Libscapi, OpenFHE, SEAL. These can be and have been used to develop secure
multiparty computation applications. TNO-MPC libraries include both homomorphic encryption
as well as secret sharing for secure computation. Swanky and JIFF are intended for developing
secure multiparty computation.

2.5.2.3 MPC Frameworks

Most of the tools listed in Section 2.4 are general MPC frameworks. In this context, the term
framework refers to a collection of tools to facilitate secure computations by performing orderly
execution of MPC protocols. Hence a framework exhibits some form of a runtime system and
interfaces for running user-defined MPC applications. Frameworks vary in terms of features:
some have extra capabilities necessary for real deployments, e.g. I/O and networking, while
others serve as minimal proofs of concept or academic implementations.

A summary of MPC frameworks is given in Table 2. The Method column indicates the core secure
computation method, with FHE standing for fully homomorphic encryption, GC for garbled cir-
cuits, SS for secret sharing, and ’mixed’ for a combination of the protocols. Mixed-mode protocols
are often a combination of SS and GC, and occasionally also FHE, especially in the precomputa-
tion phase. Uses of TEE and FSS are explicitly noted in the table as these are emerging trends in
MPC likely to grow further in the near future. # of Parties indicates the exact number of com-
puting parties involved in the secure computation or the lower limit thereof. In the latter case,
a ‘+’ sign is added, e.g. 2+ means for 2 or more parties. For protocols requiring a helper party,
this helper party is counted as one additional party. For open source solutions, the table also
lists the year of the last update in their repositories. The Application Development column lists
programming languages and other supporting tools that users may use to build applications for
the framework. For the cases where the table lists Python, Rust or C, the main idea is that the
respective language is similar to these languages or represents a special version thereof. The
column for real-life applications indicates if there are known applications with real data for this
framework. All these applications are referenced in the respective subsections in Section 2.4.
Empty cells in the table indicate that no information was found.

Of the listed frameworks, Fairplay, SEPIA, TASTY, TinyGarble, and VIFF are mainly of historical
importance. SCALE-MAMBA is also no longer being maintained but lives on in FANNG-MPC and
CipherCompute and has been actively used in research. On the other side, frameworks like Aster-
isk, FANNG-MPC, Helium, SEEC, Sequre, SecretFlow are very recent proposals and it remains to be
seen if they will eventually develop beyond the stage of academic implementations supporting
merely a short string of scientific publications. Some frameworks, such as EMP, MP-SPDZ, EzPC,
MOTION, MPyC have already been well established in the academic setting, are actively devel-
oped, and are important research tools. Others, such as CipherCompute, Demeter, SecretFlow,
Sharemind MPC, Virtual Data Lake, and XOR also have commercial offerings.

There are many recent applications for secure computation in privacy-preserving machine learn-
ing. Some design their own protocols or implement their own versions of existing protocols while
others use existing frameworks like MP-SPDZ and MOTION. Frameworks like FANNG-MPC, EzPC,
PySyft, SecretFlow, XOR, TF-Encrypted, and versions of MOTION are implemented with privacy-
preserving machine learning as the main target application but they can also support other kinds
of computation.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
41 / 95

D-16-468
Public

Many others, such as CipherCompute, FRESCO, Helium, Manticore, MOTION, MPyC, MP-SPDZ,
SCALE-MAMBA, Sharemind MPC, Tandem, Virtual Data Lake and XSCE are intended for generic
secure computation tasks. Sharemind MPC, Silent Compute, and Virtual Data Lakes are espe-
cially tailored for data analysis applications. Divvi Up also supports specific aggregated statistics
computations. Some frameworks, like HybrTC, Secrecy and Senate are focused on supporting
database operations.

For the JOCONDE System, the focus is on three-party secure computation in the active security
model with a dishonest majority. From Table 2, the existing MPC frameworks that could fulfil
these requirements are CipherCompute, EMP, EzPC, FANNG-MPC, FRESCO, FudanMPL, MP-SPDZ,
PySyft, SCALE-MAMBA, Senate, Sharemind MPC, TF-Encrypted, and XSCE. Furthermore, as dis-
cussed in Chapter 4, passive security MPC frameworks can be considered in combination with
TEE.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
42 / 95

D-16-468

Public

Table 2. Summary of MPC frameworks

Framework Security Model Method # of
Parties

Open
Source

Last Up-
dated

Application
Development

Focus Real-Life
Applications

Asterisk active dishonest
majority with helper
party

SS 3+ yes 2024 Large scale secure computation

CipherCompute active dishonest
majority

mixed 2+ yes 2021 Rust Generic secure computation

Demeter no Blockchain

Divvi Up active dishonest
majority for privacy,
passive for
correctness

SS 2+ yes 2024 Aggregate statistics, collecting
telemetry data

yes

EMP passive and active
dishonest majority

GC 2+ yes 2024 Symphony,
Senate

Garbled circuits research yes

EasySMPC passive dishonest
majority

SS 2+ yes 2023 Graphical user
interface

Ease of MPC development,
biomedical data sharing

EzPC passive and active mixed,
FSS,
TEE

2, 3 yes 2024 C-like Machine learning

Fairplay passive GC 2+ yes 2015 SFDL, CBMC-GC Generic secure computation

FANNG-MPC active dishonest
majority

mixed 2+ yes 2024 Rust Machine learning

FBPCP mixed 2 yes 2024 Privacy-preserving advertising yes

FRESCO passive and active
dishonest majority

SS 2+ yes 2024 Generic secure computation yes

FudanMPL passive and active mixed 2+ yes 2024 Machine learning

JOCONDE D2.1 Technology Survey and Analysis

30.12.2024

1.0

43 / 95

D-16-468

Public

Table 2. Summary of MPC frameworks (continued)

Framework Security Model Method # of
Parties

Open
Source

Last Up-
dated

Application
Development

Focus Real-Life
Applications

Helium passive FHE 2+ yes 2024 Generic secure computation

HybrTC active computing
parties, passive input
and output parties

mixed,
TEE

2+ no Database queries

JIFF passive SS 2+ yes 2024 Javascript Web applications yes

Manticore passive dishonest
majority

mixed 2+ no Generic secure computation

MOTION passive dishonest
majority

mixed 2+ yes 2023 COMBINE, FUSE,
HyCC

Generic secure computation

MP-SPDZ passive and active mixed 2+ yes 2024 Python,
COMBINE, FUSE

MPC protocol benchmarking

MPyC passive honest
majority

SS 3+ yes 2024 Python Generic secure computation yes

PICCO passive honest
majority

SS 3+ yes 2024 C Compiler from C to MPC

PySyft active and passive mixed,
FSS

2+ yes 2024 Python Machine learning yes

SCALE-MAMBA active dishonest
majority

mixed 2+ yes 2022 Rust Generic secure computation

Secrecy passive SS 3 yes 2023 SQL Database operations yes

SecretFlow passive mixed,
TEE

2+ yes 2024 Python Data analysis and machine
learning

SEEC passive mixed 2 yes 2024 Memory safe implementation

JOCONDE D2.1 Technology Survey and Analysis

30.12.2024

1.0

44 / 95

D-16-468

Public

Table 2. Summary of MPC frameworks (continued)

Framework Security Model Method # of
Parties

Open
Source

Last Up-
dated

Application
Development

Focus Real-Life
Applications

Sequre passive trusted dealer mixed 3+ yes 2024 Python Biomedical data sharing

Senate active GC 2+ no SQL Database operations

SEPIA passive honest
majority

SS 3+ yes 2018 API, no language Generic secure computation

Sharemind MPC passive and active mixed 2, 3 partial 2023 SecreC, Rmind Generic secure computation yes

Silent Compute SS 2+ no Data analysis

Tandem active GC 2 yes 2024 Garble Generic secure computation

TASTY passive mixed 2 yes 2016 Generic secure computation

TF-Encrypted passive and active SS 3 yes 2024 Machine learning

TinyGarble passive and active GC 2 yes 2023 Generic secure computation

VIFF active honest
majority

SS 3+ yes 2014 Python Generic secure computation

Virtual Data Lake passive honest
majority

SS 3+ no Python, crandas Data analysis yes

XOR passive mixed 2+ no Machine learning yes

XSCE active mixed,
TEE

2+ yes 2024 Python Generic secure computation

JOCONDE D2.1 Technology Survey and Analysis

30.12.2024

1.0

45 / 95

D-16-468
Public

2.5.2.4 MPC Platforms

An MPC platform can be thought of as an extension to an MPC framework with additional consid-
eration for practical deployments, e.g. workflows and automation. Distinctly, platforms do not
represent ad-hoc MPC deployments but should be able to serve a wide range of MPC applications
in a single deployment.

Carbyne Stack is an example of a dedicated platform. Employing MP-SPDZ as its MPC framework,
it provisions supplementary services for persistent storage, precomputation, and client APIs.
Similarly, Sharemind MPC offers platform functionality with its Application Server for orches-
trating task executions, client authentication and authorisation, persistent storage, and config-
uration. EasySMPC, SEPIA, and Divvi Up exhibit rudimentary platform features, enabling clients
to outsource use case-specific MPC tasks to a set of computing parties with user-defined input
data. Virtual Data Lake, XOR, and CipherCompute are solutions built around proprietary general-
purpose MPC platforms. Being catered for enterprise use cases, these solutions are closer to
what can be considered as an MPC service.

MPC service solutions. There is no single interpretation of what an MPC service (or MPC-as-a-
Service) is. One way is to see it as a marketplace, connecting prospective MPC users with a set
of computing nodes. In the Partisia Blockchain Infrastructure, an MPC-as-a-Service facilitates
acquiring a group of MPC nodes from a node pool to allocate a certain task; the allocated node
group in combination with a pre-defined task forms the MPC service109. This approach aims to
establish a self-sustained ecosystem of buyers and service providers.

In an alternative view, the MPC service is seen as the instance of a platform serving a dynamic
environment for enrolled users to organise and execute MPC tasks on demand. Examples of this
include the XOR Service110 which remotely orchestrates the execution of tasks, and Virtual Data
Lake111, in which the MPC nodes are operated by the service provider. Finally, the term MPC-as-
a-Service can be used to characterise a system that focuses on end-user serviceability, offering
a comprehensive abstraction for an MPC platform that is reminiscent of traditional information
systems. Both Roseman Labs and CipherCompute offer a self-service web interface for users to
organise and deploy tasks without external help: specify the computation, assign roles, approve
computation details, upload input data and download output data.

The MPC-as-a-service system of JOCONDE is, in essence, closer to the latter model. However,
contrary to the given examples, in which a platform is integral to the service, the JOCONDE Sys-
tem is envisioned as an independent layer of abstraction on top of a selected set of existing MPC
platforms.

2.6 Published MPC Projects Using Large Scale Real Data
A list of MPC deployments is managed by UC Berkeley112 and a list of applications using privacy-
enhancing technologies, including MPC and HE, is hosted by Centre for Data Ethics and Inno-

109Partisia Blockchain. MPC Techniques Series, Part 10: MPC-as-a-Service — the Partisia Blockchain Infrastruc-
ture https://medium.com/partisia-blockchain/mpc-techniques-series-part-10-mpc-as-a-service-
the-partisia-blockchain-infrastructure-9b4833e77965 Last accessed: October 2024

110XOR Service https://dev.inpher.io/xor/concepts/#xor-service Last accessed: October 2024
111Roseman Labs. Roseman Labs Help Center - I want to understand the product better https://support.

rosemanlabs.com/i-want-to-understand-the-product-better Last accessed: October 2024
112A hub for real-life MPC deployments https://mpc.cs.berkeley.edu/ Last accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
46 / 95

https://medium.com/partisia-blockchain/mpc-techniques-series-part-10-mpc-as-a-service-the-partisia-blockchain-infrastructure-9b4833e77965
https://medium.com/partisia-blockchain/mpc-techniques-series-part-10-mpc-as-a-service-the-partisia-blockchain-infrastructure-9b4833e77965
https://dev.inpher.io/xor/concepts/#xor-service
https://support.rosemanlabs.com/i-want-to-understand-the-product-better
https://support.rosemanlabs.com/i-want-to-understand-the-product-better
https://mpc.cs.berkeley.edu/

D-16-468
Public

vation113. The United Nations guide on privacy-enhancing technologies [196] also lists several
of the secure computation frameworks as tools to be considered for official statistics and gives
examples of real-life deployments. Some examples of MPC used in various situations are also
listed in [197] by the Centre of Excellence for Data Sharing and Cloud (CoE-DSC). Several compa-
nies operating in the MPC space can be found in the list of members of the MPC Alliance114.

The majority of published MPC use cases focus on proving the technical feasibility of the ap-
proach and benchmarking the computation results. For these purposes, they mostly use syn-
thetic data or real-world data that are already publicly available, rather than real-world confiden-
tial data.

The deployment of secure multiparty computation with real-world confidential data requires
overcoming organisational and legal obstacles on top of technical ones. Being used with large-
scale real-world confidential data is an indication of maturity of the MPC platform and experience
of the involved company in dealing with various MPC deployment aspects. Below, we have listed
MPC projects that have managed to process real-world confidential data.

Bold text indicates the framework. The domain or purpose of the project is presented together
with the customer organisation and the country where the project was conducted. If available,
the computing parties involved in the project are included.

Virtual Public Register (VPR) by Partisia with MPC backend in FRESCO is used in the OSCAR
project115 and its ongoing extension OSCAR Dream116 in Denmark. The computing parties are
the Danish Health Data Organisation (SDS) and Statistics Denmark (DST)117. A series of prepara-
tory projects led up to the OSCAR project118.

Virtual Data Lake was used by University Medical Center Utrecht and Roseman Labs in The
Netherlands for studying the effectiveness and value of podiatric care119.

Virtual Data Lake is used by the Municipality of Rotterdam and Roseman Labs in The Nether-
lands for empowering disadvantaged toddlers for educational success120.

Virtual Data Lake is used by the Municipality of Rotterdam and Roseman Labs in The Nether-
lands to study adverse childhood experiences121. This project is in development and should be
released in 2025.

113Centre for Data Ethics and Innovation. Repository of Use Cases https://cdeiuk.github.io/pets-adoption-
guide/repository/ Last accessed: October 2024

114MPC Alliance https://www.mpcalliance.org/ Last accessed: October 2024
115The OSCAR project https://www.oscar-project.com/ Last accessed: October 2024
116The OSCAR Dream project https://www.oscar-project.com/oscar-dream Last accessed: October 2024
117Virtual Public Register (VPR) Platform by Partisia https://www.partisia.com/products/confidential-

computing/ Last accessed: October 2024
118Series of project leading to OSCAR project https://onkologisktidsskrift.dk/samfund/1895-oscar-

projektet-skal-sikre-storre-indsigt-i-sundhedsudfordringer.html Last accessed: October 2024
119Roseman Labs. Dataspace Officially Launched: Breakthrough In (Preventive) Foot Care. First large-scale study

of the results of podiatric care in diabetes mellitus. https://rosemanlabs.com/en/customers/nederlandse-
vereniging-van-podotherapeuten-nvvp Last accessed: October 2024

120Roseman Labs. Gemeente Rotterdam empowers disadvantaged toddlers for educational success https:
//rosemanlabs.com/en/customers/gemeente-rotterdam-empowers-disadvantaged-toddlers-for-
educational-success Last accessed: October 2024

121Roseman Labs. UMC Utrecht: When patient data is too sensitive to share https://rosemanlabs.com/en/
customers/umc-utrecht-when-patient-data-is-too-sensitive-to-share Last accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
47 / 95

https://cdeiuk.github.io/pets-adoption-guide/repository/
https://cdeiuk.github.io/pets-adoption-guide/repository/
https://www.mpcalliance.org/
https://www.oscar-project.com/
https://www.oscar-project.com/oscar-dream
https://www.partisia.com/products/confidential-computing/
https://www.partisia.com/products/confidential-computing/
https://onkologisktidsskrift.dk/samfund/1895-oscar-projektet-skal-sikre-storre-indsigt-i-sundhedsudfordringer.html
https://onkologisktidsskrift.dk/samfund/1895-oscar-projektet-skal-sikre-storre-indsigt-i-sundhedsudfordringer.html
 https://rosemanlabs.com/en/customers/nederlandse-vereniging-van-podotherapeuten-nvvp
 https://rosemanlabs.com/en/customers/nederlandse-vereniging-van-podotherapeuten-nvvp
https://rosemanlabs.com/en/customers/gemeente-rotterdam-empowers-disadvantaged-toddlers-for-educational-success
https://rosemanlabs.com/en/customers/gemeente-rotterdam-empowers-disadvantaged-toddlers-for-educational-success
https://rosemanlabs.com/en/customers/gemeente-rotterdam-empowers-disadvantaged-toddlers-for-educational-success
 https://rosemanlabs.com/en/customers/umc-utrecht-when-patient-data-is-too-sensitive-to-share
 https://rosemanlabs.com/en/customers/umc-utrecht-when-patient-data-is-too-sensitive-to-share

D-16-468
Public

TNO (now its spinoff Linksight) worked with The Netherlands health insurer CZ, the Limburg hos-
pital Zuyderland Medical Center, and the Central Bureau of Statistics 2021 to analyse insurance
and medical outcome data 122.

The Linksight platform is used for monitoring elderly care in The Netherlands (Delft, Schieland,
Westland regions).123.

A Paillier encryption scheme implementation with threshold decryption is used for anti-money
laundering [198] in collaboration by TNO, ABN AMRO, and Rabobank in The Netherlands. Fea-
sibility of the approach is estimated on real data from a Dutch bank. Benchmarking is done on
synthetic data.

XOR is used for business intelligence and marketing for a financial product by bank subsidiaries
in The Netherlands, Belgium, and Luxembourg124.

Sharemind MPC was used in a privacy-preserving analysis of tumor treatment radiotherapy data
from two separate hospitals: the LMU University Hospital in Munich and the Policlinico Universi-
tario Fondazione Agostino Gemelli in Rome125 [179].

Sharemind MPC was used by the Tartu City Government’s Human Resources Department for an
employee satisfaction survey of Tartu city government employees126 [199]. Computing parties
were Alexandra Institute (Denmark), Cybernetica (Estonia) and Partisia (Denmark).

Sharemind MPC was used by CentAR (Estonia) to analyse data of students with special education
needs. The computing parties involved were the Ministry of Education, Ministry of Finance Infor-
mation Technology center RMIT, and Cybernetica, all in Estonia. The public cloud service provider
Zone.ee was used to host one of the computation servers. The other servers were hosted in the
private clouds of the computing parties127.

Sharemind MPC was used by Asemio in USA to study gaps in anti-poverty and early childhood ed-
ucation service delivery in order to find children in risk families for educational programmes128.

122TNO Linksight. Privacy-preserving analysis of patient data 2022 https://www.linksight.nl/en/content/ppa/
Last accessed: October 2024

123Linksight. Governance design for MPC data collaboration: Case study on the data collaboration in elderly care
sector monitoring impact of policies and measures taken on the state of care 2023 https://coe-dsc.nl/wp-
content/uploads/2023/06/governance-for-an-mpc-data-collaboration-based-on-elderly-care-
monitoring-case.pdf Last accessed: October 2024

124The Global Coalition to Fight Financial Crime. Future of Financial Intelligence Sharing (FFIS) Innovation
and discussion paper: Case studies of the use of privacy preserving analysis to tackle financial crime 2020
https://www.gcffc.org/wp-content/uploads/2020/06/FFIS-Innovation-and-discussion-paper-
Case-studies-of-the-use-of-privacy-preserving-analysis.pdf Last accessed: October 2024

125LMU Munich. Data security: Breakthrough in research with personalized health data, 2024. https:
//www.lmu.de/en/newsroom/news-overview/news/data-security-breakthrough-in-research-with-
personalized-health-data.html Last accessed: October 2024

126PRACTICE project. Pilot of the secure survey system created in PRACTICE 2016 https://practice-project.
technikon.com/blog/entry/pilot-of-the-secure-survey-system-created-in-practice.html. Last ac-
cessed: October 2024

127Cybernetica. National Special Education Data Analysed Securely 2017 https://cyber.ee/resources/news/
national-special-education-data-analysed-securely Last accessed: October 2024

128Asemio. How Tulsa Is Preserving Privacy and Sharing Data for Social Good 2019 https://asemio.com/wp-
content/uploads/2022/10/How-Tulsa-is-Preserving-Privacy-and-Sharing-Data-for-Social-Good-
2.pdf Last accessed: October 2024

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
48 / 95

https://www.linksight.nl/en/content/ppa/
https://coe-dsc.nl/wp-content/uploads/2023/06/governance-for-an-mpc-data-collaboration-based-on-elderly-care-monitoring-case.pdf
https://coe-dsc.nl/wp-content/uploads/2023/06/governance-for-an-mpc-data-collaboration-based-on-elderly-care-monitoring-case.pdf
https://coe-dsc.nl/wp-content/uploads/2023/06/governance-for-an-mpc-data-collaboration-based-on-elderly-care-monitoring-case.pdf
https://www.gcffc.org/wp-content/uploads/2020/06/FFIS-Innovation-and-discussion-paper-Case-studies-of-the-use-of-privacy-preserving-analysis.pdf
https://www.gcffc.org/wp-content/uploads/2020/06/FFIS-Innovation-and-discussion-paper-Case-studies-of-the-use-of-privacy-preserving-analysis.pdf
https://www.lmu.de/en/newsroom/news-overview/news/data-security-breakthrough-in-research-with-personalized-health-data.html
https://www.lmu.de/en/newsroom/news-overview/news/data-security-breakthrough-in-research-with-personalized-health-data.html
https://www.lmu.de/en/newsroom/news-overview/news/data-security-breakthrough-in-research-with-personalized-health-data.html
https://practice-project.technikon.com/blog/entry/pilot-of-the-secure-survey-system-created-in-practice.html
https://practice-project.technikon.com/blog/entry/pilot-of-the-secure-survey-system-created-in-practice.html
https://cyber.ee/resources/news/national-special-education-data-analysed-securely
https://cyber.ee/resources/news/national-special-education-data-analysed-securely
https://asemio.com/wp-content/uploads/2022/10/How-Tulsa-is-Preserving-Privacy-and-Sharing-Data-for-Social-Good-2.pdf
https://asemio.com/wp-content/uploads/2022/10/How-Tulsa-is-Preserving-Privacy-and-Sharing-Data-for-Social-Good-2.pdf
https://asemio.com/wp-content/uploads/2022/10/How-Tulsa-is-Preserving-Privacy-and-Sharing-Data-for-Social-Good-2.pdf

D-16-468
Public

3 Trusted Execution Environments
Passively secure secret sharing based MPC schemes are guaranteed not to leak any information
to processing parties that correctly follow the protocol. Actively secure variants of secret sharing
based MPC also protect against processing parties who deviate from the protocol to attack it.
In any case, confidential data are leaked if an intruder manages to break into the infrastructure
of a sufficient number of processing parties. In this case they can gather all the secret shares
together and reconstruct the original data.

Trusted Execution Environment (TEE) technology provides an additional layer of protection which
increases the cost of successful attacks. A TEE is a virtual environment for running software with
heightened security requirements, which makes intrusion even by privileged users extremely
difficult. Other software on the same system cannot see what exact data is processed inside of
the TEE. Remote users like data providers and other computing parties in a MPC setting can,
meanwhile, cryptographically verify that only the expected software runs inside the TEE. The
details of these capabilities are explained in Section 3.1.

Figure 1 illustrates the implications of such a technology for the data providers. Data providers
get the assurance that their confidential data is only processed in the agreed-upon way by the
pre-defined software, which prevents leaking of confidential data. In principle, the user usually
“knows” which software runs on their local computer1. When they use classical cloud services,
they have no choice but trusting that the security claims made by the cloud provider hold true,
as they have no way to gain insight or detect when the “security culture was inadequate” [202].

With TEEs, one can achieve a much higher confidence in the remote software, much closer to
that of local software than classic cloud services, as depicted in Figure 2.

In the context of an MPC system where computing parties run MPC software within TEE, if an
attacker finds a way to break into the TEE technology and breaks into a sufficient number of
computing parties, he might be able to extract the confidential data. To mitigate this risk, one
may consider using diverse TEE technologies from different vendors across the set of computing
parties. The increased level of security stems from the consideration that an exploit against a TEE
from one vendor is unlikely to also work for other TEEs from other vendors. Relying on multiple
TEE technologies should increase the cost of a successful attack to an impractical level, even for
very sophisticated and powerful attackers.

3.1 Fundamentals of TEE Technologies
In the previous section we have claimed that TEEs are beneficial for the JOCONDE System for two
distinct reasons: (1) software in TEEs can be verified, and (2) software in TEEs does not leak con-
fidential data. In this section we present the technical foundations of these claims. We focus our
attention on TEE technologies relevant for data center environments, leaving out TEEs designed
for handheld devices. In our presentation we shall favour simplicity over technical accuracy, as
our goal is to expose the main ideas to guide the development of the JOCONDE System in the
context of the current state of the art in technology.

TEEs extensively use cryptography to protect the data and the code. The keys for the crypto-
graphic operations themselves are managed by special hardware and software components.

1In practice, this might in fact only be true for tech-savvy users. Regular computer users are compelled to simply
trust that the operating system and software vendors care for the privacy concerns of their users [200, 201].

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
49 / 95

D-16-468
Public

TEE

?
Data Center

Storage

In-House

Storage

Data Provider

Trust Boundary Trust Boundary
(slightly weaker)

Figure 1. Data providers usually trust the software, hardware and employees within their com-
pany. TEE technology enables the data provider to extend their trust towards software running
on remote servers. The data provider may have never physically inspected the physical facilities
hosting the remote server. They can, however, verify that the remote machine runs the expected
software within a secure TEE. TEE technology is not the ultimate solution to data protection and
certain attack vectors remain possible. This implies that, in practice, trust towards an external TEE
is not always as solid as the trust towards own in-house infrastructure.

LESS
VERIFIABLE

MORE
VERIFIABLE

non-TEE
Cloud Services

Remote TEE
Software

Software in
Local Computer

Figure 2. The user of open source software on their local computer can in theory verify all the locally
running software and thus knows that their data is not leaked. In practice, the sheer amount of
source code is impossible to inspect extensively, and the vast base of consumer grade hardware is
largely not verifiable. Classical cloud services lie at the other end of this spectrum, as the only thing
a user can do is trusting that the service provider lives up to their claims. Remote software running
in a TEE can be verified thanks to cryptographic proofs during remote attestation. Some residual
risks still remain, since users cannot verify the physical and virtual environment where the TEE is
running in.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
50 / 95

D-16-468
Public

Other software on the same system residing outside the TEE lacks access to these encryption
keys. Most of the adopted cryptographic primitives are fairly standard. The complexity lies within
key management and the establishment of trust. The three core principles listed below are com-
mon across the various TEE technologies.

Protection of Working Memory (Figure 3a)
Data cannot easily leak from within a TEE. The TEE encrypts the working memory of the pro-
tected software with symmetric encryption. If anything outside of the TEE reads the working
memory it will just see meaningless noise. The symmetric encryption key is only accessible
by the CPU, and no mechanism exists for software to access it. When the TEE is destroyed,
the encryption key is erased.

Remote Attestation (Figure 3b)
A data provider can check what software is running in the remote TEE. This process is called
remote attestation. The underlying mechanism is simple: during the manufacturing process,
the TEE vendor creates a unique secret key for each CPU which is stored in two places: (1)
within the CPU, and (2) within an extra secure facility of the TEE vendor2. The vendor can
later recognise its CPU by verifying whether the CPU contains a recorded secret key.
During remote attestation, a special component on the CPU creates a proof about the trust-
worthiness of the platform. The proof contains a signature over hashes, so-called measure-
ments, of the protected software and some of its data. The special component creates the
signature with a private key. Again, no other component on the CPU can access this private
key. The TEE vendor knows the respective public key and can share it with the data provider.
The data provider trusts the TEE vendor and uses the public key to verify the signature in the
proof. The data provider then knows what software runs inside of the TEE and can decide
whether to trust the protected software and its computing environment. Reference [203]
illustrates the typical entities that are related to the concept of remote attestation and pro-
vides a common vocabulary.

Secure Data Exchange (Figure 3c)
The data provider can securely exchange data with the protected software. Secure data
exchange is usually initiated with a key exchange mechanism. One challenge for the data
provider is to ensure that the key exchange is indeed performed with the protected software,
and not with a so called man-in-the-middle [204]. This is solved with remote attestation, where
the signature also covers some key material which is used within the key exchange. The rest
of the key exchange and secure message exchange is standard procedure, and multiple soft-
ware projects indeed use the TLS cryptographic protocol (which makes HTTPS secure).

These three mechanisms allow the protection of the data during the transport phase from the
data provider to the protected software, and during the processing phase in the protected soft-
ware. The same measures help to ensure that only the output parties are allowed to download
the computation results.

Some TEE technologies like Intel® SGX have an integrated solution for data protection across
reboots of the TEE. This is called data sealing. However, this feature introduces new threats due
to possible state rollbacks and future vulnerabilities [205, 206].

2A direct implication is that an end-user needs to trust the CPU vendor throughout the lifetime of the TEE solution,
even after the CPU has been manufactured.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
51 / 95

D-16-468
Public

A B PRIVSYMM

TEE

C
TEE Memory
is unreadable

Malicious
Software

Protected
Software

(a) One key protects the working memory of the software within the TEE from other
software. This way, any extracted data just looks like meaningless noise. This key is
managed by the CPU.

Data
Owner

TEE
Vendor

Protected
Software

A B

C

B

Sign code &
chosen data

Verify Signature

PRIVSYMM
PUB

TEE

(b) A second key is used to establish trust in the software running inside of the TEE, and
the computing environment. This key is managed by the CPU and by the TEE vendor.

A B

C

PRIVSYMM

TEE

Data
OwnerProtected

Software

(c) A third key is used to establish a secure communication channel between the data
provider and the remote software in the TEE. This key is managed by the protected soft-
ware.

Figure 3. Three common key types are used in TEE technology.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
52 / 95

D-16-468
Public

3.2 Security Challenges
As mentioned previously, in its current form, TEE technology provides strong security measures.
Nevertheless, attackers with a sufficiently high budget might still be able to identify and exploit
weaknesses. This can result in data leakage or manipulation of processing results. Figure 4
shows which attack vectors TEEs commonly attempt to protect against. The TEE is usually built
upon special CPU instructions and supporting TEE components. As long as the TEE-related com-
ponents and instructions themselves are correctly implemented, malicious non-TEE components
cannot take control of or leak data out of the TEE. This means a malicious operating system
cannot break the confidentiality of the TEE. A less capable physical attacker is also blocked off.
Importantly, the protected software itself needs to be carefully written to avoid leaking secrets.
Certain architecture design decisions have an influence on the attack surface of the software
(Figure 5).

CPU �/ GPU�

Hypervisor

Operating System(s)

User Space TEE
Software

TEE
Helper
Modules

Physical
Environment

Other Hardware

Common TEE
Anticipated Attacker Capabilities

...

...

Trusted

Attacker-controlled

LEGEND

... Weak Attacker-
controlled

Figure 4. TEE technologies protect the enclosed software from highly privileged attackers if all
TEE-related hardware, firmware, and software components work as expected. The system remains
secure against an attacker who controls co-located user space software, the operating system, the
hypervisor, other unrelated hardware components, and is capable of performing some basic phys-
ical attacks.

In-Memory Workload

Immutable Software

External Storage

Software Updatesvs

vs

Easier to program,
configure & audit.
Smaller attack
surface.

Enables larger
workloads.
Supports high
availability (HA).

Architecture Design Decisions

Figure 5. The software architecture of a service comprises multiple design decisions, like the two
shown in this figure. These are trade-offs and determine in large parts the functional and quality
properties of the service. The JOCONDE System may be able to use the simpler approaches for these
two examples for the benefit of a smaller attack surface and easier audits.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
53 / 95

D-16-468
Public

A thorough overview of historical attacks and attack vectors is given in [207, 206, 208, 209]. The
most relevant takeaways from previous literature, complemented by our direct experience, can
be summarised as follows.

Vulnerable software in a TEE is still vulnerable software.
TEE technology aims to protect the enclosed software from unwanted access by the host.
However, the service inside of the TEE may explicitly expose endpoints to allow the outside
world to use the service. These endpoints are an attack vector and need to be carefully
secured. A failure to do so puts confidential data at risk. One prominent example of such
a failure is the Log4Shell remote-code-execution vulnerability [210], which would not have
been prevented by TEE technology.

Side-channel attacks may allow attackers to sidestep the TEE protection.
Attackers use side-channel attacks to extract a very small amount of bytes out of the TEE.
This attack vector remains viable even if the software inside of the TEE itself is (seemingly)
free of logic errors. Side-channel attacks try to exploit externally observable behaviour of low-
level implementation details of certain code snippets or of the hardware, to reconstruct a
couple of bytes of the data which is currently being processed. The targets of such attacks
are usually encryption keys, as they are small and can be used to decrypt larger volumes of
confidential data.

Persisted data might be extracted by future vulnerabilities.
If today a data provider uploads confidential data, a new security vulnerability discovered in
the near future could be used to exfiltrate this confidential data [206]. Hence confidential
data being stored in a TEE system for a long time is under higher risk than data stored only
ephemerally for a short amount of time.
Workloads in the JOCONDE System might be able to sidestep this attack vector. Its workloads
are short-lived, likely lasting up to a few dozen hours. Further, they are not mission-critical,
i.e. if a workload is interrupted due to a power outage, it is possible to start all over again.
This means that the TEE system only lives for a short amount of time, and no cryptographic
material needs to be persisted outside of the TEE to be able to recover from an interruption.

Sophisticated physical attacks are hard to shield against.
TEEs encrypt the working memory as it is stored in the RAM memory module. This protects
against cold boot attacks where a physical attacker removes a RAM memory module and
dumps its content. This is just a simple physical attack, and physical access to a CPU allows
for more sophisticated attacks which are mostly out of scope of the TEE threat models.
For example, [211] shows a fault injection attack performed via physical access. A successful
fault injection might alter the decision of some access control logic, or alter the output of a
cryptographic algorithm to then use further cryptanalysis to access confidential data [212].
Hence it is necessary to consider the security of the physical environment, like the data center
where a given CPU is located at.

How do end-users trust the software?
Data providers (and auditors) are stakeholders which need to be convinced of the system’s
security. This means that they need to have some trustworthy process in place for reviewing
the software, deriving the expected measurement values for the remote attestation process,
and securely configuring their end-user software.
Any error during the evaluation or configuration could put confidential data at risk. For ex-
ample, if data providers use an external3 website to upload their confidential data, they are
incapable to reliably verify the source code of that website.

3“Attacker-controlled”: Outside of the control of the end-user, e.g. operated by the host of the TEE service.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
54 / 95

D-16-468
Public

Software updates are complicated.
As software ages it needs to be updated. In the TEE context, this adds a risk factor if old data
are to be migrated from an old version to a new version of the TEE software. Such a mecha-
nism needs to ensure that only an approved, i.e. hopefully non-malicious, new version of the
TEE software can access the old data. This can become technically rather involved, especially
if service downtime is to be minimised. Getting the details right and convincing non-domain
experts of the security of such an update process might be complicated. Instead, wherever
possible, one should use short-lived, ephemeral workloads which don’t require software up-
dates.
Workloads in the JOCONDE System might be able to sidestep this attack vector. Its workloads are
short-lived analyses, likely lasting up to a few dozen hours. If a security fix becomes avail-
able, the upcoming workloads can be based on the updated software components. Running
workloads can be stopped or just let to run to the end, depending on the severity of the
vulnerability.

We believe that finding an exploit against a TEE technology requires (1) expert knowledge with
many years of experience creating low-level exploits, and (2) a good amount of sheer luck to use
the right tool from the right angle in the right spot, figuratively speaking. CPUs are very compli-
cated and various TEE-related hardware and software components are not publicly documented,
meaning that attackers oftentimes need to attack a black blox. An exploit itself is only useful if
the attacker is also able to bring the exploit to the TEE. For a physical exploit this means to break
into a data center, while for a software exploit one needs to break into some virtual infrastruc-
ture [213, 214, 215]. In conclusion, TEE technologies provide a strong layer of protection against
all but the most sophisticated attackers. We believe that the deployment process, configuration,
orchestration, and exposed endpoints of the protected software itself are easier targets for an
attacker.

If, however, an attacker manages to overcome all hurdles and successfully attack protected soft-
ware within a TEE, he might be able to extract encryption keys of the communication channels,
produce wrong results in the computation, modify some decision (“deny access” into “grant ac-
cess”), or gain direct access to the raw confidential data. In the JOCONDE System, depending on
how the TEE will be used, this may put the confidential data, the secret shares, or the correctness
of analysis results at risk.

Security vulnerabilities in TEEs have been found both by independent security researchers and
by security researchers working for TEE vendors. Security researchers follow the practice of re-
sponsible disclosure to give vendors enough time to fix the security vulnerabilities. Vendors have
processes in place to patch the CPU and TEE components [216, 217, 218, 219]. These update pro-
cesses are scrutinised as well [206, 220]. However, there have been security vulnerabilities requir-
ing fixes at the hardware level, or – if possible at all – expensive software-level workarounds [221,
222, 223].

3.3 TEE Technologies on the Market
3.3.1 Overview
Every available TEE technology can increase the security posture of a solution, if used correctly.
The TEE technologies mostly differ in architectural details and the available software ecosystem
support (a software overview can be found in Section 3.4). Table 3 shows a very high-level sum-
mary of the relevant TEEs. The different TEE technologies are introduced in more detail in the

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
55 / 95

D-16-468
Public

following subsections. A more detailed comparison can be found in [224, 225]. Note that we only
consider TEE technologies which are relevant in the data center environment. Similar isolation-
focused security technologies like the very widespread Secure Enclave from Apple [226], Trust-
Zone from ARM [227] etc. are considered too constrained for the JOCONDE project and hence
not listed in this comparison. TEE designs for the RISC-V architecture are omitted as it is un-
clear when they will be widely commercially available in European cloud environments. IBM’s
TEE technologies Secure Execution for Linux (SE) [228, 229, 230] and Protected Execution Facility
(PEF) [231] are omitted because public documentation concerning the remote attestation pro-
cess is lacking, and the authors could not find a convincing method for third-party end-users to
access measurements of user space applications during remote attestation.

TEE technologies can be roughly categorised into process-based, VM-based, and hybrid models.

Process-based
Process-based TEE technologies are designed to protect the part of an application (trusted
part) which processes confidential data. In addition to this trusted part, the TEE also con-
tains a small amount of special TEE-specific code. This means that the amount of software
within the TEE, the so-called Trusted Computing Base (TCB), is comparatively small, and so is
the attack surface.
Programming for a process-based TEE can be challenging without higher level abstractions
like Gramine (Section 3.4). The trusted part needs to be separate from the rest of the appli-
cation. Any input and output operations need to be forwarded by the untrusted part of the
application outside of the TEE. This results in an artificially complicated architecture. Pro-
gramming language selection might be restricted to languages like C and C++. Overall, de-
velopers are confronted with additional complexities for their choice of programming lan-
guages, dependencies, but also with regards to debugging and profiling capabilities. The
primary process-based TEE technology as of October 2024 is Intel® SGX.

VM-based
VM-based TEE technologies protect a full Virtual Machine (VM). This means that the operating
system kernel and all required user space applications and their dependencies are wholly en-
closed within the TEE. A software solution relying on VM-based TEE technology has a larger
TCB compared to a process-based TEE, and thus a larger attack surface. A wrong config-
uration or a backdoor in the kernel or a software dependency could fully circumvent the
protection offered by the TEE. On the other hand, these TEE technologies add protections
around a mostly standard VM. This means that developers can program for the confidential
VM using a rich selection of familiar tools, languages, dependencies, processes, etc. as they
would for a regular VM.

Hybrid
The AWS Nitro Enclaves represent a sort of a hybrid solution between process-based and VM-
based TEEs. They provide a VM as the runtime environment but isolate the VM from the rest
of the world, similar to process-based TEE technologies. The goal is to provide developers
with a rich development environment while keeping the attack surface small.

The JOCONDE System will likely support multiple TEE technologies, an approach similar to [37].
As mentioned in Section 3.2, every supported TEE technology provides a significant additional
security layer. As the JOCONDE System relies on distributed MPC computation, we are in the
position to use multiple TEE technologies on the different computing nodes to further improve
the security level of the system as a whole: an exploit identified for one specific TEE technology
would likely not work for other TEE technologies due to the differences in hardware implemen-
tation and TEE design. Hence it is recommended that the JOCONDE System software is designed

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
56 / 95

D-16-468
Public

Table 3. A summary of the TEE technologies considered relevant for the JOCONDE System.

TEE Technology Verdict

Intel® TDX Suitability for the JOCONDE System: Suitable
Intel® TDX is the x86-64 VM-based TEE offering from Intel®. Since an Intel® TDX
VM will contain a lot of software (kernel, all of the user space applications), more
work needs to be put into a security audit. However, it provides developers with
a familiar runtime environment and should not add more hurdles to software
development than necessary.

AMD SEV-SNP Suitability for the JOCONDE System: Suitable
AMD SEV-SNP is the x86-64 VM-based TEE offering from AMD. Since an AMD SEV-
SNP VM will contain a lot of software (kernel, all of the user space applications),
more work needs to be put into a security audit. However, it provides developers
with a familiar runtime environment and should not add more hurdles to soft-
ware development than necessary.

Intel SGX Suitability for the JOCONDE System: Challenging
Intel® SGX is the x86-64 Process-based TEE offering from Intel®. Its unique de-
sign shrinks the attack surface significantly, but severely restricts the developer
experience. If the software for JOCONDE can be written in a way that it works on
Intel® SGX, then Intel® SGX could provide a significant security improvement:
it makes the TEE layer more heterogeneous and hence maybe harder to intrude
compared to employing only VM-based TEE technologies.

ARM CCA Suitability for the JOCONDE System: Suitable when hardware becomes available
ARM CCA is the ARM64 VM-based TEE design from ARM. No hardware with
ARM CCA support exists as of October, 2024, but the authors believe that hard-
ware will be available rather sooner than later. Since an ARM CCA VM will contain
a lot of software (kernel, all of the user space applications), more work needs to
be put into a security audit. However, it provides developers with a familiar run-
time environment and should not add more hurdles to software development
than necessary.

AWS Nitro Enclave Suitability for the JOCONDE System: Likely Suitable
AWS Nitro Enclave is the VM-based TEE offering from AWS, available for both
x86-64 and ARM64. Since an AWS Nitro Enclave VM will contain a lot of software
(kernel, all of the user space applications), more work needs to be put into a
security audit. However, it provides developers with a mostly familiar runtime
environment, and most development friction is expected to arise due to the iso-
lation from the network: network requests need to be forwarded by a parent
EC2 instance. Similar to Intel® SGX, AWS Nitro Enclave provides a unique design
and would contribute to a more heterogeneous, i.e. maybe more secure, TEE
layer in the JOCONDE System.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
57 / 95

D-16-468
Public

in a way that is easily portable across various TEE technologies to reduce development costs.
Table 4 presents an overview of how easily software can be ported from one TEE technology to
another. We expect that targeting x86-64 VM-based TEE technologies creates the least amount
of development overhead while still achieving the intended goals of the project.

Table 4. A software solution needs to be modified when it is ported from one TEE technology to
another TEE technology. This table lists the major components requiring modifications for a given
port.
ISA: The software needs to be compiled to another Instruction Set Architecture, e.g. x86_64 to arm64
or vice versa; N: The network module; O: The orchestration module; RA: The remote attestation

module; SA: The overall software architecture. Note: the amount of rework depends on how well
the existing software solution happens to match the possibilities of the target TEE technology.

From

To
Intel® SGX TDX/SEV-SNP* ARM CCA AWS Nitro Enclave†

Intel® SGX N, O, RA, SA N, O, RA, SA N, O, RA, SA

TDX/SEV-SNP N, O, RA, SA RA ISA, RA N, O, RA

ARM CCA ISA, N, O, RA, SA ISA, RA N, O, RA

AWS Nitro Enclave ISA‡, N, O, RA, SA ISA‡, N, O, RA ISA‡, N, O, RA

*Intel® TDX and AMD SEV-SNP are similar enough that they can be merged in this table for brevity. The remote
attestation module requires the most additions for porting between these TEE technologies.

†AWS Nitro Enclave technology is available both for x86_64 and arm64; when porting to it one can therefore choose
a matching architecture and does not need to compile for another ISA.
‡An ISA change is only necessary if the source ISA and target ISA differ.

3.3.2 Intel SGX
3.3.2.1 Overview

Intel® SGX [232, 233, 234] is a process-based TEE technology. It was first made available in
2015. Initially it targeted end-user hardware, but in recent years the focus has shifted towards
enterprise and cloud environments. This section focuses only on the most recent enterprise and
cloud aspects of Intel® SGX, as end-user hardware no longer includes Intel® SGX technology.

The Intel® SGX TEE is called an enclave. The speciality of Intel® SGX enclaves is their small TCB.
Enclaves are created of just a shared object (.so) file. As a result, simpler enclaves can comprise
less than 0.5MiB of compiled code. This is achieved by including only the minimum amount of
functionality into enclaves. When using the Intel® SGX SDK, the default way is to use the C or
C++ programming languages. These languages can be embedded more easily into the enclave
environment. Languages like Java and Python usually require heavier runtimes (the Java Virtual
Machine or the Python Interpreter) which cannot run as-is with the Intel® SGX SDK. Additionally,
an enclave cannot be run as-is but needs to be embedded in an host application. This host
application needs to communicate with the storage, network peers, or perform other tasks on
behalf of the enclave (Figure 6). Since the host application is outside of the enclave, the enclave
code needs to assume that the host application might be malicious. Solutions exist which try to
hide the split into host and enclave, see for example Gramine in Section 3.4.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
58 / 95

D-16-468
Public

Operating
System

Operating
System

Untrusted
Part

Trusted
Part

Load

Create
from .so

Execute

ecall

ocall

Application

The Intel® SGX enclave, the trusted part,
lives inside of the application.

Enclaves are entered via ecalls.
Untrusted functions are called via ocalls.

System call
The untrusted part makes system calls on
behalf of the enclave, e.g. for disc access
or network communication

Inspect Memory

Inspect Memory

Intel® SGX does not grant access to the
working memory inside of the enclave.
The protection works even against
attackers with higher privileges.

Untrusted
Part

Trusted
Part

Figure 6. Intel® SGX enclaves have a very small TCB. This reduces the attack surface, but comes at
the cost of a restricted runtime environment. Enclaves need to be embedded in a host application.
(Destruction is omitted from the image for brevity.)

3.3.2.2 Properties

Auditable Codebase
The reduction of the TCB to a minimum allows the Intel® SGX specific boilerplate code (e.g.
provided in the form of the Intel® SGX SDK) and the enclave part of the application to be
reviewed. The code is still complicated but a lot less than in VM-based TEEs which include the
Linux kernel. However, developers might choose library-OS environments like Gramine (see
Section 3.4) to ease the development of enclaves, which increases the code base to review.

Runtime Identity
Due to the small size of enclaves, their identity is primarily determined by the hash of the .so
file (MRENCLAVE). Upon enclave creation the full .so data is loaded into memory and hashed.
It is thus trivial to detect whether two enclaves were created from the same enclave file.
In contrast, most VM-based TEEs use more complicated mechanisms where this cannot be
detected easily.

The Operating System Manages Threads
The untrusted operating system manages the threads which enter an enclave, and it can
suspend and resume them at any time. This means that bugs in the synchronization of multi-
threaded code inside of an enclave can be trivially exploited [235]. Another side effect of this
were the rather powerful single-stepping and zero-stepping techniques, best explained in the
paper explaining their mitigation [236].

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
59 / 95

D-16-468
Public

Restricted Environment
An SGX enclave is a restricted environment. Syscalls cannot be called, and thus no direct ac-
cess to e.g. logging (to console or files), thread or process management are available. This
complicates development in two ways: (1) An application/the code base needs to be split into
an untrusted host application and a trusted enclave. (2) One cannot use arbitrary program-
ming languages or dependencies, as these usually expect a regular user space environment.
As a countermeasure, library OS approaches like Gramine are used, however they increase
the code base again and cannot solve all problems.

Data Sealing
Intel® SGX enclaves have access to an encryption key for data sealing. The key is derived from
a unique secret fused into the CPU and of the MRENCLAVE value (more configuration options
exist [237]). This key can be re-derived by any enclave with the same MRENCLAVE value even
across reboots, but only on the same CPU. This feature can be used to encrypt data which can
only be decrypted by the same enclave, and thus as a building block to increase availability.
The data sealing capability needs to be used with care as it allows for state rollbacks and
enclave “twins” [205].

3.3.3 Intel TDX
3.3.3.1 Overview

Intel® TDX [238, 239, 240, 241] is a VM-based TEE technology and the second TEE offering on
Intel® server processors. It was first made available to the general public in 5th Gen Intel®
Xeon® Scalable Processors in 2023. It complements Intel® SGX and uses Intel® SGX enclaves
during remote attestation. Whereas Intel® TDX adds protection to unmodified VMs, the full
potential can only be achieved if the guest kernel and some user space component are aware of
Intel® TDX. Software developers are not restricted in their choice of technology, as long as it can
run inside of a VM and complies with the threat model. From a user perspective, it is overall very
similar to AMD SEV-SNP.

3.3.3.2 Properties

Large Trusted Computing Base
A VM usually contains a lot of software and may provide a large attack surface. Whereas
Intel® SGX and AWS Nitro Enclave encourage keeping only security-relevant code inside the
TEE, Intel® TDX allows placing all the code inside the VM. This increases the size of the Trusted
Computing Base. If some arbitrary ancillary service inside of the VM is vulnerable, it could
pose a threat to confidential data. Hence, considerably more code needs to be reviewed and
trusted.

Runtime Identity
VMs consist of multiple pieces, and Table 5 shows different strategies for how this can be
measured. Intel® TDX has multiple measurement registers for the different pieces of the
VM.

Familiar Runtime Environment
Since Intel® TDX adds protections around regular VMs, developers can use their familiar
software stacks for building services. As always, software dependencies need to be vetted for
trustworthiness, and any software processing confidential data should be hardened against
side-channel attacks.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
60 / 95

D-16-468
Public

Table 5. A traditional VM consists of multiple parts: UEFI firmware, the kernel, the kernel com-
mand line, initrd and the user space applications on some root file system. With confidential VMs,
this software stack can be measured in various ways [242]. Note that confidential VMs from cloud
providers do not necessarily allow all of these strategies and may provide a separate way.

User Space Measurement
Strategy

Description

Service in initrd A small and self-contained target service can be directly
started as /init out of initrd. This is trivially covered by
the measurement register(s) provided by the different
TEE-VM technologies

DM-verity The integrity of a read-only root block device can be cov-
ered by a hash tree with DM-verity. The root hash is pro-
vided as a kernel command line argument. Again, this
is covered by the various measurement register(s).

Virtual TPM and IMA The Linux Integrity Measurement Architecture (IMA)
hashes executables and certain files upon opening and
rolls up the hashes into Trusted Platform Module (TPM)
registers.
Intel® TDX: A TDX measurement register holds the
rolled-up hash.
AMD SEV-SNP: Using the new Virtual Machine Privi-
lege Level (VMPL) feature, one can implement a virtual
TPM [243].

3.3.4 AMD SEV-SNP
3.3.4.1 Overview

AMD SEV-SNP [244, 245] is a VM-based TEE technology, first available in 3rd Gen AMD EPYC™
processors since 2021. Only this iteration of the AMD SEV technology removes the hypervisor
from the TCB and allows third parties to perform remote attestation. Whereas AMD SEV-SNP
adds protection to unmodified VMs, the full potential can only be achieved if the guest kernel
and a user space component are aware of AMD SEV-SNP. Software developers are not restricted
in their choice of technology, as long as it can run inside a VM and complies with the threat model.
From a user perspective, it is overall very similar to Intel® TDX.

3.3.4.2 Properties

Large TCB
A VM usually contains a lot of software and may provide a large attack surface. Whereas
Intel® SGX and AWS Nitro Enclave encourage keeping only security-relevant code inside the
TEE, AMD SEV-SNP allows placing all the code inside the VM. If some arbitrary ancillary service
inside of the VM is vulnerable, it could pose a threat to the confidential data. Hence, a lot
more code needs to be reviewed and trusted.

Runtime Identity
VMs consist of multiple pieces, and Table 5 shows different strategies for how this can be
measured. AMD SEV-SNP only has a single measurement register.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
61 / 95

D-16-468
Public

Familiar Runtime Environment
Since AMD SEV-SNP adds protections around regular VMs, developers can use their familiar
software stacks for building services. As always, software dependencies need to be vetted for
trustworthiness, and any software processing confidential data should be hardened against
side-channel attacks.

Data Sealing
AMD SEV-SNP exposes a key derivation interface similar to the one present in Intel® SGX. A
sealing key can be derived from the VM launch measurement and a key unique to a given
CPU (and a couple of other parameters). The same sealing key can be derived across VM
reboots on the same CPU. This API is flexible and also supports other configurations for the
selected key derivation material. It can be used as a building block to increase availability.
The data sealing capability needs to be used with care as it allows for state rollbacks and VM
“twins” [205].

3.3.5 ARM CCA
3.3.5.1 Overview

ARM CCA [246, 247] is a VM-based TEE technology, with no off-the-shelf hardware available so
far. ARM added CCA in 2021 in the form of the Realm Management Extension to ARMv9-A. It is
an additional TEE technology available on ARM chips alongside TrustZone. While TrustZone is
geared towards OEMs to implement harden certain services of the platform, ARM CCA is similar
to Intel® TDX and AMD SEV-SNP where one can move arbitrary workloads into the TEE during
the runtime of the system. Both TrustZone and ARM CCA workloads are isolated from each other.

3.3.5.2 Properties

Large TCB
A VM usually contains a lot of software and may provide a large attack surface. Whereas
Intel® SGX and AWS Nitro Enclave encourage keeping only security-relevant code inside the
TEE, ARM CCA allows placing all the code inside the VM. If some arbitrary ancillary service
inside of the VM is vulnerable, it could pose a threat to confidential data. Hence, a lot more
code needs to be reviewed and trusted.

Runtime Identity
VMs consist of multiple pieces, and Table 5 shows different strategies for how this can be
measured. ARM CCA has multiple measurement registers for the different pieces of the plat-
form and VM.

Familiar Runtime Environment
Since ARM CCA adds protections around regular VMs, developers can use their familiar soft-
ware stacks for building services. Software dependencies need to be vetted for trustwor-
thiness, and any software processing confidential data should be hardened against side-
channel attacks.

Implementation Defined
Specific silicon with ARM CCA support can have additional features. ARM CCA is a specification
and vendors have some freedom in the implementation.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
62 / 95

D-16-468
Public

Motherboard

Nitro Security
Chip

Nitro
Hypervisor

Nitro
Controller

Other Nitro
Cards

CPU

vsock

EC2 Parent
Instance

Nitro Enclave

<<PCIe>>

<<PCIe>>

Other
Services

<<VM>>

<<VM>>

AWS
Administrator

Figure 7. The AWS Nitro system consists of multiple components and can create enclaves. These
are isolated VMs which can only communicate with their parent EC2 instance via a socket vsock.
The host instance needs to manage the life-cycle and forward requests and responses to and from
the enclave. The AWS Nitro system prevents administrators from manipulating system resources
or looking into the running system, and isolates VMs from each other.

3.3.6 AWS Nitro Enclave
3.3.6.1 Overview

The AWS Nitro Enclave technology [218, 248, 249] is provided by the AWS Nitro system on EC2
instances within the AWS cloud, but not on-premises. The AWS Nitro system consists of spe-
cialised silicon like PCIe cards and chips (see Figure 7), which are developed internally in AWS (by
Annapurna Labs, which is part of AWS). The AWS Nitro Enclave technology allows running special
container images in an isolated virtual machine. The virtual machine has its own kernel and can
run arbitrary applications. However, the enclave VM is isolated from the rest of the world very
similar to how it is done in Intel® SGX. The enclave VM needs a parent EC2 instance which it is
connected to via a socket (vsock). Any communication with the outside world needs to be passed
to and handled by the (potentially malicious) parent EC2 instance. Conceptually, it provides a mix
of Intel® SGX and Intel® TDX, using AWS’ own building blocks.

3.3.6.2 Properties

Single Communication Entry Point
The AWS Nitro Hypervisor restricts the communication capabilities of the enclave severely. It
can only talk to its parent EC2 instance via a socket vsock. More specifically, an enclave cannot
perform arbitrary network communication or access persistent storage but needs to request
assistance from its parent EC2 instance through vsock. Note that this design is similar to how
Intel® SGX enclaves need assistance of the untrusted part of the application.

Improved Side-Channel Safety
The AWS Nitro Hypervisor can assign the enclave CPU cores and memory which cannot be
used at the same time by other VMs on the same physical server. This categorically prevents
many side-channel attacks.

Isolation from the Cloud Operator
The AWS Nitro system is designed in a way that AWS operators cannot look into an EC2 in-

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
63 / 95

D-16-468
Public

stance, even if the AWS Nitro Enclave technology is not used. The software interface does
not expose functionality to log into the system or extract runtime information. Encryption
keys are stored in volatile hardware, inaccessible to operators. Low-level commands between
hardware components are filtered by dedicated Nitro chips. Firmware updates need to be
deployed through a central system with various safeguards like code reviews and signing of
binaries. Firmware updates, which bypass this system, are not accepted by the AWS Nitro
components.

Memory Encryption
The working memory is not encrypted by the AWS Nitro system but by the CPUs themselves.
This is supported by modern server CPUs [250].

Runtime Identity
The identity of an enclave is determined by the hash of its container image, similar to In-
tel® SGX. The measurement values of an enclave also contain hashes covering the boot pro-
cess, AWS account information and more.

Note that most of the security properties of the AWS Nitro system apply to regular EC2 instances
as well. AWS Nitro Enclaves are only special in that they can be remotely attested, and that they
can only communicate via vsock.

3.4 TEE Software Ecosystem
This section lists a few software projects relevant to the TEE ecosystem. The list is not exhaustive
and more open-source and commercial products exist with similar capabilities, but it should give
an idea of what is in general available. Since the TEE technology world is rather new, the software
ecosystem is still very much in flux. Most projects support only a subset of the available TEE
technologies but plan to add broader TEE support in the future.

Intel® SGX SDK
The official SDK for developing applications for Intel® SGX, developed by Intel® [251, 237].
It is written in C and C++, provides a limited C and C++ standard library for the restricted
enclave environment, and a C API for accessing SGX functionalities. It is rather low level, and
mostly only provides wrappers for the very low-level detail, e.g. for enclave entrance and
exit, data sealing and remote attestation message processing, with a file crypto library being
on the higher-level end.

Open Enclave SDK
Open Enclave SDK [252] operates on a similar level like the Intel® SGX SDK, but attempts
to abstract away the low-level details of the underlying TEE technology. At the moment it
supports Intel® SGX and ARM TrustZone. Its main contributor is Microsoft.

AWS Nitro Enclave SDK
The official SDK for developing applications for AWS Nitro Enclaves, developed by AWS [253].
It operates on a similar level to Intel® SGX SDK. Whereas the SDK provides a C API, any
languages can be used within an AWS Nitro Enclave.

Gramine
Gramine (formerly Graphene-SGX) [254] enables common existing services to run inside a
TEE. The service itself does not need to be TEE-aware and requires only minimal or no modi-
fications at all. Gramine provides a syscall emulation layer, a so-called library OS. Currently it
supports Intel® SGX.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
64 / 95

D-16-468
Public

Enarx
Enarx [255] provides a WASM runtime which can run inside different TEEs. A user can write
their service in any language which allows compilation to WASM. The project started in 2019
and currently supports Intel® SGX, Intel® TDX and AMD SEV-SNP.

Veracruz
Veracruz [256] is a framework to analyse confidential data from multiple data providers within
a TEE. Data providers attest a policy stating which workload will be run and who has what
permissions. The policies are enforced within the TEE, hence data providers are assured that
the TEE protects their data. Veracruz uses WebAssembly technology for the analysis code to
abstract over the underlying TEE technology. It is primarily developed by Arm Research and
had its last release, 22.07, in August 2022.

KubeVirt CVM
KubeVirt CVM [257] builds upon the established KubeVirt project. KubeVirt aims to integrate
existing VMs without modifications into a Kubernetes cluster, and KubeVirt CVM extends it
to support deployment into TEEs. The KubeVirt CVM project is rather young and is lacking
support for most TEE technologies besides Intel® TDX.

Confidential Containers
If a service is orchestrated via Kubernetes, then the Confidential Containers project [258]
makes it possible to schedule the services into TEEs. The Confidential Containers project is
actively evolving and released version 0.9.0 in July 2024. It builds on the Kata Containers
project, which is widely used in production. Note that Confidential Containers injects its own
components into the TEE to enable container deployment and attestation. In contrast, Kube-
Virt CVM does not inject anything into the TEE.

Veraison
Veraison [259] aims to provide software components and standards for remote attestation.
It is not a ready-to-run solution, as there are various ways for how remote attestation might
be done in real world scenarios. Instead of inventing a remote attestation from scratch in
each TEE solution, Veraison tries to provide a starting point for further modification and in-
tegration.

3.5 TEE Availability in the Cloud
TEEs are available from multiple cloud service providers (CSP). Table 6 provides an overview of
which TEE technologies are available in which clouds. Note that this table is not exhaustive and
just provides an initial orientation for the reader, as TEE hardware is relatively new and not yet
deployed by all CSPs. CSPs usually provide TEE offerings in two distinct forms:

Bare Metal
Also called Dedicated Server or similar. The customer rents a physical server for their own
use. The customer themselves starts the TEEs, i.e. applications using Intel® SGX or a VM
with activated AMD SEV-SNP. We recommend bare metal servers for the following reasons:
(1) attackers cannot rent a co-located VM, meaning that they have to break into more infras-
tructure to get close to the TEE for an attack, and (2) the customer can use the TEE technol-
ogy to a full extent, especially regarding attestation of user space applications (see the next
point).

Virtual Machine
The customer rents a VM which has been created on-demand by the CSP. These VMs may
contain special components from the CSP, which will be part of the measurement but may

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
65 / 95

D-16-468
Public

not be open source. This means the customer needs to trust the CSP as well4 [260]. Addition-
ally, documentation is scarce on which VM offerings support attestation up to the user space
applications [260]. For example, Azure specifically mentions that user space applications on
Intel® TDX cannot be attested as of October 2024 [261]. Their confidential VM offering is in
a preview state (similar to GCP), so the authors expect that these shortcomings will be fixed
in the near future as the VM offerings grow out of the preview state.
VMs are usually co-located with VMs from other customers on the same physical server,
meaning that an attacker could get rather close to a victim TEE just by renting a VM. The
protected software is then possibly more exposed to side-channel attack vectors. As a coun-
termeasure, some CSPs allow renting a dedicated host where the physical server is no longer
shared with other customers. Another possibility might be to rent a VM size which occupies
a full server, effectively holding off other tenants from that server.
The TEE VM offerings are rather new and evolving, hence they should be reevaluated in the
future when an interested party wants to rent a VM.

4Whether this is a problem needs to be decided by the stakeholders. These components may go through a thor-
ough review process and thus may be protected against modification by a single intruder.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
66 / 95

D-16-468
Public

Table 6. An overview of TEE availability in various CSPs. The table is based on information publicly
available on the websites of the various CSPs as of October 2024 and might not reflect the true
capabilities of the CSPs, nor is every CSP listed which has a TEE offering. ARM CCA is omitted as no
physical hardware is available as of October 2024.
B: Available as bare-metal server (a.k.a. dedicated server). V : Available as VM. V+: Available as VM
on a dedicated host (a.k.a sole-tenancy), i.e. the underlying physical server is not shared with other
customers of the CSP.

Intel® SGX Intel® TDX AMD SEV-SNP AWS Nitro Enclave

Azure B V+ V V+ -

AWS - - V B V

IBM B V B V B -

GCP - V V+ -

OVHCloud B B - -

Alibaba V V - -

OTC B - - -

Sources:
Azure: https://azure.microsoft.com/en-us/pricing/details/virtual-machines/dedicated-host/,
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/dedicated-host/, https:
//learn.microsoft.com/en-us/azure/confidential-computing/virtual-machine-solutions-sgx

AWS: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
IBM: https://cloud.ibm.com/docs/bare-metal?topic=bare-metal-bm-intel-sgx,

https://cloud.ibm.com/docs/vpc?topic=vpc-about-sgx-vpc, https:
//cloud.ibm.com/docs/vpc?topic=vpc-profiles&interface=ui#confidential-computing-profiles,

https://www.ibm.com/blog/announcement/looking-ahead-4th-gen-intel-xeon-scalable-
processors-on-ibm-cloud/,

https://www.ibm.com/blog/announcement/3rd-gen-amd-epyc-processors-on-ibm-cloud/

GCP: https://cloud.google.com/blog/products/identity-security/new-confidential-computing-
updates-for-more-hardware-security-options, https:

//cloud.google.com/confidential-computing/confidential-vm/docs/supported-configurations

OVHCloud: https://us.ovhcloud.com/bare-metal/intel-software-guard-extensions/,
https://corporate.ovhcloud.com/en/newsroom/news/baremetal-emerald-rapids/

Alibaba: https://www.alibabacloud.com/help/en/ecs/user-guide/build-an-sgx-encrypted-
computing-environment, https://www.alibabacloud.com/help/en/ecs/user-guide/build-a-tdx-

confidential-computing-environment

OTC: https://www.open-telekom-cloud.com/en/support/release-notes/bms-i7-for-confidential-
computing-applications

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
67 / 95

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/dedicated-host/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/dedicated-host/
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-machine-solutions-sgx
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-machine-solutions-sgx
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://cloud.ibm.com/docs/bare-metal?topic=bare-metal-bm-intel-sgx
https://cloud.ibm.com/docs/vpc?topic=vpc-about-sgx-vpc
https://cloud.ibm.com/docs/vpc?topic=vpc-profiles&interface=ui#confidential-computing-profiles
https://cloud.ibm.com/docs/vpc?topic=vpc-profiles&interface=ui#confidential-computing-profiles
https://www.ibm.com/blog/announcement/looking-ahead-4th-gen-intel-xeon-scalable-processors-on-ibm-cloud/
https://www.ibm.com/blog/announcement/looking-ahead-4th-gen-intel-xeon-scalable-processors-on-ibm-cloud/
https://www.ibm.com/blog/announcement/3rd-gen-amd-epyc-processors-on-ibm-cloud/
https://cloud.google.com/blog/products/identity-security/new-confidential-computing-updates-for-more-hardware-security-options
https://cloud.google.com/blog/products/identity-security/new-confidential-computing-updates-for-more-hardware-security-options
https://cloud.google.com/confidential-computing/confidential-vm/docs/supported-configurations
https://cloud.google.com/confidential-computing/confidential-vm/docs/supported-configurations
https://us.ovhcloud.com/bare-metal/intel-software-guard-extensions/
https://corporate.ovhcloud.com/en/newsroom/news/baremetal-emerald-rapids/
https://www.alibabacloud.com/help/en/ecs/user-guide/build-an-sgx-encrypted-computing-environment
https://www.alibabacloud.com/help/en/ecs/user-guide/build-an-sgx-encrypted-computing-environment
https://www.alibabacloud.com/help/en/ecs/user-guide/build-a-tdx-confidential-computing-environment
https://www.alibabacloud.com/help/en/ecs/user-guide/build-a-tdx-confidential-computing-environment
https://www.open-telekom-cloud.com/en/support/release-notes/bms-i7-for-confidential-computing-applications
https://www.open-telekom-cloud.com/en/support/release-notes/bms-i7-for-confidential-computing-applications

D-16-468
Public

4 Considerations for the JOCONDE
System
The purpose of this document is to survey the current state of the art in secure multiparty com-
putation and trusted execution environments that are the technological pillars of the envisioned
JOCONDE System. The focus is on solutions for collaborative computations over confidential in-
put data held by multiple parties where the computation process is distributed over multiple
parties in order to avoid revealing the confidential input data to any of them. The only thing to
be revealed should be the final computation result. This chapter summarises the main finding
from our survey, with a focus on combining these two technologies in the JOCONDE System.

4.1 Secure Multiparty Computation
Various methods are used to achieve secure multiparty computation (MPC). Firstly, secure proto-
cols can be based on secret sharing to protect the data confidentiality, and then interactive proto-
cols are used to compute on these shares. Secondly, secure computation can also be done using
garbled circuits where the binary circuit representing the desired computations is encrypted and
evaluated obliviously gate-by-gate. All inputs to the garbled circuit are encoded to keys that are
used to evaluate the encrypted circuit without revealing the values. Thirdly, homomorphic en-
cryption, especially its variants that require multiple parties to collaborate for decryption, can be
used to do all computations on encrypted data. Function secret sharing and homomorphic secret
sharing are currently new components that will probably soon find more use in MPC frameworks.
Note that it is common for frameworks to combine these core methods in order to achieve the
most efficient protocol for a given task. For all of these core secure computation methods, spe-
cific protocols for secure computation are developed to satisfy different security properties.

This document lists various tools that implement compilers, APIs, or frameworks for secure mul-
tiparty computation. Many of the systems that are currently used for practical deployments of
MPC support passive security. These could be used in combination with TEEs as discussed be-
low. Some other tools are focused on the special case of two-party computation and, therefore,
also not applicable to the JOCONDE System where the computation needs to be split across at
least three parties [1]. However, various MPC frameworks are still available that could be used
as a backend for the JOCONDE System. Tools like EMP, EzPC, FANNG-MPC, FRESCO, FudanMPL,
MP-SPDZ, PySyft, Senate, Sharemind MPC, TF-Encrypted and XSCE are secure against active ad-
versaries and could be used directly. Some of these, like FANNG-MPC, FudanMPL, PySyft and
TF-Encrypted, are more focused on privacy-preserving machine learning but can be likely used
for simple data analysis as well. In addition to the supported MPC methods, careful study of the
capabilities of the platforms like support for external input and output parties should be carried
out to determine if all aspects required by the JOCONDE System are supported. Carbyne Stack
uses MP-SPDZ as an MPC backend and offers additional services, for example, to ensure persis-
tent data. Similar capabilities are offered by the Sharemind MPC Application Server. In addition,
Divvi Up, Virtual Data Lake, XOR and CipherCompute also support external input and output par-
ties. The set of operations supported by these frameworks as well as their efficiency should be
considered further to decide which ones would be the best fit to support the desired function-
alities of the JOCONDE System. More detailed information regarding these tools can be found
in Section 2.4, and an in-depth comparison of all MPC frameworks considered in this report is
found in Section 2.5.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
68 / 95

D-16-468
Public

The MPC field is evolving fast and MPC tools are subject to churning: some of the tools considered
in this document will likely be outdated or not supported in the near future, while others will be
improved and there will be new tools emerging. Most importantly, function secret sharing for
computing non-linear functions is an active but relatively new direction in MPC which is likely to
find more application in future MPC frameworks, and could contribute to promote the adoption
of GPU-accelerated MPC. For a data analysis platform with an MPC backend to be future-proof,
it is important to be sufficiently flexible to switch the underlying MPC capabilities as needed to
make use of future efficiency improvements and feature upgrades. When choosing the MPC
frameworks to be supported, it is also important to consider which supplementary capabilities
it has to support, for example participant authentication or persistent storage.

4.2 Trusted Execution Environments
The technical foundations for Trusted Execution Environments (TEEs) were created decades ago
with Hardware Security Modules (HSMs) and Trusted Platform Modules (TPMs). From those early
foundations, the technology evolved into the more easily accessible TEE technology only around
2015 with the inception of Intel® SGX and the first iteration of AMD SEV; since then, TEE tech-
nologies have only kept evolving. They provide an additional layer around workloads and al-
low to technically enforce rules and protect data and code from the environment. The devel-
oper experience depends on whether the specific TEE technology is process-based or VM-based.
Process-based TEE technologies (Intel® SGX) protect a part of an application but restrict what
can be done inside the protected part of the application, whereas VM-based TEE technologies
(Intel® TDX, AMD SEV-SNP, AWS Nitro Enclave, IBM SE, IBM PEF and, once available,ARM CCA)
protect a whole VM and place no restrictions on what can be run inside of the VM.

In general, all TEE technologies can contribute to a significantly increased security posture of a
given solution, if used correctly. Attacks on TEEs mostly focus on side-channel attacks which try
to exploit low-level, often undocumented hardware behaviour, to deduce secrets inside the TEE,
e.g., keys. Other than that, the protected software itself needs to be secure, as TEE technology
does not help against bugs within the protected software.

End-users can remotely attest the TEE and the protected software within the TEE to be sure that
the correct program is executed. In addition to the obvious benefits of preserving data confiden-
tiality and integrity, this gives additional assurance on the data lifecycle control. For example, the
end-user can be sure that their input data is deleted1 and is not forgotten on the remote server
after use. However, the remote attestation feature also requires the user to be able to answer the
questions: What is a valid TEE? What software should run inside of the TEE? If an end-user is tricked
into trusting the malicious software, the TEE cannot protect them from data leakage. End-users
need to have in-house competence to audit and compile TEE software, or have to delegate this
task to trusted third-parties (e.g., contractors).

If used correctly, TEE technologies add an additional security layer. TEE technologies are usable
today on almost all relevant hardware platforms, and TEE availability in the cloud is increasing.

1Data deletion guarantees provided by TEEs are not absolute. Confidential data written to a disk is encrypted
with a hardware-protected sealing key. However, if unauthorised copy of this encrypted data is made outside of the
TEE, it may become subject to future vulnerabilities, e.g., if some future attack is found that breaks the encryption
implementation used by the TEE. Note however that, thanks to the MPC layer, such a future attack would be successful
only if unauthorised copies are made of all data from all computing parties.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
69 / 95

D-16-468
Public

4.3 Combining Secure Multiparty Computation and Trusted
Execution Environments
Combinations of MPC and TEEs are a new line of research [37]. Initially, TEEs were seen as a
replacement for MPC [26, 27]. However, the setup and trust assumptions between the two tech-
nologies are sufficiently different to consider them as complementary, rather than alternative to
each other. This motivates the integration of both approaches.

In principle, it is possible to use the two technologies side by side. For instance, by deploying
these technologies in parallel, a TEE can be used to compute some components of MPC proto-
cols [31, 32, 28], e.g., the precomputation phase. Hybrid protocols can be defined that choose
between TEE and MPC to implement individual functions based on the specific needs of the par-
ticipants [30].

Alternatively, the two technologies can be stacked on top of each other. In the MPC-over-TEE
model, the role of the TEE is to enhance the security guarantees provided by the MPC proto-
col [36, 35]. For example, a passively secure MPC protocol ensures privacy and correctness of
the computation provided that all parties follow the protocol description. For active security, the
assumption that all parties follow the protocol is lifted, and it is up to the protocol to ensure that
the computing parties follow the protocol, or at least that deviations from the protocol descrip-
tion are detected. Actively secure MPC protocols are considerably more complex than passively
secure MPC ones. The integrity guarantees offered to the applications running in the TEE help
to ensure that their operations conform to the protocol description. Put together, a TEE, espe-
cially through remote attestation, enables all parties to verify that the others are also following
the protocol. Hence, implementing a passively secure MPC protocol through software compo-
nents embedded in TEEs at computing nodes achieves security against an active adversary [35].
In other words, the integrity of the protocol is ensured by the TEE while privacy of the data is
ensured by MPC.

The overlay of MPC and TEEs greatly reduces the level of trust that the users must put in the TEE
since leakages from a single TEE node can not leak information to the attacker if the MPC protocol
guarantees security against a passive adversary. For protocols that ensure passive security but
active privacy against the protocol [33, 34], this level of security needed from TEEs can be even
lower as even if an attacker somehow manages to modify the execution of TEEs the adversary
can only modify the outcome of the protocol but can not learn additional information about the
private inputs.

Adopting the overlay MPC-over-TEE approach, the MPC frameworks that offer passive security
listed in Section 2.4 can be combined with TEEs to achieve security against active adversaries in
the JOCONDE System. The list of MPC protocols that can be used in this context includes passively
secure secure computation protocols from Divvi Up, EzPC, FudanMPL, Helium, JIFF, Manticore,
MOTION, MP-SPDZ, PySyft, Secrecy, SecretFlow, Sequre, Sharemind MPC, TF-Encrypted, and Vir-
tual Data Lakes. The main advantage of this combination is that passively secure MPC protocols
are often more efficient than actively secure protocols, and the combination of passively secure
MPC and a TEE is also likely to be very efficient. Secondly, passively secure MPC is easier to im-
plement and is more commonly used in practice. Hence, allowing for such combinations could
increase the flexibility of the JOCONDE System and allow for the integration of a more diverse
set of underlying MPC frameworks.

Although a VM-based TEE has a larger attack surface compared to a process-based TEE, the for-
mer should be sufficient to provide additional security guarantees on top of MPC. It is also likely
that support for VM-based TEEs, especially in the cloud, will be increasing in the near future,

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
70 / 95

D-16-468
Public

making them easier to use. In addition, VM-based solutions are potentially easier to merge with
existing MPC frameworks as they could just run the existing implementation of the framework.
Process-based TEEs can also be considered but this would likely require re-implementing some of
the MPC protocols for the used TEE platform, inflating implementation and maintenance costs.

As described in Chapter 3, the strategy of diversifying TEE solutions (i.e. ensuring that each
computing node adopts a different TEE technologies from the other nodes) may add an extra
layer of protection. This considerably increases the attack threshold, as for a successful attack
on data confidentiality, an attacker must exploit vulnerabilities across multiple independent TEE
technologies and break into multiple computing parties using diverse TEEs, all at the same time.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
71 / 95

D-16-468
Public

Bibliography
[1] Fabio Ricciato. “Steps Toward a Shared Infrastructure for Multi-Party Secure Private Com-

puting in Official Statistics”. In: Journal of Official Statistics 40.1 (2024), pp. 3–15. doi: 10.
1177/0282423X241235259.

[2] ISO Central Secretary. Information security — Secure multiparty computation — Part 1: Gen-
eral. en. Standard ISO/IEC DIS 4922-1. Geneva, CH: International Organization for Stan-
dardization, 2022. url: https://www.iso.org/standard/80508.html.

[3] Arka Rai Choudhuri et al. “Fluid MPC: Secure Multiparty Computation with Dynamic Partic-
ipants”. In: Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Con-
ference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part II. Ed. by Tal Malkin
and Chris Peikert. Vol. 12826. Lecture Notes in Computer Science. Springer, 2021, pp. 94–
123. doi: 10.1007/978-3-030-84245-1_4. url: https://doi.org/10.1007/978-
3-030-84245-1%5C_4.

[4] Peter Bogetoft et al. “Secure Multiparty Computation Goes Live”. In: Financial Cryptography
and Data Security, 13th International Conference, FC 2009, Accra Beach, Barbados, February
23-26, 2009. Revised Selected Papers. Ed. by Roger Dingledine and Philippe Golle. Vol. 5628.
Lecture Notes in Computer Science. Springer, 2009, pp. 325–343. doi: 10.1007/978-3-
642-03549-4_20. url: https://doi.org/10.1007/978-3-642-03549-4%5C_20.

[5] Yehuda Lindell. “Secure multiparty computation”. In: Commun. ACM 64.1 (2021), pp. 86–96.
doi: 10.1145/3387108. url: https://doi.org/10.1145/3387108.

[6] Martin Hirt and Ueli M. Maurer. “Player Simulation and General Adversary Structures in
Perfect Multiparty Computation”. In: J. Cryptol. 13.1 (2000), pp. 31–60. doi: 10.1007/
S001459910003. url: https://doi.org/10.1007/s001459910003.

[7] Matthias Fitzi et al. “Unconditional Byzantine Agreement and Multi-party Computation
Secure against Dishonest Minorities from Scratch”. In: Advances in Cryptology - EUROCRYPT
2002, International Conference on the Theory and Applications of Cryptographic Techniques,
Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings. Ed. by Lars R. Knudsen.
Vol. 2332. Lecture Notes in Computer Science. Springer, 2002, pp. 482–501. doi: 10.1007/
3-540-46035-7_32. url: https://doi.org/10.1007/3-540-46035-7%5C_32.

[8] Shafi Goldwasser and Yehuda Lindell. “Secure Multi-Party Computation without Agree-
ment”. In: J. Cryptol. 18.3 (2005), pp. 247–287. doi: 10.1007/S00145-005-0319-Z. url:
https://doi.org/10.1007/s00145-005-0319-z.

[9] Jonathan Katz and Chiu-Yuen Koo. “On expected constant-round protocols for Byzantine
agreement”. In: J. Comput. Syst. Sci. 75.2 (2009), pp. 91–112. doi: 10.1016/J.JCSS.2008.
08.001. url: https://doi.org/10.1016/j.jcss.2008.08.001.

[10] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract)”. In: Proceed-
ings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,
Illinois, USA. Ed. by Janos Simon. ACM, 1988, pp. 1–10. doi: 10.1145/62212.62213. url:
https://doi.org/10.1145/62212.62213.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
72 / 95

https://doi.org/10.1177/0282423X241235259
https://doi.org/10.1177/0282423X241235259
https://www.iso.org/standard/80508.html
https://doi.org/10.1007/978-3-030-84245-1_4
https://doi.org/10.1007/978-3-030-84245-1%5C_4
https://doi.org/10.1007/978-3-030-84245-1%5C_4
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/978-3-642-03549-4%5C_20
https://doi.org/10.1145/3387108
https://doi.org/10.1145/3387108
https://doi.org/10.1007/S001459910003
https://doi.org/10.1007/S001459910003
https://doi.org/10.1007/s001459910003
https://doi.org/10.1007/3-540-46035-7_32
https://doi.org/10.1007/3-540-46035-7_32
https://doi.org/10.1007/3-540-46035-7%5C_32
https://doi.org/10.1007/S00145-005-0319-Z
https://doi.org/10.1007/s00145-005-0319-z
https://doi.org/10.1016/J.JCSS.2008.08.001
https://doi.org/10.1016/J.JCSS.2008.08.001
https://doi.org/10.1016/j.jcss.2008.08.001
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213

D-16-468
Public

[11] Tal Rabin and Michael Ben-Or. “Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority (Extended Abstract)”. In: Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, May 14-17, 1989, Seattle, Washington, USA. Ed. by David S. Johnson.
ACM, 1989, pp. 73–85. doi: 10.1145/73007.73014. url: https://doi.org/10.1145/
73007.73014.

[12] Richard Cleve. “Limits on the Security of Coin Flips when Half the Processors Are Faulty (Ex-
tended Abstract)”. In: Proceedings of the 18th Annual ACM Symposium on Theory of Comput-
ing, May 28-30, 1986, Berkeley, California, USA. Ed. by Juris Hartmanis. ACM, 1986, pp. 364–
369. doi: 10.1145/12130.12168. url: https://doi.org/10.1145/12130.12168.

[13] Berry Schoenmakers and Meilof Veeningen. “Universally Verifiable Multiparty Computa-
tion from Threshold Homomorphic Cryptosystems”. In: Applied Cryptography and Network
Security - 13th International Conference, ACNS 2015, New York, NY, USA, June 2-5, 2015, Re-
vised Selected Papers. Ed. by Tal Malkin et al. Vol. 9092. Lecture Notes in Computer Sci-
ence. Springer, 2015, pp. 3–22. doi: 10.1007/978-3-319-28166-7_1. url: https:
//doi.org/10.1007/978-3-319-28166-7%5C_1.

[14] Carsten Baum, Ivan Damgård, and Claudio Orlandi. “Publicly Auditable Secure Multi-Party
Computation”. In: Security and Cryptography for Networks - 9th International Conference,
SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings. Ed. by Michel Abdalla and Roberto
De Prisco. Vol. 8642. Lecture Notes in Computer Science. Springer, 2014, pp. 175–196. doi:
10.1007/978-3-319-10879-7_11. url: https://doi.org/10.1007/978-3-319-
10879-7%5C_11.

[15] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. “Secure Multi-Party Computation with
Identifiable Abort”. In: Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II. Ed. by Juan A.
Garay and Rosario Gennaro. Vol. 8617. Lecture Notes in Computer Science. Springer,
2014, pp. 369–386. doi: 10.1007/978-3-662-44381-1_21. url: https://doi.
org/10.1007/978-3-662-44381-1%5C_21.

[16] Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. “Identifying Cheaters without an Hon-
est Majority”. In: Theory of Cryptography - 9th Theory of Cryptography Conference, TCC 2012,
Taormina, Sicily, Italy, March 19-21, 2012. Proceedings. Ed. by Ronald Cramer. Vol. 7194. Lec-
ture Notes in Computer Science. Springer, 2012, pp. 21–38. doi: 10.1007/978-3-642-
28914-9_2. url: https://doi.org/10.1007/978-3-642-28914-9%5C_2.

[17] Robert K. Cunningham, Benjamin Fuller, and Sophia Yakoubov. “Catching MPC Cheaters:
Identification and Openability”. In: Information Theoretic Security - 10th International Con-
ference, ICITS 2017, Hong Kong, China, November 29 - December 2, 2017, Proceedings. Ed. by
Junji Shikata. Vol. 10681. Lecture Notes in Computer Science. Springer, 2017, pp. 110–134.
doi: 10.1007/978-3-319-72089-0_7. url: https://doi.org/10.1007/978-3-
319-72089-0%5C_7.

[18] O. Goldreich, S. Micali, and A. Wigderson. “How to Play ANY Mental Game”. In: Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing. STOC ’87. New York, New
York, USA: ACM, 1987, pp. 218–229. isbn: 0-89791-221-7. doi: 10.1145/28395.28420.
url: http://doi.acm.org/10.1145/28395.28420.

[19] Peter Sebastian Nordholt and Meilof Veeningen. “Minimising Communication in Honest-
Majority MPC by Batchwise Multiplication Verification”. In: Applied Cryptography and Net-
work Security - 16th International Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018,
Proceedings. Ed. by Bart Preneel and Frederik Vercauteren. Vol. 10892. Lecture Notes in

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
73 / 95

https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/12130.12168
https://doi.org/10.1145/12130.12168
https://doi.org/10.1007/978-3-319-28166-7_1
https://doi.org/10.1007/978-3-319-28166-7%5C_1
https://doi.org/10.1007/978-3-319-28166-7%5C_1
https://doi.org/10.1007/978-3-319-10879-7_11
https://doi.org/10.1007/978-3-319-10879-7%5C_11
https://doi.org/10.1007/978-3-319-10879-7%5C_11
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1%5C_21
https://doi.org/10.1007/978-3-662-44381-1%5C_21
https://doi.org/10.1007/978-3-642-28914-9_2
https://doi.org/10.1007/978-3-642-28914-9_2
https://doi.org/10.1007/978-3-642-28914-9%5C_2
https://doi.org/10.1007/978-3-319-72089-0_7
https://doi.org/10.1007/978-3-319-72089-0%5C_7
https://doi.org/10.1007/978-3-319-72089-0%5C_7
https://doi.org/10.1145/28395.28420
http://doi.acm.org/10.1145/28395.28420

D-16-468
Public

Computer Science. Springer, 2018, pp. 321–339. doi: 10.1007/978-3-319-93387-
0_17. url: https://doi.org/10.1007/978-3-319-93387-0%5C_17.

[20] Jun Furukawa and Yehuda Lindell. “Two-Thirds Honest-Majority MPC for Malicious Adver-
saries at Almost the Cost of Semi-Honest”. In: Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2019, London, UK, November 11-15,
2019. Ed. by Lorenzo Cavallaro et al. ACM, 2019, pp. 1557–1571. doi: 10.1145/3319535.
3339811. url: https://doi.org/10.1145/3319535.3339811.

[21] Koji Chida et al. “Fast Large-Scale Honest-Majority MPC for Malicious Adversaries”. In: J.
Cryptol. 36.3 (2023), p. 15. doi: 10.1007/S00145-023-09453-7. url: https://doi.
org/10.1007/s00145-023-09453-7.

[22] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. “Founding Cryptography on Oblivious
Transfer - Efficiently”. In: Advances in Cryptology - CRYPTO 2008, 28th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings. Ed. by David
A. Wagner. Vol. 5157. Lecture Notes in Computer Science. Springer, 2008, pp. 572–591.
doi: 10.1007/978-3-540-85174-5_32. url: https://doi.org/10.1007/978-3-
540-85174-5%5C_32.

[23] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. “Fair and Robust Multi-party Com-
putation Using a Global Transaction Ledger”. In: Advances in Cryptology - EUROCRYPT 2016
- 35th Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II. Ed. by Marc Fischlin and Jean-
Sébastien Coron. Vol. 9666. Lecture Notes in Computer Science. Springer, 2016, pp. 705–
734. doi: 10.1007/978-3-662-49896-5_25. url: https://doi.org/10.1007/978-
3-662-49896-5%5C_25.

[24] Joseph I. Choi and Kevin R. B. Butler. “Secure Multiparty Computation and Trusted Hard-
ware: Examining Adoption Challenges and Opportunities”. In: Secur. Commun. Networks
2019 (2019), 1368905:1–1368905:28. doi: 10.1155/2019/1368905. url: https://doi.
org/10.1155/2019/1368905.

[25] Xiaoguo Li et al. “A Survey of Secure Computation Using Trusted Execution Environments”.
In: CoRR abs/2302.12150 (2023). doi:10.48550/ARXIV.2302.12150. arXiv:2302.12150.
url: https://doi.org/10.48550/arXiv.2302.12150.

[26] Raad Bahmani et al. “Secure Multiparty Computation from SGX”. In: Financial Cryptography
and Data Security - 21st International Conference, FC 2017, Sliema, Malta, April 3-7, 2017,
Revised Selected Papers. Ed. by Aggelos Kiayias. Vol. 10322. Lecture Notes in Computer
Science. Springer, 2017, pp. 477–497. doi: 10.1007/978-3-319-70972-7_27. url:
https://doi.org/10.1007/978-3-319-70972-7%5C_27.

[27] Susanne Felsen et al. “Secure and Private Function Evaluation with Intel SGX”. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop, CCSW@CCS
2019, London, UK, November 11, 2019. Ed. by Radu Sion and Charalampos Papamanthou.
ACM, 2019, pp. 165–181. doi: 10.1145/3338466.3358919. url: https://doi.org/10.
1145/3338466.3358919.

[28] Philipp Muth and Stefan Katzenbeisser. Assisted MPC. Cryptology ePrint Archive, Paper
2022/1453. 2022. url: https://eprint.iacr.org/2022/1453.

[29] Pengzhi Huang et al. “STAMP: Lightweight TEE-Assisted MPC for Efficient Privacy-Preserving
Machine Learning”. In: CoRR abs/2210.10133 (2022). doi: 10.48550/ARXIV.2210.10133.
arXiv: 2210.10133. url: https://doi.org/10.48550/arXiv.2210.10133.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
74 / 95

https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-319-93387-0%5C_17
https://doi.org/10.1145/3319535.3339811
https://doi.org/10.1145/3319535.3339811
https://doi.org/10.1145/3319535.3339811
https://doi.org/10.1007/S00145-023-09453-7
https://doi.org/10.1007/s00145-023-09453-7
https://doi.org/10.1007/s00145-023-09453-7
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-85174-5%5C_32
https://doi.org/10.1007/978-3-540-85174-5%5C_32
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5%5C_25
https://doi.org/10.1007/978-3-662-49896-5%5C_25
https://doi.org/10.1155/2019/1368905
https://doi.org/10.1155/2019/1368905
https://doi.org/10.1155/2019/1368905
https://doi.org/10.48550/ARXIV.2302.12150
https://arxiv.org/abs/2302.12150
https://doi.org/10.48550/arXiv.2302.12150
https://doi.org/10.1007/978-3-319-70972-7_27
https://doi.org/10.1007/978-3-319-70972-7%5C_27
https://doi.org/10.1145/3338466.3358919
https://doi.org/10.1145/3338466.3358919
https://doi.org/10.1145/3338466.3358919
https://eprint.iacr.org/2022/1453
https://doi.org/10.48550/ARXIV.2210.10133
https://arxiv.org/abs/2210.10133
https://doi.org/10.48550/arXiv.2210.10133

D-16-468
Public

[30] Pengfei Wu et al. “Hybrid Trust Multi-party Computation with Trusted Execution Environ-
ment”. In: 29th Annual Network and Distributed System Security Symposium, NDSS 2022, San
Diego, California, USA, April 24-28, 2022. The Internet Society, 2022. url: https://www.
ndss-symposium.org/ndss-paper/auto-draft-222/.

[31] Joseph I. Choi et al. “A Hybrid Approach to Secure Function Evaluation using SGX”. In:
Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security,
AsiaCCS 2019, Auckland, New Zealand, July 09-12, 2019. Ed. by Steven D. Galbraith et al.
ACM, 2019, pp. 100–113. doi: 10.1145/3321705.3329835. url: https://doi.org/10.
1145/3321705.3329835.

[32] Brandon Broadnax et al. “Fortified Multi-Party Computation: Taking Advantage of Simple
Secure Hardware Modules”. In: Proc. Priv. Enhancing Technol. 2021.4 (2021), pp. 312–338.
doi: 10.2478/POPETS-2021-0072. url: https://doi.org/10.2478/popets-2021-
0072.

[33] Daniel Genkin et al. “Circuits resilient to additive attacks with applications to secure com-
putation”. In: Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014. Ed. by David B. Shmoys. ACM, 2014, pp. 495–504. doi: 10.1145/2591796.
2591861. url: https://doi.org/10.1145/2591796.2591861.

[34] Martin Pettai and Peeter Laud. “Automatic Proofs of Privacy of Secure Multi-party Compu-
tation Protocols against Active Adversaries”. In: IEEE 28th Computer Security Foundations
Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015. IEEE, 2015, pp. 75–89. doi: 10.1109/
CSF.2015.13. url: http://dx.doi.org/10.1109/CSF.2015.13.

[35] Nishant Kumar et al. “CrypTFlow: Secure TensorFlow Inference”. In: 2020 IEEE Symposium
on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 2020, pp. 336–
353. doi: 10 . 1109 / SP40000 . 2020 . 00092. url: https : / / doi . org / 10 . 1109 /
SP40000.2020.00092.

[36] Arka Rai Choudhuri et al. “Fairness in an Unfair World: Fair Multiparty Computation from
Public Bulletin Boards”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. Ed. by
Bhavani Thuraisingham et al. ACM, 2017, pp. 719–728. doi: 10.1145/3133956.3134092.
url: https://doi.org/10.1145/3133956.3134092.

[37] Yehuda Lindell et al. The Deployment Dilemma: Merits & Challenges of Deploying MPC.https:
//mpc.cs.berkeley.edu/blog/deployment-dilemma.html. [Accessed 01-10-2024].
Sept. 2023.

[38] Donald Beaver. “Efficient Multiparty Protocols Using Circuit Randomization”. In: Advances
in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 11-15, 1991, Proceedings. Ed. by Joan Feigenbaum. Vol. 576. Lecture
Notes in Computer Science. Springer, 1991, pp. 420–432. doi: 10.1007/3-540-46766-
1_34. url: https://doi.org/10.1007/3-540-46766-1%5C_34.

[39] G. R. Blakley. “Safeguarding cryptographic keys”. In: 1979 International Workshop on Man-
aging Requirements Knowledge, MARK 1979, New York, NY, USA, June 4-7, 1979. IEEE, 1979,
pp. 313–318. doi: 10.1109/MARK.1979.8817296. url: https://doi.org/10.1109/
MARK.1979.8817296.

[40] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (Nov. 1979), pp. 612–613.
issn: 0001-0782. doi: 10.1145/359168.359176. url: http://doi.acm.org/10.1145/
359168.359176.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
75 / 95

https://www.ndss-symposium.org/ndss-paper/auto-draft-222/
https://www.ndss-symposium.org/ndss-paper/auto-draft-222/
https://doi.org/10.1145/3321705.3329835
https://doi.org/10.1145/3321705.3329835
https://doi.org/10.1145/3321705.3329835
https://doi.org/10.2478/POPETS-2021-0072
https://doi.org/10.2478/popets-2021-0072
https://doi.org/10.2478/popets-2021-0072
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1109/CSF.2015.13
https://doi.org/10.1109/CSF.2015.13
http://dx.doi.org/10.1109/CSF.2015.13
https://doi.org/10.1109/SP40000.2020.00092
https://doi.org/10.1109/SP40000.2020.00092
https://doi.org/10.1109/SP40000.2020.00092
https://doi.org/10.1145/3133956.3134092
https://doi.org/10.1145/3133956.3134092
https://mpc.cs.berkeley.edu/blog/deployment-dilemma.html
https://mpc.cs.berkeley.edu/blog/deployment-dilemma.html
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1%5C_34
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176

D-16-468
Public

[41] Daniel Escudero. An Introduction to Secret-Sharing-Based Secure Multiparty Computation.
Cryptology ePrint Archive, Report 2022/062. 2022. url: %5Curl%7Bhttps://ia.cr/
2022/062%7D.

[42] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function Secret Sharing”. English. In: Advances in
Cryptology - EUROCRYPT 2015. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2015, pp. 337–367. isbn: 978-3-
662-46802-9. doi: 10.1007/978-3-662-46803-6_12. url: http://dx.doi.org/10.
1007/978-3-662-46803-6_12.

[43] Elette Boyle et al. “Information-Theoretic Distributed Point Functions”. In: 3rd Conference
on Information-Theoretic Cryptography, ITC 2022, July 5-7, 2022, Cambridge, MA, USA. Ed. by
Dana Dachman-Soled. Vol. 230. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022, 17:1–17:14. doi: 10.4230/LIPICS.ITC.2022.17. url: https://doi.org/10.
4230/LIPIcs.ITC.2022.17.

[44] Junru Li, Pengzhen Ke, and Liang Feng Zhang. “Efficient Information-Theoretic Distributed
Point Function with General Output Groups”. In: IACR Cryptol. ePrint Arch. (2023), p. 625.
url: https://eprint.iacr.org/2023/625.

[45] Stanislav Kruglik et al. “Verifiable Information-Theoretic Function Secret Sharing”. In: IACR
Cryptol. ePrint Arch. (2024), p. 453. url: https://eprint.iacr.org/2024/453.

[46] Elette Boyle et al. “Foundations of Homomorphic Secret Sharing”. In: 9th Innovations in
Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA,
USA. Ed. by Anna R. Karlin. Vol. 94. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2018, 21:1–21:21. doi: 10.4230/LIPICS.ITCS.2018.21. url: https://doi.
org/10.4230/LIPIcs.ITCS.2018.21.

[47] Quang Dao et al. “Multi-party Homomorphic Secret Sharing and Sublinear MPC from
Sparse LPN”. In: Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part II.
Ed. by Helena Handschuh and Anna Lysyanskaya. Vol. 14082. Lecture Notes in Computer
Science. Springer, 2023, pp. 315–348. doi: 10.1007/978-3-031-38545-2_11. url:
https://doi.org/10.1007/978-3-031-38545-2%5C_11.

[48] Andrew C. Yao. “Protocols for Secure Computations”. In: Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science. SFCS ’82. Washington, DC, USA: IEEE Com-
puter Society, 1982, pp. 160–164. doi: 10.1109/SFCS.1982.88. url: http://dx.doi.
org/10.1109/SFCS.1982.88.

[49] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. “Foundations of Garbled Circuits”. In:
Proceedings of the 2012 ACM Conference on Computer and Communications Security. CCS ’12.
Raleigh, North Carolina, USA: ACM, 2012, pp. 784–796. isbn: 978-1-4503-1651-4. doi: 10.
1145/2382196.2382279. url: http://doi.acm.org/10.1145/2382196.2382279.

[50] Andreas Holzer et al. “Secure two-party computations in ANSI C”. In: the ACM Conference
on Computer and Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012.
Ed. by Ting Yu, George Danezis, and Virgil D. Gligor. ACM, 2012, pp. 772–783. doi: 10.
1145/2382196.2382278. url: https://doi.org/10.1145/2382196.2382278.

[51] Siam U. Hussain et al. “TinyGarble2: Smart, Efficient, and Scalable Yao’s Garble Circuit”.
In: PPMLP’20: Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in
Practice, Virtual Event, USA, November, 2020. Ed. by Benyu Zhang et al. ACM, 2020, pp. 65–
67. doi: 10.1145/3411501.3419433. url: https://doi.org/10.1145/3411501.
3419433.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
76 / 95

%5Curl%7Bhttps://ia.cr/2022/062%7D
%5Curl%7Bhttps://ia.cr/2022/062%7D
https://doi.org/10.1007/978-3-662-46803-6_12
http://dx.doi.org/10.1007/978-3-662-46803-6_12
http://dx.doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.4230/LIPICS.ITC.2022.17
https://doi.org/10.4230/LIPIcs.ITC.2022.17
https://doi.org/10.4230/LIPIcs.ITC.2022.17
https://eprint.iacr.org/2023/625
https://eprint.iacr.org/2024/453
https://doi.org/10.4230/LIPICS.ITCS.2018.21
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.1007/978-3-031-38545-2_11
https://doi.org/10.1007/978-3-031-38545-2%5C_11
https://doi.org/10.1109/SFCS.1982.88
http://dx.doi.org/10.1109/SFCS.1982.88
http://dx.doi.org/10.1109/SFCS.1982.88
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/2382196.2382279
http://doi.acm.org/10.1145/2382196.2382279
https://doi.org/10.1145/2382196.2382278
https://doi.org/10.1145/2382196.2382278
https://doi.org/10.1145/2382196.2382278
https://doi.org/10.1145/3411501.3419433
https://doi.org/10.1145/3411501.3419433
https://doi.org/10.1145/3411501.3419433

D-16-468
Public

[52] Vladimir Kolesnikov and Thomas Schneider. “Improved Garbled Circuit: Free XOR Gates
and Applications”. In: Proceedings of the 35th International Colloquium on Automata, Lan-
guages and Programming, Part II. ICALP ’08. Reykjavik, Iceland: Springer-Verlag, 2008, pp. 486–
498. isbn: 978-3-540-70582-6. doi: 10.1007/978- 3- 540- 70583- 3_40. url: http:
//dx.doi.org/10.1007/978-3-540-70583-3_40.

[53] Jesper Buus Nielsen and Claudio Orlandi. “LEGO for two-party secure computation”. In: In
Theory of Cryptography (TCC’09), volume 5444 of LNCS. Springer, 2009, pp. 368–386.

[54] Yehuda Lindell. “Fast Cut-and-Choose Based Protocols for Malicious and Covert Adver-
saries”. In: Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference. Vol. 8043.
Lecture Notes in Computer Science. Springer, 2013, pp. 1–17. doi: 10.1007/978-3-642-
40084-1_1. url: http://dx.doi.org/10.1007/978-3-642-40084-1_1.

[55] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes”.
In: Advances in Cryptology - EUROCRYPT ’99, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding. Ed.
by Jacques Stern. Vol. 1592. Lecture Notes in Computer Science. Springer, 1999, pp. 223–
238. doi: 10.1007/3-540-48910-X_16. url: https://doi.org/10.1007/3-540-
48910-X%5C_16.

[56] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May
31 - June 2, 2009. Ed. by Michael Mitzenmacher. ACM, 2009, pp. 169–178. doi: 10.1145/
1536414.1536440. url: https://doi.org/10.1145/1536414.1536440.

[57] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully homomorphic
encryption without bootstrapping”. In: Innovations in Theoretical Computer Science 2012,
Cambridge, MA, USA, January 8-10, 2012. Ed. by Shafi Goldwasser. ACM, 2012, pp. 309–
325. doi: 10.1145/2090236.2090262. url: https://doi.org/10.1145/2090236.
2090262.

[58] Jung Hee Cheon et al. “Homomorphic Encryption for Arithmetic of Approximate Num-
bers”. In: Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the
Theory and Applications of Cryptology and Information Security, Hong Kong, China, Decem-
ber 3-7, 2017, Proceedings, Part I. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10624.
Lecture Notes in Computer Science. Springer, 2017, pp. 409–437. doi: 10.1007/978-3-
319-70694-8_15. url: https://doi.org/10.1007/978-3-319-70694-8%5C_15.

[59] Zvika Brakerski. “Fully Homomorphic Encryption without Modulus Switching from Classi-
cal GapSVP”. In: Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2012. Proceedings. Ed. by Reihaneh Safavi-Naini and
Ran Canetti. Vol. 7417. Lecture Notes in Computer Science. Springer, 2012, pp. 868–886.
doi: 10.1007/978-3-642-32009-5_50. url: https://doi.org/10.1007/978-3-
642-32009-5%5C_50.

[60] Junfeng Fan and Frederik Vercauteren. “Somewhat Practical Fully Homomorphic Encryp-
tion”. In: IACR Cryptol. ePrint Arch. (2012), p. 144. url: http://eprint.iacr.org/2012/
144.

[61] Léo Ducas and Daniele Micciancio. “FHEW: Bootstrapping Homomorphic Encryption in
Less Than a Second”. In: Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056.
Lecture Notes in Computer Science. Springer, 2015, pp. 617–640. doi: 10.1007/978-3-
662-46800-5_24. url: https://doi.org/10.1007/978-3-662-46800-5%5C_24.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
77 / 95

https://doi.org/10.1007/978-3-540-70583-3_40
http://dx.doi.org/10.1007/978-3-540-70583-3_40
http://dx.doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-642-40084-1_1
https://doi.org/10.1007/978-3-642-40084-1_1
http://dx.doi.org/10.1007/978-3-642-40084-1_1
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X%5C_16
https://doi.org/10.1007/3-540-48910-X%5C_16
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8%5C_15
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5%5C_50
https://doi.org/10.1007/978-3-642-32009-5%5C_50
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5%5C_24

D-16-468
Public

[62] Ilaria Chillotti et al. “TFHE: Fast Fully Homomorphic Encryption Over the Torus”. In: J. Cryp-
tol. 33.1 (2020), pp. 34–91. doi: 10.1007/S00145-019-09319-X. url: https://doi.
org/10.1007/s00145-019-09319-x.

[63] Jung Hee Cheon et al. “Homomorphic Encryption for Arithmetic of Approximate Num-
bers”. In: Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the
Theory and Applications of Cryptology and Information Security, Hong Kong, China, Decem-
ber 3-7, 2017, Proceedings, Part I. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10624.
Lecture Notes in Computer Science. Springer, 2017, pp. 409–437. doi: 10.1007/978-3-
319-70694-8_15. url: https://doi.org/10.1007/978-3-319-70694-8%5C_15.

[64] Yongwoo Lee et al. “Efficient FHEW Bootstrapping with Small Evaluation Keys, and Appli-
cations to Threshold Homomorphic Encryption”. In: Advances in Cryptology - EUROCRYPT
2023 - 42nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part III. Ed. by Carmit Hazay and
Martijn Stam. Vol. 14006. Lecture Notes in Computer Science. Springer, 2023, pp. 227–
256. doi: 10.1007/978-3-031-30620-4_8. url: https://doi.org/10.1007/978-
3-031-30620-4%5C_8.

[65] Rikke Bendlin et al. “Semi-homomorphic Encryption and Multiparty Computation”. In: Ad-
vances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings.
Ed. by Kenneth G. Paterson. Vol. 6632. Lecture Notes in Computer Science. Springer, 2011,
pp. 169–188. doi: 10.1007/978-3-642-20465-4_11. url: https://doi.org/10.
1007/978-3-642-20465-4%5C_11.

[66] Luis Bernardo Pulido-Gaytan et al. “A Survey on Privacy-Preserving Machine Learning with
Fully Homomorphic Encryption”. In: High Performance Computing - 7th Latin American Con-
ference, CARLA 2020, Cuenca, Ecuador, September 2-4, 2020, Revised Selected Papers. Ed. by
Sergio Nesmachnow, Harold Castro, and Andrei Tchernykh. Vol. 1327. Communications
in Computer and Information Science. Springer, 2020, pp. 115–129. doi: 10.1007/978-
3-030-68035-0_9. url: https://doi.org/10.1007/978-3-030-68035-0%5C_9.

[67] Suhel Sayyad et al. “An Exhaustive Survey on Privacy Preserving Machine Learning using
Homomorphic Encryption and Secure Multiparty Computation Techniques”. In: Journal of
Computational Analysis and Applications (JoCAAA) 33.05 (2024), pp. 636–648.

[68] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. “On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption”. In: Proceedings of the
44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19
- 22, 2012. Ed. by Howard J. Karloff and Toniann Pitassi. ACM, 2012, pp. 1219–1234. doi:
10.1145/2213977.2214086. url: https://doi.org/10.1145/2213977.2214086.

[69] Alessandro N. Baccarini, Marina Blanton, and Chen Yuan. “Multi-Party Replicated Secret
Sharing over a Ring with Applications to Privacy-Preserving Machine Learning”. In: Proc.
Priv. Enhancing Technol. 2023.1 (2023), pp. 608–626. doi: 10.56553/POPETS-2023-0035.
url: https://doi.org/10.56553/popets-2023-0035.

[70] Toshinori Araki et al. “High-Throughput Semi-Honest Secure Three-Party Computation
with an Honest Majority”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016. Ed. by Edgar R. Weippl
et al. ACM, 2016, pp. 805–817. doi: 10.1145/2976749.2978331. url: https://doi.
org/10.1145/2976749.2978331.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
78 / 95

https://doi.org/10.1007/S00145-019-09319-X
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8%5C_15
https://doi.org/10.1007/978-3-031-30620-4_8
https://doi.org/10.1007/978-3-031-30620-4%5C_8
https://doi.org/10.1007/978-3-031-30620-4%5C_8
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4%5C_11
https://doi.org/10.1007/978-3-642-20465-4%5C_11
https://doi.org/10.1007/978-3-030-68035-0_9
https://doi.org/10.1007/978-3-030-68035-0_9
https://doi.org/10.1007/978-3-030-68035-0%5C_9
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.56553/POPETS-2023-0035
https://doi.org/10.56553/popets-2023-0035
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1145/2976749.2978331

D-16-468
Public

[71] Ivan Damgård et al. “Multiparty Computation from Somewhat Homomorphic Encryption”.
In: Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference. 2012, pp. 643–
662. doi: 10.1007/978-3-642-32009-5_38. url: http://dx.doi.org/10.1007/
978-3-642-32009-5_38.

[72] Ivan Damgård et al. “Practical Covertly Secure MPC for Dishonest Majority - Or: Break-
ing the SPDZ Limits”. In: Computer Security - ESORICS 2013 - 18th European Symposium on
Research. Vol. 8134. Lecture Notes in Computer Science. Springer, 2013, pp. 1–18. doi:
10.1007/978-3-642-40203-6_1. url: http://dx.doi.org/10.1007/978-3-642-
40203-6_1.

[73] Emmanuela Orsini. “Efficient, Actively Secure MPC with a Dishonest Majority: A Survey”.
In: Arithmetic of Finite Fields - 8th International Workshop, WAIFI 2020, Rennes, France, July 6-
8, 2020, Revised Selected and Invited Papers. Ed. by Jean-Claude Bajard and Alev Topuzoglu.
Vol. 12542. Lecture Notes in Computer Science. Springer, 2020, pp. 42–71. doi: 10.1007/
978-3-030-68869-1_3. url: https://doi.org/10.1007/978-3-030-68869-
1%5C_3.

[74] Dragos Rotaru et al. “Actively Secure Setup for SPDZ”. In: J. Cryptol. 35.1 (2022), p. 5. doi:
10.1007/S00145-021-09416-W. url: https://doi.org/10.1007/s00145-021-
09416-w.

[75] Damiano Abram and Peter Scholl. “Low-Communication Multiparty Triple Generation for
SPDZ from Ring-LPN”. In: Public-Key Cryptography - PKC 2022 - 25th IACR International Con-
ference on Practice and Theory of Public-Key Cryptography, Virtual Event, March 8-11, 2022,
Proceedings, Part I. Ed. by Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe. Vol. 13177.
Lecture Notes in Computer Science. Springer, 2022, pp. 221–251. doi: 10.1007/978-3-
030-97121-2_9. url: https://doi.org/10.1007/978-3-030-97121-2%5C_9.

[76] Bart Veldhuizen et al. “Extending the Security of SPDZ with Fairness”. In: Proc. Priv. En-
hancing Technol. 2024.2 (2024), pp. 330–350. doi: 10.56553/POPETS-2024-0053. url:
https://doi.org/10.56553/popets-2024-0053.

[77] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. “Turbospeedz: Double Your Online
SPDZ! Improving SPDZ Using Function Dependent Preprocessing”. In: Applied Cryptogra-
phy and Network Security - 17th International Conference, ACNS 2019, Bogota, Colombia, June
5-7, 2019, Proceedings. Ed. by Robert H. Deng et al. Vol. 11464. Lecture Notes in Computer
Science. Springer, 2019, pp. 530–549. doi: 10.1007/978-3-030-21568-2_26. url:
https://doi.org/10.1007/978-3-030-21568-2%5C_26.

[78] Ronald Cramer et al. “SPDZ
2k: Efficient MPC mod 2k for Dishonest Majority”. In: Advances

in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2018, Proceedings, Part II. Ed. by Hovav Shacham and Alexan-
dra Boldyreva. Vol. 10992. Lecture Notes in Computer Science. Springer, 2018, pp. 769–
798. doi: 10.1007/978-3-319-96881-0_26. url: https://doi.org/10.1007/978-
3-319-96881-0%5C_26.

[79] Ivan Damgård et al. “New Primitives for Actively-Secure MPC over Rings with Applications
to Private Machine Learning”. In: 2019 IEEE Symposium on Security and Privacy, SP 2019, San
Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, pp. 1102–1120. doi: 10.1109/SP.2019.
00078. url: https://doi.org/10.1109/SP.2019.00078.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
79 / 95

https://doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-030-68869-1_3
https://doi.org/10.1007/978-3-030-68869-1_3
https://doi.org/10.1007/978-3-030-68869-1%5C_3
https://doi.org/10.1007/978-3-030-68869-1%5C_3
https://doi.org/10.1007/S00145-021-09416-W
https://doi.org/10.1007/s00145-021-09416-w
https://doi.org/10.1007/s00145-021-09416-w
https://doi.org/10.1007/978-3-030-97121-2_9
https://doi.org/10.1007/978-3-030-97121-2_9
https://doi.org/10.1007/978-3-030-97121-2%5C_9
https://doi.org/10.56553/POPETS-2024-0053
https://doi.org/10.56553/popets-2024-0053
https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1007/978-3-030-21568-2%5C_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0%5C_26
https://doi.org/10.1007/978-3-319-96881-0%5C_26
https://doi.org/10.1109/SP.2019.00078
https://doi.org/10.1109/SP.2019.00078
https://doi.org/10.1109/SP.2019.00078

D-16-468
Public

[80] Ivan Damgård et al. “The TinyTable Protocol for 2-Party Secure Computation, or: Gate-
Scrambling Revisited”. In: Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I. Ed.
by Jonathan Katz and Hovav Shacham. Vol. 10401. Lecture Notes in Computer Science.
Springer, 2017, pp. 167–187. doi: 10.1007/978-3-319-63688-7_6. url: https:
//doi.org/10.1007/978-3-319-63688-7%5C_6.

[81] Jesper Buus Nielsen et al. “A New Approach to Practical Active-Secure Two-Party Compu-
tation”. In: Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference. 2012,
pp. 681–700. doi: 10.1007/978-3-642-32009-5_40. url: http://dx.doi.org/10.
1007/978-3-642-32009-5_40.

[82] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. “Dishonest Majority Multi-Party
Computation for Binary Circuits”. In: Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference. 2014, pp. 495–512. doi: 10.1007/978-3-662-44381-1_28. url:
http://dx.doi.org/10.1007/978-3-662-44381-1_28.

[83] Sai Sheshank Burra et al. “High-Performance Multi-party Computation for Binary Circuits
Based on Oblivious Transfer”. In: J. Cryptol. 34.3 (2021), p. 34. doi: 10.1007/S00145-021-
09403-1. url: https://doi.org/10.1007/s00145-021-09403-1.

[84] Gilad Asharov and Yehuda Lindell. “A Full Proof of the BGW Protocol for Perfectly Secure
Multiparty Computation”. In: J. Cryptol. 30.1 (2017), pp. 58–151. doi: 10.1007/S00145-
015-9214-4. url: https://doi.org/10.1007/s00145-015-9214-4.

[85] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness theorems for non-
cryptographic fault-tolerant distributed computation”. In: Providing Sound Foundations for
Cryptography: On the Work of Shafi Goldwasser and Silvio Micali. Ed. by Oded Goldreich.
ACM, 2019, pp. 351–371. doi: 10.1145/3335741.3335756. url: https://doi.org/10.
1145/3335741.3335756.

[86] Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. “General Secure Multi-party Computa-
tion from any Linear Secret-Sharing Scheme”. In: Advances in Cryptology - EUROCRYPT 2000,
International Conference on the Theory and Application of Cryptographic Techniques, Bruges,
Belgium, May 14-18, 2000, Proceeding. Ed. by Bart Preneel. Vol. 1807. Lecture Notes in Com-
puter Science. Springer, 2000, pp. 316–334. doi: 10.1007/3-540-45539-6_22. url:
https://doi.org/10.1007/3-540-45539-6%5C_22.

[87] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Secure Computation with Preprocessing via
Function Secret Sharing”. In: Theory of Cryptography - 17th International Conference, TCC
2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part I. Ed. by Dennis Hofheinz
and Alon Rosen. Vol. 11891. Lecture Notes in Computer Science. Springer, 2019, pp. 341–
371. doi: 10.1007/978-3-030-36030-6_14. url: https://doi.org/10.1007/978-
3-030-36030-6%5C_14.

[88] Elette Boyle et al. “Function Secret Sharing for Mixed-Mode and Fixed-Point Secure Com-
putation”. In: Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, Octo-
ber 17-21, 2021, Proceedings, Part II. Ed. by Anne Canteaut and François-Xavier Standaert.
Vol. 12697. Lecture Notes in Computer Science. Springer, 2021, pp. 871–900. doi: 10.
1007/978-3-030-77886-6_30. url: https://doi.org/10.1007/978-3-030-
77886-6%5C_30.

[89] Sameer Wagh. “Pika: Secure Computation using Function Secret Sharing over Rings”. In:
Proc. Priv. Enhancing Technol. 2022.4 (2022), pp. 351–377. doi: 10.56553/POPETS-2022-
0113. url: https://doi.org/10.56553/popets-2022-0113.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
80 / 95

https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-319-63688-7%5C_6
https://doi.org/10.1007/978-3-319-63688-7%5C_6
https://doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-662-44381-1_28
http://dx.doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/S00145-021-09403-1
https://doi.org/10.1007/S00145-021-09403-1
https://doi.org/10.1007/s00145-021-09403-1
https://doi.org/10.1007/S00145-015-9214-4
https://doi.org/10.1007/S00145-015-9214-4
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1145/3335741.3335756
https://doi.org/10.1145/3335741.3335756
https://doi.org/10.1145/3335741.3335756
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6%5C_22
https://doi.org/10.1007/978-3-030-36030-6_14
https://doi.org/10.1007/978-3-030-36030-6%5C_14
https://doi.org/10.1007/978-3-030-36030-6%5C_14
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-030-77886-6%5C_30
https://doi.org/10.1007/978-3-030-77886-6%5C_30
https://doi.org/10.56553/POPETS-2022-0113
https://doi.org/10.56553/POPETS-2022-0113
https://doi.org/10.56553/popets-2022-0113

D-16-468
Public

[90] Benny Pinkas et al. “Secure Two-Party Computation Is Practical”. In: Advances in Cryptology
- ASIACRYPT 2009, 15th International Conference on the Theory and Application of Cryptology
and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings. Ed. by Mitsuru
Matsui. Vol. 5912. Lecture Notes in Computer Science. Springer, 2009, pp. 250–267. doi:
10.1007/978-3-642-10366-7_15. url: https://doi.org/10.1007/978-3-642-
10366-7%5C_15.

[91] Samee Zahur, Mike Rosulek, and David Evans. “Two Halves Make a Whole - Reducing Data
Transfer in Garbled Circuits Using Half Gates”. In: Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. Ed. by Elisabeth Oswald and
Marc Fischlin. Vol. 9057. Lecture Notes in Computer Science. Springer, 2015, pp. 220–250.
doi: 10.1007/978-3-662-46803-6_8. url: https://doi.org/10.1007/978-3-
662-46803-6%5C_8.

[92] Mike Rosulek and Lawrence Roy. “Three Halves Make a Whole? Beating the Half-Gates
Lower Bound for Garbled Circuits”. In: Advances in Cryptology - CRYPTO 2021 - 41st An-
nual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part I. Ed. by Tal Malkin and Chris Peikert. Vol. 12825. Lecture Notes in Com-
puter Science. Springer, 2021, pp. 94–124. doi: 10.1007/978-3-030-84242-0_5. url:
https://doi.org/10.1007/978-3-030-84242-0%5C_5.

[93] Chunghun Baek and Taechan Kim. Can We Beat Three Halves Lower Bound?: (Im)Possibility of
Reducing Communication Cost for Garbled Circuits. Cryptology ePrint Archive, Paper 2024/803.
2024. url: https://eprint.iacr.org/2024/803.

[94] David Heath and Vladimir Kolesnikov. “Stacked Garbling - Garbled Circuit Proportional
to Longest Execution Path”. In: Advances in Cryptology - CRYPTO 2020 - 40th Annual Inter-
national Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020,
Proceedings, Part II. Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12171. Lecture
Notes in Computer Science. Springer, 2020, pp. 763–792. doi: 10.1007/978-3-030-
56880-1_27. url: https://doi.org/10.1007/978-3-030-56880-1%5C_27.

[95] David Heath and Vladimir Kolesnikov. “sf LogStack: Stacked Garbling with O(b log b) Com-
putation”. In: Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October
17-21, 2021, Proceedings, Part III. Ed. by Anne Canteaut and François-Xavier Standaert.
Vol. 12698. Lecture Notes in Computer Science. Springer, 2021, pp. 3–32. doi: 10.1007/
978-3-030-77883-5_1. url: https://doi.org/10.1007/978-3-030-77883-
5%5C_1.

[96] Donald Beaver, Silvio Micali, and Phillip Rogaway. “The Round Complexity of Secure Pro-
tocols (Extended Abstract)”. In: Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, May 13-17, 1990, Baltimore, Maryland, USA. Ed. by Harriet Ortiz. ACM, 1990,
pp. 503–513. doi: 10.1145/100216.100287. url: https://doi.org/10.1145/
100216.100287.

[97] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. “Optimizing Semi-Honest Secure Multi-
party Computation for the Internet”. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28, 2016. Ed. by Edgar
R. Weippl et al. ACM, 2016, pp. 578–590. doi: 10.1145/2976749.2978347. url: https:
//doi.org/10.1145/2976749.2978347.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
81 / 95

https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7%5C_15
https://doi.org/10.1007/978-3-642-10366-7%5C_15
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6%5C_8
https://doi.org/10.1007/978-3-662-46803-6%5C_8
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0%5C_5
https://eprint.iacr.org/2024/803
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-030-56880-1%5C_27
https://doi.org/10.1007/978-3-030-77883-5_1
https://doi.org/10.1007/978-3-030-77883-5_1
https://doi.org/10.1007/978-3-030-77883-5%5C_1
https://doi.org/10.1007/978-3-030-77883-5%5C_1
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/2976749.2978347
https://doi.org/10.1145/2976749.2978347
https://doi.org/10.1145/2976749.2978347

D-16-468
Public

[98] Yehuda Lindell and Benny Pinkas. “An Efficient Protocol for Secure Two-Party Computa-
tion in the Presence of Malicious Adversaries”. In: Advances in Cryptology - EUROCRYPT 2007,
26th Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Barcelona, Spain, May 20-24, 2007, Proceedings. Ed. by Moni Naor. Vol. 4515. Lec-
ture Notes in Computer Science. Springer, 2007, pp. 52–78. doi: 10.1007/978-3-540-
72540-4_4. url: https://doi.org/10.1007/978-3-540-72540-4%5C_4.

[99] Tore Kasper Frederiksen et al. “MiniLEGO: Efficient Secure Two-Party Computation from
General Assumptions”. In: Advances in Cryptology - EUROCRYPT 2013, 32nd Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques. Vol. 7881.
Lecture Notes in Computer Science. Springer, 2013, pp. 537–556. doi: 10.1007/978-3-
642-38348-9_32. url: http://dx.doi.org/10.1007/978-3-642-38348-9_32.

[100] Tore Kasper Frederiksen et al. TinyLEGO: An Interactive Garbling Scheme for Maliciously Se-
cure Two-party Computation. Cryptology ePrint Archive, Report 2015/309. 2015.

[101] Vladimir Kolesnikov et al. “DUPLO: Unifying Cut-and-Choose for Garbled Circuits”. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017. Ed. by Bhavani Thuraisingham et al.
ACM, 2017, pp. 3–20. doi: 10.1145/3133956.3133991. url: https://doi.org/10.
1145/3133956.3133991.

[102] Gabrielle Beck et al. “Scalable Multiparty Garbling”. In: Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023. Ed. by Weizhi Meng et al. ACM, 2023, pp. 2158–2172. doi: 10.1145/
3576915.3623132. url: https://doi.org/10.1145/3576915.3623132.

[103] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. “Authenticated Garbling and Efficient
Maliciously Secure Two-Party Computation”. In: Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017. Ed. by Bhavani Thuraisingham et al. ACM, 2017, pp. 21–37. doi: 10.
1145/3133956.3134053. url: https://doi.org/10.1145/3133956.3134053.

[104] Jonathan Katz et al. “Optimizing Authenticated Garbling for Faster Secure Two-Party Com-
putation”. In: Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III. Ed. by Ho-
vav Shacham and Alexandra Boldyreva. Vol. 10993. Lecture Notes in Computer Science.
Springer, 2018, pp. 365–391. doi: 10.1007/978-3-319-96878-0_13. url: https:
//doi.org/10.1007/978-3-319-96878-0%5C_13.

[105] Samuel Dittmer et al. “Authenticated Garbling from Simple Correlations”. In: Advances in
Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part IV. Ed. by Yevgeniy Dodis
and Thomas Shrimpton. Vol. 13510. Lecture Notes in Computer Science. Springer, 2022,
pp. 57–87. doi: 10.1007/978-3-031-15985-5_3. url: https://doi.org/10.1007/
978-3-031-15985-5%5C_3.

[106] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. “Global-Scale Secure Multiparty Com-
putation”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. Ed. by Bha-
vani Thuraisingham et al. ACM, 2017, pp. 39–56. doi: 10.1145/3133956.3133979. url:
https://doi.org/10.1145/3133956.3133979.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
82 / 95

https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4%5C_4
https://doi.org/10.1007/978-3-642-38348-9_32
https://doi.org/10.1007/978-3-642-38348-9_32
http://dx.doi.org/10.1007/978-3-642-38348-9_32
https://doi.org/10.1145/3133956.3133991
https://doi.org/10.1145/3133956.3133991
https://doi.org/10.1145/3133956.3133991
https://doi.org/10.1145/3576915.3623132
https://doi.org/10.1145/3576915.3623132
https://doi.org/10.1145/3576915.3623132
https://doi.org/10.1145/3133956.3134053
https://doi.org/10.1145/3133956.3134053
https://doi.org/10.1145/3133956.3134053
https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1007/978-3-319-96878-0%5C_13
https://doi.org/10.1007/978-3-319-96878-0%5C_13
https://doi.org/10.1007/978-3-031-15985-5_3
https://doi.org/10.1007/978-3-031-15985-5%5C_3
https://doi.org/10.1007/978-3-031-15985-5%5C_3
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979

D-16-468
Public

[107] Gilad Asharov et al. “Multiparty Computation with Low Communication, Computation and
Interaction via Threshold FHE”. In: Advances in Cryptology - EUROCRYPT 2012 - 31st An-
nual International Conference on the Theory and Applications of Cryptographic Techniques,
Cambridge, UK, April 15-19, 2012. Proceedings. Ed. by David Pointcheval and Thomas Jo-
hansson. Vol. 7237. Lecture Notes in Computer Science. Springer, 2012, pp. 483–501. doi:
10.1007/978-3-642-29011-4_29. url: https://doi.org/10.1007/978-3-642-
29011-4%5C_29.

[108] Pratyay Mukherjee and Daniel Wichs. “Two Round Multiparty Computation via Multi-key
FHE”. In: Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Pro-
ceedings, Part II. Ed. by Marc Fischlin and Jean-Sébastien Coron. Vol. 9666. Lecture Notes
in Computer Science. Springer, 2016, pp. 735–763. doi: 10.1007/978-3-662-49896-
5_26. url: https://doi.org/10.1007/978-3-662-49896-5%5C_26.

[109] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. “Four Round Secure Computa-
tion Without Setup”. In: Theory of Cryptography - 15th International Conference, TCC 2017,
Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I. Ed. by Yael Kalai and Leonid
Reyzin. Vol. 10677. Lecture Notes in Computer Science. Springer, 2017, pp. 645–677. doi:
10.1007/978-3-319-70500-2_22. url: https://doi.org/10.1007/978-3-319-
70500-2%5C_22.

[110] Eunkyung Kim, Hyang-Sook Lee, and Jeongeun Park. “Towards Round-Optimal Secure
Multiparty Computations: Multikey FHE Without a CRS”. In: Information Security and Pri-
vacy - 23rd Australasian Conference, ACISP 2018, Wollongong, NSW, Australia, July 11-13, 2018,
Proceedings. Ed. by Willy Susilo and Guomin Yang. Vol. 10946. Lecture Notes in Computer
Science. Springer, 2018, pp. 101–113. doi: 10.1007/978-3-319-93638-3_7. url:
https://doi.org/10.1007/978-3-319-93638-3%5C_7.

[111] Christian Mouchet et al. “Multiparty Homomorphic Encryption from Ring-Learning-with-
Errors”. In: Proc. Priv. Enhancing Technol. 2021.4 (2021), pp. 291–311.doi:10.2478/POPETS-
2021-0071. url: https://doi.org/10.2478/popets-2021-0071.

[112] Hyesun Kwak et al. “A General Framework of Homomorphic Encryption for Multiple Par-
ties with Non-interactive Key-Aggregation”. In: Applied Cryptography and Network Security -
22nd International Conference, ACNS 2024, Abu Dhabi, United Arab Emirates, March 5-8, 2024,
Proceedings, Part II. Ed. by Christina Pöpper and Lejla Batina. Vol. 14584. Lecture Notes in
Computer Science. Springer, 2024, pp. 403–430. doi: 10.1007/978-3-031-54773-
7_16. url: https://doi.org/10.1007/978-3-031-54773-7%5C_16.

[113] Nigel P. Smart. “Practical and Efficient FHE-Based MPC”. In: Cryptography and Coding - 19th
IMA International Conference, IMACC 2023, London, UK, December 12-14, 2023, Proceedings.
Ed. by Elizabeth A. Quaglia. Vol. 14421. Lecture Notes in Computer Science. Springer,
2023, pp. 263–283. doi: 10.1007/978-3-031-47818-5_14. url: https://doi.
org/10.1007/978-3-031-47818-5%5C_14.

[114] Sylvain Chatel et al. “PELTA - Shielding Multiparty-FHE against Malicious Adversaries”. In:
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2023, Copenhagen, Denmark, November 26-30, 2023. Ed. by Weizhi Meng et al. ACM,
2023, pp. 711–725. doi: 10.1145/3576915.3623139. url: https://doi.org/10.
1145/3576915.3623139.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
83 / 95

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4%5C_29
https://doi.org/10.1007/978-3-642-29011-4%5C_29
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5%5C_26
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-319-70500-2%5C_22
https://doi.org/10.1007/978-3-319-70500-2%5C_22
https://doi.org/10.1007/978-3-319-93638-3_7
https://doi.org/10.1007/978-3-319-93638-3%5C_7
https://doi.org/10.2478/POPETS-2021-0071
https://doi.org/10.2478/POPETS-2021-0071
https://doi.org/10.2478/popets-2021-0071
https://doi.org/10.1007/978-3-031-54773-7_16
https://doi.org/10.1007/978-3-031-54773-7_16
https://doi.org/10.1007/978-3-031-54773-7%5C_16
https://doi.org/10.1007/978-3-031-47818-5_14
https://doi.org/10.1007/978-3-031-47818-5%5C_14
https://doi.org/10.1007/978-3-031-47818-5%5C_14
https://doi.org/10.1145/3576915.3623139
https://doi.org/10.1145/3576915.3623139
https://doi.org/10.1145/3576915.3623139

D-16-468
Public

[115] Alexandre Bois et al. “Flexible and Efficient Verifiable Computation on Encrypted Data”.
In: Public-Key Cryptography - PKC 2021 - 24th IACR International Conference on Practice and
Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part II. Ed. by
Juan A. Garay. Vol. 12711. Lecture Notes in Computer Science. Springer, 2021, pp. 528–
558. doi: 10.1007/978-3-030-75248-4_19. url: https://doi.org/10.1007/978-
3-030-75248-4%5C_19.

[116] Radhika Garg et al. “Scalable Mixed-Mode MPC”. In: IEEE Symposium on Security and Privacy,
SP 2024, San Francisco, CA, USA, May 19-23, 2024. IEEE, 2024, pp. 523–541. doi: 10.1109/
SP54263.2024.00106. url: https://doi.org/10.1109/SP54263.2024.00106.

[117] Vivian Fang et al. “CostCO: An automatic cost modeling framework for secure multi-party
computation”. In: 7th IEEE European Symposium on Security and Privacy, EuroS&P 2022, Genoa,
Italy, June 6-10, 2022. IEEE, 2022, pp. 140–153. doi: 10.1109/EUROSP53844.2022.00017.
url: https://doi.org/10.1109/EuroSP53844.2022.00017.

[118] Daniel Demmler, Thomas Schneider, and Michael Zohner. “ABY - A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation”. In: 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2014. 2015.
url: http://www.internetsociety.org/doc/aby---framework-efficient-
mixed-protocol-secure-two-party-computation.

[119] Arpita Patra et al. “ABY2.0: Improved Mixed-Protocol Secure Two-Party Computation”. In:
30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021. Ed. by Michael
D. Bailey and Rachel Greenstadt. USENIX Association, 2021, pp. 2165–2182. url: https:
//www.usenix.org/conference/usenixsecurity21/presentation/patra.

[120] Payman Mohassel and Peter Rindal. “ABY3: A Mixed Protocol Framework for Machine
Learning”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. Ed. by David Lie et
al. ACM, 2018, pp. 35–52. doi: 10.1145/3243734.3243760. url: https://doi.org/
10.1145/3243734.3243760.

[121] Wilko Henecka et al. “TASTY: Tool for Automating Secure Two-party Computations”. In:
Proceedings of the 17th ACM Conference on Computer and Communications Security. CCS ’10.
Chicago, Illinois, USA: ACM, 2010, pp. 451–462. isbn: 978-1-4503-0245-6. doi: 10.1145/
1866307.1866358. url: http://doi.acm.org/10.1145/1866307.1866358.

[122] Deepika Natarajan et al. “Chex-Mix: Combining Homomorphic Encryption with Trusted
Execution Environments for Oblivious Inference in the Cloud”. In: 8th IEEE European Sym-
posium on Security and Privacy, EuroS&P 2023, Delft, Netherlands, July 3-7, 2023. IEEE, 2023,
pp. 73–91. doi: 10.1109/EUROSP57164.2023.00014. url: https://doi.org/10.
1109/EuroSP57164.2023.00014.

[123] Hanjun Li and Tianren Liu. “How to Garble Mixed Circuits that Combine Boolean and
Arithmetic Computations”. In: Advances in Cryptology - EUROCRYPT 2024 - 43rd Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, Zurich,
Switzerland, May 26-30, 2024, Proceedings, Part VI. Ed. by Marc Joye and Gregor Leander.
Vol. 14656. Lecture Notes in Computer Science. Springer, 2024, pp. 331–360. doi: 10.
1007/978-3-031-58751-1_12. url: https://doi.org/10.1007/978-3-031-
58751-1%5C_12.

[124] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. “How to Garble Arithmetic Circuits”.
In: IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs,
CA, USA, October 22-25, 2011. Ed. by Rafail Ostrovsky. IEEE Computer Society, 2011, pp. 120–
129. doi: 10.1109/FOCS.2011.40. url: https://doi.org/10.1109/FOCS.2011.40.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
84 / 95

https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-030-75248-4%5C_19
https://doi.org/10.1007/978-3-030-75248-4%5C_19
https://doi.org/10.1109/SP54263.2024.00106
https://doi.org/10.1109/SP54263.2024.00106
https://doi.org/10.1109/SP54263.2024.00106
https://doi.org/10.1109/EUROSP53844.2022.00017
https://doi.org/10.1109/EuroSP53844.2022.00017
http://www.internetsociety.org/doc/aby---framework-efficient-mixed-protocol-secure-two-party-computation
http://www.internetsociety.org/doc/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/1866307.1866358
https://doi.org/10.1145/1866307.1866358
http://doi.acm.org/10.1145/1866307.1866358
https://doi.org/10.1109/EUROSP57164.2023.00014
https://doi.org/10.1109/EuroSP57164.2023.00014
https://doi.org/10.1109/EuroSP57164.2023.00014
https://doi.org/10.1007/978-3-031-58751-1_12
https://doi.org/10.1007/978-3-031-58751-1_12
https://doi.org/10.1007/978-3-031-58751-1%5C_12
https://doi.org/10.1007/978-3-031-58751-1%5C_12
https://doi.org/10.1109/FOCS.2011.40
https://doi.org/10.1109/FOCS.2011.40

D-16-468
Public

[125] Banashri Karmakar et al. “Asterisk: Super-fast MPC with a Friend”. In: IEEE Symposium on
Security and Privacy, SP 2024, San Francisco, CA, USA, May 19-23, 2024. IEEE, 2024, pp. 542–
560. doi: 10 . 1109 / SP54263 . 2024 . 00128. url: https : / / doi . org / 10 . 1109 /
SP54263.2024.00128.

[126] Sharemind MPC Team. Integration of Sharemind MPC into Carbyne Stack. Tech. rep. D-2-502.
https://cyber.ee/uploads/Sharemind_MPC_CS_integration_a01ca476a7.pdf:
Cybernetica AS, 2022.

[127] Martin Franz et al. “CBMC-GC: An ANSI C Compiler for Secure Two-Party Computations”. In:
Compiler Construction - 23rd International Conference, CC 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-
13, 2014. Proceedings. Ed. by Albert Cohen. Vol. 8409. Lecture Notes in Computer Science.
Springer, 2014, pp. 244–249. doi: 10.1007/978-3-642-54807-9_15. url: https:
//doi.org/10.1007/978-3-642-54807-9%5C_15.

[128] Edward Chen et al. “Silph: A Framework for Scalable and Accurate Generation of Hybrid
MPC Protocols”. In: 44th IEEE Symposium on Security and Privacy, SP 2023, San Francisco, CA,
USA, May 21-25, 2023. IEEE, 2023, pp. 848–863. doi: 10.1109/SP46215.2023.10179397.
url: https://doi.org/10.1109/SP46215.2023.10179397.

[129] Benjamin Levy et al. “COMBINE: COMpilation and Backend-INdependent vEctorization for
Multi-Party Computation”. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2023, Copenhagen, Denmark, November 26-30, 2023. Ed.
by Weizhi Meng et al. ACM, 2023, pp. 2531–2545. doi: 10.1145/3576915.3623181. url:
https://doi.org/10.1145/3576915.3623181.

[130] Nikolaj Volgushev et al. “Conclave: secure multi-party computation on big data”. In: Pro-
ceedings of the Fourteenth EuroSys Conference 2019, Dresden, Germany, March 25-28, 2019.
Ed. by George Candea, Robbert van Renesse, and Christof Fetzer. ACM, 2019, 3:1–3:18. doi:
10.1145/3302424.3303982. url: https://doi.org/10.1145/3302424.3303982.

[131] Henry Corrigan-Gibbs and Dan Boneh. “Prio: Private, Robust, and Scalable Computation
of Aggregate Statistics”. In: 14th USENIX Symposium on Networked Systems Design and Im-
plementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017. Ed. by Aditya Akella and
Jon Howell. USENIX Association, 2017, pp. 259–282. url: https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/corrigan-gibbs.

[132] Jennie Rogers et al. VaultDB: A Real-World Pilot of Secure Multi-Party Computation within a
Clinical Research Network. 2022. arXiv: 2203.00146 [cs.DB]. url: https://arxiv.org/
abs/2203.00146.

[133] Felix Nikolaus Wirth et al. “EasySMPC: a simple but powerful no-code tool for practical
secure multiparty computation”. In: BMC Bioinform. 23.1 (2022), p. 531. doi: 10.1186/
S12859-022-05044-8. url: https://doi.org/10.1186/s12859-022-05044-8.

[134] Nishanth Chandran et al. “EzPC: Programmable and Efficient Secure Two-Party Compu-
tation for Machine Learning”. In: IEEE European Symposium on Security and Privacy, Eu-
roS&P 2019, Stockholm, Sweden, June 17-19, 2019. IEEE, 2019, pp. 496–511. doi: 10.1109/
EUROSP.2019.00043. url: https://doi.org/10.1109/EuroSP.2019.00043.

[135] Dahlia Malkhi et al. “Fairplay—a Secure Two-party Computation System”. In: Proceedings
of the 13th Conference on USENIX Security Symposium - Volume 13. SSYM’04. San Diego, CA:
USENIX Association, 2004, pp. 20–20. url: http://dl.acm.org/citation.cfm?id=
1251375.1251395.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
85 / 95

https://doi.org/10.1109/SP54263.2024.00128
https://doi.org/10.1109/SP54263.2024.00128
https://doi.org/10.1109/SP54263.2024.00128
https://cyber.ee/uploads/Sharemind_MPC_CS_integration_a01ca476a7.pdf
https://doi.org/10.1007/978-3-642-54807-9_15
https://doi.org/10.1007/978-3-642-54807-9%5C_15
https://doi.org/10.1007/978-3-642-54807-9%5C_15
https://doi.org/10.1109/SP46215.2023.10179397
https://doi.org/10.1109/SP46215.2023.10179397
https://doi.org/10.1145/3576915.3623181
https://doi.org/10.1145/3576915.3623181
https://doi.org/10.1145/3302424.3303982
https://doi.org/10.1145/3302424.3303982
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://arxiv.org/abs/2203.00146
https://arxiv.org/abs/2203.00146
https://arxiv.org/abs/2203.00146
https://doi.org/10.1186/S12859-022-05044-8
https://doi.org/10.1186/S12859-022-05044-8
https://doi.org/10.1186/s12859-022-05044-8
https://doi.org/10.1109/EUROSP.2019.00043
https://doi.org/10.1109/EUROSP.2019.00043
https://doi.org/10.1109/EuroSP.2019.00043
http://dl.acm.org/citation.cfm?id=1251375.1251395
http://dl.acm.org/citation.cfm?id=1251375.1251395

D-16-468
Public

[136] Assaf Ben-David, Noam Nisan, and Benny Pinkas. “FairplayMP: A System for Secure Multi-
party Computation”. In: Proceedings of the 15th ACM Conference on Computer and Commu-
nications Security. CCS ’08. Alexandria, Virginia, USA: ACM, 2008, pp. 257–266. isbn: 978-1-
59593-810-7. doi: 10.1145/1455770.1455804. url: http://doi.acm.org/10.1145/
1455770.1455804.

[137] Najwa Aaraj et al. “FANNG-MPC: Framework for Artificial Neural Networks and Generic
MPC”. In: IACR Cryptol. ePrint Arch. (2023), p. 1918. url: https://eprint.iacr.org/
2023/1918.

[138] Aditya Shastri et al. Private Computation Framework 2.0. https://research.facebook.
com/publications/private-computation-framework-2-0/. 2022.

[139] Brian Knott et al. “CrypTen: Secure Multi-Party Computation Meets Machine Learning”. In:
Advances in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. Ed. by Marc’Aurelio
Ranzato et al. 2021, pp. 4961–4973. url: https://proceedings.neurips.cc/paper/
2021/hash/2754518221cfbc8d25c13a06a4cb8421-Abstract.html.

[140] Ivan Damgård et al. “Confidential Benchmarking Based on Multiparty Computation”. In:
Financial Cryptography and Data Security - 20th International Conference, FC 2016, Christ
Church, Barbados, February 22-26, 2016, Revised Selected Papers. Ed. by Jens Grossklags and
Bart Preneel. Vol. 9603. Lecture Notes in Computer Science. Springer, 2016, pp. 169–187.
doi: 10.1007/978-3-662-54970-4_10. url: https://doi.org/10.1007/978-3-
662-54970-4%5C_10.

[141] Benjamin Mood et al. “Frigate: A Validated, Extensible, and Efficient Compiler and Inter-
preter for Secure Computation”. In: IEEE European Symposium on Security and Privacy, Eu-
roS&P 2016, Saarbrücken, Germany, March 21-24, 2016. IEEE, 2016, pp. 112–127. doi: 10.
1109/EUROSP.2016.20. url: https://doi.org/10.1109/EuroSP.2016.20.

[142] Christian Mouchet et al. “Helium: Scalable MPC among Lightweight Participants and un-
der Churn”. In: IACR Cryptol. ePrint Arch. (2024), p. 194. url: https://eprint.iacr.org/
2024/194.

[143] Lennart Braun et al. “FUSE - Flexible File Format and Intermediate Representation for Se-
cure Multi-Party Computation”. In: Proceedings of the 2023 ACM Asia Conference on Com-
puter and Communications Security, ASIA CCS 2023, Melbourne, VIC, Australia, July 10-14, 2023.
Ed. by Joseph K. Liu et al. ACM, 2023, pp. 649–663. doi: 10.1145/3579856.3590340. url:
https://doi.org/10.1145/3579856.3590340.

[144] Niklas Büscher et al. “HyCC: Compilation of Hybrid Protocols for Practical Secure Computa-
tion”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. Ed. by David Lie et al. ACM,
2018, pp. 847–861. doi: 10.1145/3243734.3243786. url: https://doi.org/10.
1145/3243734.3243786.

[145] Andrei Lapets et al. “Accessible Privacy-Preserving Web-Based Data Analysis for Assessing
and Addressing Economic Inequalities”. In: Proceedings of the 1st ACM SIGCAS Conference
on Computing and Sustainable Societies, COMPASS 2018, Menlo Park and San Jose, CA, USA,
June 20-22, 2018. Ed. by Ellen W. Zegura. ACM, 2018, 48:1–48:5. doi: 10.1145/3209811.
3212701. url: https://doi.org/10.1145/3209811.3212701.

[146] Sergiu Carpov et al. “Manticore: Efficient Framework for Scalable Secure Multiparty Com-
putation Protocols”. In: IACR Cryptol. ePrint Arch. (2021), p. 200. url: https://eprint.
iacr.org/2021/200.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
86 / 95

https://doi.org/10.1145/1455770.1455804
http://doi.acm.org/10.1145/1455770.1455804
http://doi.acm.org/10.1145/1455770.1455804
https://eprint.iacr.org/2023/1918
https://eprint.iacr.org/2023/1918
https://research.facebook.com/publications/private-computation-framework-2-0/
https://research.facebook.com/publications/private-computation-framework-2-0/
https://proceedings.neurips.cc/paper/2021/hash/2754518221cfbc8d25c13a06a4cb8421-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2754518221cfbc8d25c13a06a4cb8421-Abstract.html
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-662-54970-4%5C_10
https://doi.org/10.1007/978-3-662-54970-4%5C_10
https://doi.org/10.1109/EUROSP.2016.20
https://doi.org/10.1109/EUROSP.2016.20
https://doi.org/10.1109/EuroSP.2016.20
https://eprint.iacr.org/2024/194
https://eprint.iacr.org/2024/194
https://doi.org/10.1145/3579856.3590340
https://doi.org/10.1145/3579856.3590340
https://doi.org/10.1145/3243734.3243786
https://doi.org/10.1145/3243734.3243786
https://doi.org/10.1145/3243734.3243786
https://doi.org/10.1145/3209811.3212701
https://doi.org/10.1145/3209811.3212701
https://doi.org/10.1145/3209811.3212701
https://eprint.iacr.org/2021/200
https://eprint.iacr.org/2021/200

D-16-468
Public

[147] Mariya Georgieva Belorgey et al. “Manticore: A Framework for Efficient Multiparty Compu-
tation Supporting Real Number and Boolean Arithmetic”. In: J. Cryptol. 36.3 (2023), p. 31.
doi: 10.1007/S00145-023-09464-4. url: https://doi.org/10.1007/s00145-
023-09464-4.

[148] Lennart Braun et al. “MOTION - A Framework for Mixed-Protocol Multi-Party Computa-
tion”. In: ACM Trans. Priv. Secur. 25.2 (2022), 8:1–8:35. doi: 10.1145/3490390. url: https:
//doi.org/10.1145/3490390.

[149] A. Bruggemann et al. “Don’t Eject the Impostor: Fast Three-Party Computation With a
Known Cheater”. In: 2024 IEEE Symposium on Security and Privacy (SP). Los Alamitos, CA,
USA: IEEE Computer Society, May 2024, pp. 503–522. doi: 10.1109/SP54263.2024.
00164. url: https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.
00164.

[150] Marcel Keller. “MP-SPDZ: A Versatile Framework for Multi-Party Computation”. In: Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
2020. doi: 10.1145/3372297.3417872. url: https://doi.org/10.1145/3372297.
3417872.

[151] Jack Doerner, David Evans, and Abhi Shelat. “Secure Stable Matching at Scale”. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016. Ed. by Edgar R. Weippl et al. ACM, 2016, pp. 1602–1613. doi:
10.1145/2976749.2978373. url: https://doi.org/10.1145/2976749.2978373.

[152] Chang Liu et al. “ObliVM: A Programming Framework for Secure Computation”. In: 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. IEEE
Computer Society, 2015, pp. 359–376. doi: 10.1109/SP.2015.29. url: https://doi.
org/10.1109/SP.2015.29.

[153] Ahmad Al Badawi et al. “OpenFHE: Open-Source Fully Homomorphic Encryption Library”.
In: Proceedings of the 10th Workshop on Encrypted Computing & Applied Homomorphic Cryp-
tography, Los Angeles, CA, USA, 7 November 2022. Ed. by Michael Brenner, Anamaria Costache,
and Kurt Rohloff. ACM, 2022, pp. 53–63. doi: 10.1145/3560827.3563379. url: https:
//doi.org/10.1145/3560827.3563379.

[154] Shai Halevi and Victor Shoup. “Design and implementation of HElib: a homomorphic en-
cryption library”. In: IACR Cryptol. ePrint Arch. (2020), p. 1481. url: https://eprint.
iacr.org/2020/1481.

[155] Yihua Zhang, Aaron Steele, and Marina Blanton. “PICCO: A General-purpose Compiler for
Private Distributed Computation”. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security. CCS ’13. Berlin, Germany: ACM, 2013, pp. 813–
826. isbn: 978-1-4503-2477-9. doi: 10.1145/2508859.2516752. url: http://doi.acm.
org/10.1145/2508859.2516752.

[156] Yihua Zhang, Marina Blanton, and Ghada Almashaqbeh. “Implementing Support for Point-
ers to Private Data in a General-Purpose Secure Multi-Party Compiler”. In: ACM Trans. Priv.
Secur. 21.2 (2018), 6:1–6:34. doi: 10.1145/3154600. url: https://doi.org/10.1145/
3154600.

[157] Sameer Wagh et al. “Falcon: Honest-Majority Maliciously Secure Framework for Private
Deep Learning”. In: Proc. Priv. Enhancing Technol. 2021.1 (2021), pp. 188–208. doi: 10.
2478/POPETS-2021-0011. url: https://doi.org/10.2478/popets-2021-0011.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
87 / 95

https://doi.org/10.1007/S00145-023-09464-4
https://doi.org/10.1007/s00145-023-09464-4
https://doi.org/10.1007/s00145-023-09464-4
https://doi.org/10.1145/3490390
https://doi.org/10.1145/3490390
https://doi.org/10.1145/3490390
https://doi.org/10.1109/SP54263.2024.00164
https://doi.org/10.1109/SP54263.2024.00164
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00164
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00164
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/2976749.2978373
https://doi.org/10.1145/2976749.2978373
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3560827.3563379
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://doi.org/10.1145/2508859.2516752
http://doi.acm.org/10.1145/2508859.2516752
http://doi.acm.org/10.1145/2508859.2516752
https://doi.org/10.1145/3154600
https://doi.org/10.1145/3154600
https://doi.org/10.1145/3154600
https://doi.org/10.2478/POPETS-2021-0011
https://doi.org/10.2478/POPETS-2021-0011
https://doi.org/10.2478/popets-2021-0011

D-16-468
Public

[158] John Liagouris et al. “SECRECY: Secure collaborative analytics in untrusted clouds”. In: 20th
USENIX Symposium on Networked Systems Design and Implementation, NSDI 2023, Boston,
MA, April 17-19, 2023. Ed. by Mahesh Balakrishnan and Manya Ghobadi. USENIX Associ-
ation, 2023, pp. 1031–1056. url: https://www.usenix.org/conference/nsdi23/
presentation/liagouris.

[159] Junming Ma et al. “SecretFlow-SPU: A Performant and User-Friendly Framework for Privacy-
Preserving Machine Learning”. In: 2023 USENIX Annual Technical Conference (USENIX ATC
23). Boston, MA: USENIX Association, July 2023, pp. 17–33. isbn: 978-1-939133-35-9. url:
https://www.usenix.org/conference/atc23/presentation/ma.

[160] Haoqi Wu et al. “Ditto: Quantization-aware Secure Inference of Transformers upon MPC”.
In: Proceedings of the 41st International Conference on Machine Learning. Ed. by Ruslan
Salakhutdinov et al. Vol. 235. Proceedings of Machine Learning Research. PMLR, July 2024,
pp. 53346–53365. url: https://proceedings.mlr.press/v235/wu24d.html.

[161] Zhicong Huang et al. “Cheetah: Lean and Fast Secure Two-Party Deep Neural Network
Inference”. In: 31st USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA, Au-
gust 10-12, 2022. Ed. by Kevin R. B. Butler and Kurt Thomas. USENIX Association, 2022,
pp. 809–826. url: https://www.usenix.org/conference/usenixsecurity22/
presentation/huang-zhicong.

[162] Robin William Hundt, Nora Khayata, and Thomas Schneider. “POSTER: SEEC — Memory
Safety Meets Efficiency in Secure Two-Party Computation”. In: ACSAC. 2024.

[163] Haris Smajlović et al. “Sequre: a high-performance framework for secure multiparty com-
putation enables biomedical data sharing”. In: Genome Biology 24.1 (2023), p. 5.

[164] Rishabh Poddar et al. “Senate: A Maliciously-Secure MPC Platform for Collaborative An-
alytics”. In: 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021. Ed.
by Michael D. Bailey and Rachel Greenstadt. USENIX Association, 2021, pp. 2129–2146.
url: https://www.usenix.org/conference/usenixsecurity21/presentation/
poddar.

[165] Martin Burkhart et al. “SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network
Events and Statistics”. In: 19th USENIX Security Symposium, Washington, DC, USA, August 11-
13, 2010, Proceedings. USENIX Association, 2010, pp. 223–240. url: http://www.usenix.
org/events/sec10/tech/full%5C_papers/Burkhart.pdf.

[166] Alfonso Iacovazzi et al. “Elementary secure-multiparty computation for massive-scale col-
laborative network monitoring: A quantitative assessment”. In: Comput. Networks 57.17
(2013), pp. 3728–3742. doi: 10.1016/J.COMNET.2013.08.017. url: https://doi.
org/10.1016/j.comnet.2013.08.017.

[167] David W. Archer et al. From Keys to Databases – Real-World Applications of Secure Multi-Party
Computation. 2018. doi: 10.1093/comjnl/bxy090. url: http://dx.doi.org/10.
1093/comjnl/bxy090.

[168] Dan Bogdanov et al. “High-performance secure multi-party computation for data mining
applications”. In: Int. J. Inf. Sec. 11.6 (2012), pp. 403–418. doi: 10.1007/s10207-012-
0177-2. url: https://doi.org/10.1007/s10207-012-0177-2.

[169] Liina Kamm. “Privacy-preserving statistical analysis using secure multi-party computa-
tion”. PhD thesis. University of Tartu, 2015. url: http://hdl.handle.net/10062/
45343.

[170] Toomas Krips. “Improving performance of secure real-number operations”. https://
dspace.ut.ee/handle/10062/63763. PhD thesis. University of Tartu, 2019.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
88 / 95

https://www.usenix.org/conference/nsdi23/presentation/liagouris
https://www.usenix.org/conference/nsdi23/presentation/liagouris
https://www.usenix.org/conference/atc23/presentation/ma
https://proceedings.mlr.press/v235/wu24d.html
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://www.usenix.org/conference/usenixsecurity21/presentation/poddar
https://www.usenix.org/conference/usenixsecurity21/presentation/poddar
http://www.usenix.org/events/sec10/tech/full%5C_papers/Burkhart.pdf
http://www.usenix.org/events/sec10/tech/full%5C_papers/Burkhart.pdf
https://doi.org/10.1016/J.COMNET.2013.08.017
https://doi.org/10.1016/j.comnet.2013.08.017
https://doi.org/10.1016/j.comnet.2013.08.017
https://doi.org/10.1093/comjnl/bxy090
http://dx.doi.org/10.1093/comjnl/bxy090
http://dx.doi.org/10.1093/comjnl/bxy090
https://doi.org/10.1007/s10207-012-0177-2
https://doi.org/10.1007/s10207-012-0177-2
https://doi.org/10.1007/s10207-012-0177-2
http://hdl.handle.net/10062/45343
http://hdl.handle.net/10062/45343
https://dspace.ut.ee/handle/10062/63763
https://dspace.ut.ee/handle/10062/63763

D-16-468
Public

[171] Sven Laur, Riivo Talviste, and Jan Willemson. “From Oblivious AES to Efficient and Secure
Database Join in the Multiparty Setting”. In: Applied Cryptography and Network Security -
11th International Conference, ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Proceedings.
Ed. by Michael J. Jacobson Jr. et al. Vol. 7954. Lecture Notes in Computer Science. Springer,
2013, pp. 84–101. isbn: 978-3-642-38979-5. doi: 10.1007/978-3-642-38980-1_6. url:
https://doi.org/10.1007/978-3-642-38980-1%5C_6.

[172] Sven Laur, Jan Willemson, and Bingsheng Zhang. “Round-Efficient Oblivious Database Ma-
nipulation”. In: Information Security, 14th International Conference, ISC 2011, Xi’an, China,
October 26-29, 2011. Proceedings. Ed. by Xuejia Lai, Jianying Zhou, and Hui Li. Vol. 7001.
Lecture Notes in Computer Science. Springer, 2011, pp. 262–277. isbn: 978-3-642-24860-
3. doi: 10.1007/978-3-642-24861-0_18. url: https://doi.org/10.1007/978-
3-642-24861-0%5C_18.

[173] Peeter Laud. “Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-
Preserving Minimum Spanning Trees”. In: PoPETs 2015.2 (2015), pp. 188–205. doi: 10.
1515/popets-2015-0011. url: https://doi.org/10.1515/popets-2015-0011.

[174] Peeter Laud and Jaak Randmets. “A Domain-Specific Language for Low-Level Secure Mul-
tiparty Computation Protocols”. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-6, 2015. ACM, 2015,
pp. 1492–1503. doi: 10.1145/2810103.2813664. url: http://doi.acm.org/10.
1145/2810103.2813664.

[175] Jaak Randmets. “Programming Languages for Secure Multi-party Computation Applica-
tion Development”. http://hdl.handle.net/10062/56298. PhD thesis. University of
Tartu, 2017.

[176] Dan Bogdanov et al. “Rmind: A Tool for Cryptographically Secure Statistical Analysis”. In:
IEEE Transactions on Dependable and Secure Computing 15.3 (2018). http://doi.org/
10.1109/TDSC.2016.2587623, pp. 481–495. doi: 10.1109/TDSC.2016.2587623.

[177] Dan Bogdanov, Riivo Talviste, and Jan Willemson. “Deploying Secure Multi-Party Compu-
tation for Financial Data Analysis - (Short Paper)”. In: Financial Cryptography and Data Se-
curity - 16th International Conference, FC 2012, Kralendijk, Bonaire, February 27 - March 2,
2012, Revised Selected Papers. Ed. by Angelos D. Keromytis. Vol. 7397. Lecture Notes in
Computer Science. Springer, 2012, pp. 57–64. doi: 10.1007/978-3-642-32946-3_5.
url: https://doi.org/10.1007/978-3-642-32946-3%5C_5.

[178] Dan Bogdanov et al. “How the Estonian Tax and Customs Board Evaluated a Tax Fraud
Detection System Based on Secure Multi-party Computation”. In: Financial Cryptography
and Data Security - 19th International Conference, FC 2015, San Juan, Puerto Rico, January 26-
30, 2015, Revised Selected Papers. Ed. by Rainer Böhme and Tatsuaki Okamoto. Vol. 8975.
Lecture Notes in Computer Science. Springer, 2015, pp. 227–234. doi: 10.1007/978-3-
662-47854-7_14. url: https://doi.org/10.1007/978-3-662-47854-7%5C_14.

[179] Hendrik Ballhausen et al. “Privacy-friendly evaluation of patient data with secure multi-
party computation in a European pilot study”. In: npj Digital Medicine 7.280 (2024). doi:
https://doi.org/10.1038/s41746-024-01293-4.

[180] David Archer et al. “Sharing sensitive department of education data across organizational
boundaries using secure multiparty computation”. In: Galois, Inc. and Georgetown Univer-
sity, Tech. Rep 5 (2021).

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
89 / 95

https://doi.org/10.1007/978-3-642-38980-1_6
https://doi.org/10.1007/978-3-642-38980-1%5C_6
https://doi.org/10.1007/978-3-642-24861-0_18
https://doi.org/10.1007/978-3-642-24861-0%5C_18
https://doi.org/10.1007/978-3-642-24861-0%5C_18
https://doi.org/10.1515/popets-2015-0011
https://doi.org/10.1515/popets-2015-0011
https://doi.org/10.1515/popets-2015-0011
https://doi.org/10.1145/2810103.2813664
http://doi.acm.org/10.1145/2810103.2813664
http://doi.acm.org/10.1145/2810103.2813664
http://hdl.handle.net/10062/56298
http://doi.org/10.1109/TDSC.2016.2587623
http://doi.org/10.1109/TDSC.2016.2587623
https://doi.org/10.1109/TDSC.2016.2587623
https://doi.org/10.1007/978-3-642-32946-3_5
https://doi.org/10.1007/978-3-642-32946-3%5C_5
https://doi.org/10.1007/978-3-662-47854-7_14
https://doi.org/10.1007/978-3-662-47854-7_14
https://doi.org/10.1007/978-3-662-47854-7%5C_14
https://doi.org/https://doi.org/10.1038/s41746-024-01293-4

D-16-468
Public

[181] Ian Sweet et al. “Symphony: Expressive Secure Multiparty Computation with Coordina-
tion”. In: Art Sci. Eng. Program. 7.3 (2023). doi: 10.22152/PROGRAMMING-JOURNAL.ORG/
2023/7/14. url: https://doi.org/10.22152/programming-journal.org/2023/
7/14.

[182] Sameer Wagh, Divya Gupta, and Nishanth Chandran. “SecureNN: 3-Party Secure Compu-
tation for Neural Network Training”. In: Proc. Priv. Enhancing Technol. 2019.3 (2019), pp. 26–
49. doi: 10.2478/POPETS-2019-0035. url: https://doi.org/10.2478/popets-
2019-0035.

[183] Ebrahim M. Songhori et al. “TinyGarble: Highly Compressed and Scalable Sequential Gar-
bled Circuits”. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015. IEEE Computer Society, 2015, pp. 411–428. doi: 10.1109/SP.2015.32.
url: https://doi.org/10.1109/SP.2015.32.

[184] Marie Beth van Egmond et al. “Privacy-preserving Anti-Money Laundering using Secure
Multi-Party Computation”. In: IACR Cryptol. ePrint Arch. (2024), p. 65.url:https://eprint.
iacr.org/2024/065.

[185] Ivan Damgård et al. “Asynchronous Multiparty Computation: Theory and Implementa-
tion”. In: Proceedings of the 12th International Conference on Practice and Theory in Public
Key Cryptography: PKC ’09. Irvine. CA: Springer-Verlag, 2009, pp. 160–179. isbn: 978-3-642-
00467-4. doi: 10.1007/978-3-642-00468-1_10. url: http://dx.doi.org/10.
1007/978-3-642-00468-1_10.

[186] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. “Wysteria: A Programming Lan-
guage for Generic, Mixed-Mode Multiparty Computations”. In: 2014 IEEE Symposium on
Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE Computer Society,
2014, pp. 655–670. doi: 10.1109/SP.2014.48. url: https://doi.org/10.1109/SP.
2014.48.

[187] Aseem Rastogi, Nikhil Swamy, and Michael Hicks. “WYS*: A Verified Language Extension
for Secure Multi-party Computations”. In: CoRR abs/1711.06467 (2017). arXiv:1711.06467.
url: http://arxiv.org/abs/1711.06467.

[188] Marcella Hastings et al. “SoK: General Purpose Compilers for Secure Multi-Party Compu-
tation”. In: 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019. IEEE, 2019, pp. 1220–1237. doi: 10.1109/SP.2019.00028. url: https:
//doi.org/10.1109/SP.2019.00028.

[189] Thomas Lorünser and Florian Wohner. “Performance Comparison of Two Generic MPC-
frameworks with Symmetric Ciphers”. In: Proceedings of the 17th International Joint Confer-
ence on e-Business and Telecommunications, ICETE 2020 - Volume 2: SECRYPT, Lieusaint, Paris,
France, July 8-10, 2020. Ed. by Pierangela Samarati et al. ScitePress, 2020, pp. 587–594. doi:
10.5220/0009831705870594. url: https://doi.org/10.5220/0009831705870594.

[190] Fatih Aykurt. “ANALYSIS OF TWO VERSATILE MPC FRAMEWORKS MP-SPDZ AND MPYC”.
MA thesis. Middle East Technical University, 2023.

[191] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. “SoK: Fully Homomorphic Encryption
Compilers”. In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA,
24-27 May 2021. IEEE, 2021, pp. 1092–1108. doi: 10.1109/SP40001.2021.00068. url:
https://doi.org/10.1109/SP40001.2021.00068.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
90 / 95

https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2023/7/14
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2023/7/14
https://doi.org/10.22152/programming-journal.org/2023/7/14
https://doi.org/10.22152/programming-journal.org/2023/7/14
https://doi.org/10.2478/POPETS-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.1109/SP.2015.32
https://doi.org/10.1109/SP.2015.32
https://eprint.iacr.org/2024/065
https://eprint.iacr.org/2024/065
https://doi.org/10.1007/978-3-642-00468-1_10
http://dx.doi.org/10.1007/978-3-642-00468-1_10
http://dx.doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1109/SP.2014.48
https://arxiv.org/abs/1711.06467
http://arxiv.org/abs/1711.06467
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.5220/0009831705870594
https://doi.org/10.5220/0009831705870594
https://doi.org/10.1109/SP40001.2021.00068
https://doi.org/10.1109/SP40001.2021.00068

D-16-468
Public

[192] Charles Gouert, Dimitris Mouris, and Nektarios Georgios Tsoutsos. “SoK: New Insights
into Fully Homomorphic Encryption Libraries via Standardized Benchmarks”. In: Proc. Priv.
Enhancing Technol. 2023.3 (2023), pp. 154–172. doi: 10.56553/POPETS-2023-0075. url:
https://doi.org/10.56553/popets-2023-0075.

[193] Dengguo Feng and Kang Yang. “Concretely efficient secure multi-party computation pro-
tocols: survey and more”. In: Security and Safety 1 (2022), p. 2021001.

[194] Yichen Li et al. “Metamorphic Testing of Secure Multi-party Computation (MPC) Compil-
ers”. In: Proc. ACM Softw. Eng. 1.FSE (2024), pp. 1216–1237. doi: 10.1145/3643781. url:
https://doi.org/10.1145/3643781.

[195] Qi Pang, Yuanyuan Yuan, and Shuai Wang. “MPCDiff: Testing and Repairing MPC-Hardened
Deep Learning Models”. In: 31st Annual Network and Distributed System Security Symposium,
NDSS 2024, San Diego, California, USA, February 26 - March 1, 2024. The Internet Society,
2024. url: https://www.ndss-symposium.org/ndss-paper/mpcdiff-testing-
and-repairing-mpc-hardened-deep-learning-models/.

[196] United Nations Committee of Experts on Big Data and Data Science for Official Statistics.
UN Guide on Privacy-Enhancing Technologies for Official Statistics. https://unstats.un.
org/bigdata/task-teams/privacy/guide/. 2023.

[197] Pepijn Groen et al. “Privacy Enhancing Technologies Whitepaper: Developed by Centre of
Excellence–Data Sharing and Cloud”. In: (2023).

[198] Marie Beth van Egmond et al. “Privacy-preserving Anti-Money Laundering using Secure
Multi-Party Computation”. In: Cryptology ePrint Archive (2024).

[199] Meril Vaht. “The Analysis and Design of a Privacy-Preserving Survey System”. MA thesis.
Institute of Computer Science, University of Tartu, 2015.

[200] Victoria Song. Apple needs to explain that bug that resurfaced deleted photos. https://
www.theverge.com/2024/5/20/24161152/apple-ios-17-photo-bug. [Accessed
13-09-2024]. May 2024.

[201] Kevin Beaumont. Recall: Stealing everything you’ve ever typed or viewed on your own Windows
PC is now possible. https://doublepulsar.com/recall-stealing-everything-
youve-ever-typed-or-viewed-on-your-own-windows-pc-is-now-possible-
da3e12e9465e. [Accessed 13-09-2024].

[202] Cyber Safety Review Board. Review of the Summer 2023 Microsoft Exchange Online Intrusion.
https://www.cisa.gov/resources-tools/resources/CSRB-Review-Summer-
2023-MEO-Intrusion. Mar. 2023.

[203] H. Birkholz et al. Remote ATtestation procedureS (RATS) Architecture. RFC 9334. RFC Editor,
Jan. 2023. url: https://www.rfc-editor.org/rfc/rfc9334.txt.

[204] Hugo Krawczyk. “SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman
and Its Use in the IKE Protocols”. In: Advances in Cryptology - CRYPTO 2003. Ed. by Dan
Boneh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 400–425.

[205] Samira Briongos et al. “No Forking Way: Detecting Cloning Attacks on Intel SGX Appli-
cations”. In: Proceedings of the 39th Annual Computer Security Applications Conference. AC-
SAC ’23. Austin, TX, USA: Association for Computing Machinery, 2023, pp. 744–758. isbn:
9798400708862. doi: 10.1145/3627106.3627187. url: https://doi.org/10.1145/
3627106.3627187.

[206] Stephan van Schaik et al. “SoK: SGX.Fail: How Stuff Get eXposed”. In: 2022.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
91 / 95

https://doi.org/10.56553/POPETS-2023-0075
https://doi.org/10.56553/popets-2023-0075
https://doi.org/10.1145/3643781
https://doi.org/10.1145/3643781
https://www.ndss-symposium.org/ndss-paper/mpcdiff-testing-and-repairing-mpc-hardened-deep-learning-models/
https://www.ndss-symposium.org/ndss-paper/mpcdiff-testing-and-repairing-mpc-hardened-deep-learning-models/
https://unstats.un.org/bigdata/task-teams/privacy/guide/
https://unstats.un.org/bigdata/task-teams/privacy/guide/
https://www.theverge.com/2024/5/20/24161152/apple-ios-17-photo-bug
https://www.theverge.com/2024/5/20/24161152/apple-ios-17-photo-bug
https://doublepulsar.com/recall-stealing-everything-youve-ever-typed-or-viewed-on-your-own-windows-pc-is-now-possible-da3e12e9465e
https://doublepulsar.com/recall-stealing-everything-youve-ever-typed-or-viewed-on-your-own-windows-pc-is-now-possible-da3e12e9465e
https://doublepulsar.com/recall-stealing-everything-youve-ever-typed-or-viewed-on-your-own-windows-pc-is-now-possible-da3e12e9465e
https://www.cisa.gov/resources-tools/resources/CSRB-Review-Summer-2023-MEO-Intrusion
https://www.cisa.gov/resources-tools/resources/CSRB-Review-Summer-2023-MEO-Intrusion
https://www.rfc-editor.org/rfc/rfc9334.txt
https://doi.org/10.1145/3627106.3627187
https://doi.org/10.1145/3627106.3627187
https://doi.org/10.1145/3627106.3627187

D-16-468
Public

[207] Antonio Muñoz et al. “A survey on the (in)security of trusted execution environments”. In:
Computers & Security 129 (2023), p. 103180. issn: 0167-4048. doi: https://doi.org/
10.1016/j.cose.2023.103180. url: https://www.sciencedirect.com/science/
article/pii/S0167404823000901.

[208] Jaak Randmets and Armin Kisand. An Overview of Vulnerabilities and Mitigations of Intel SGX
Applications. Technical Report D-2-116 v1.3. 2024. Institute of Information Security, Cy-
bernetica AS, 2024. url: https://cyber.ee/uploads/D_2_116_An_Overview_of_
Vulnerabilities_and_Mitigations_of_Intel_SGX_Applications_c1282b1505.
pdf.

[209] Mengyuan Li et al. “SoK: Understanding Design Choices and Pitfalls of Trusted Execution
Environments”. In: Proceedings of the 19th ACM Asia Conference on Computer and Commu-
nications Security. 2024, pp. 1600–1616.

[210] Douglas Everson, Long Cheng, and Zhenkai Zhang. “Log4shell: Redefining the web attack
surface”. In: Proc. Workshop Meas., Attacks, Defenses Web (MADWeb). 2022, pp. 1–8.

[211] Zitai Chen et al. “VoltPillager: Hardware-based fault injection attacks against Intel SGX
Enclaves using the SVID voltage scaling interface”. In: 30th USENIX Security Symposium
(USENIX Security 21). Vancouver, B.C.: USENIX Association, Aug. 2021. url: https://www.
usenix.org/conference/usenixsecurity21/presentation/chen-zitai.

[212] Aakash Gangolli, Qusay H. Mahmoud, and Akramul Azim. “A Systematic Review of Fault
Injection Attacks on IoT Systems”. In: Electronics 11.13 (2022). issn: 2079-9292. doi: 10.
3390/electronics11132023. url: https://www.mdpi.com/2079-9292/11/13/
2023.

[213] Microsoft. Physical security of Azure datacenters - Microsoft Azure.https://learn.microsoft.
com/en-us/azure/security/fundamentals/infrastructure. [Accessed 08-10-
2024].

[214] AWS. Data Centers - Our Controls. https://aws.amazon.com/compliance/data-
center/controls/. [Accessed 08-10-2024].

[215] Google. How Google protects the physical-to-logical space in a data center. https://www.
google.com/about/datacenters/data-security/. [Accessed 08-10-2024].

[216] Intel®. Intel® Software Guard Extensions Trusted Computing Base Recovery. White Paper.
2019. url: https://cdrdv2-public.intel.com/740676/Intel-SGX-Trusted-
Computing-Base-Recovery-2019.pdf.

[217] Intel®. Intel® Software Guard Extensions (Intel® SGX) Data Center Attestation Primitives: ECDSA
Quote Library API. Documentation. Aug. 2023. url: https://download.01.org/intel-
sgx/sgx-dcap/1.21/linux/docs/Intel_SGX_ECDSA_QuoteLibReference_DCAP_
API.pdf.

[218] AWS. The Security Design of the AWS Nitro System. White Paper. 2024. url: https://docs.
aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-
system/security-design-of-aws-nitro-system.pdf.

[219] AMD. SEV Secure Nested Paging Firmware ABI Specification. Specification. Sept. 2023. url:
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-
docs/specifications/56860.pdf.

[220] Robert Buhren, Christian Werling, and Jean-Pierre Seifert. “Insecure until proven updated:
analyzing AMD SEV’s remote attestation”. In: Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security. 2019, pp. 1087–1099.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
92 / 95

https://doi.org/https://doi.org/10.1016/j.cose.2023.103180
https://doi.org/https://doi.org/10.1016/j.cose.2023.103180
https://www.sciencedirect.com/science/article/pii/S0167404823000901
https://www.sciencedirect.com/science/article/pii/S0167404823000901
https://cyber.ee/uploads/D_2_116_An_Overview_of_Vulnerabilities_and_Mitigations_of_Intel_SGX_Applications_c1282b1505.pdf
https://cyber.ee/uploads/D_2_116_An_Overview_of_Vulnerabilities_and_Mitigations_of_Intel_SGX_Applications_c1282b1505.pdf
https://cyber.ee/uploads/D_2_116_An_Overview_of_Vulnerabilities_and_Mitigations_of_Intel_SGX_Applications_c1282b1505.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai
https://doi.org/10.3390/electronics11132023
https://doi.org/10.3390/electronics11132023
https://www.mdpi.com/2079-9292/11/13/2023
https://www.mdpi.com/2079-9292/11/13/2023
https://learn.microsoft.com/en-us/azure/security/fundamentals/infrastructure
https://learn.microsoft.com/en-us/azure/security/fundamentals/infrastructure
https://aws.amazon.com/compliance/data-center/controls/
https://aws.amazon.com/compliance/data-center/controls/
https://www.google.com/about/datacenters/data-security/
https://www.google.com/about/datacenters/data-security/
https://cdrdv2-public.intel.com/740676/Intel-SGX-Trusted-Computing-Base-Recovery-2019.pdf
https://cdrdv2-public.intel.com/740676/Intel-SGX-Trusted-Computing-Base-Recovery-2019.pdf
https://download.01.org/intel-sgx/sgx-dcap/1.21/linux/docs/Intel_SGX_ECDSA_QuoteLibReference_DCAP_API.pdf
https://download.01.org/intel-sgx/sgx-dcap/1.21/linux/docs/Intel_SGX_ECDSA_QuoteLibReference_DCAP_API.pdf
https://download.01.org/intel-sgx/sgx-dcap/1.21/linux/docs/Intel_SGX_ECDSA_QuoteLibReference_DCAP_API.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf

D-16-468
Public

[221] Jo Van Bulck et al. “LVI: Hijacking transient execution through microarchitectural load
value injection”. In: 2020 IEEE Symposium on Security and Privacy (SP). IEEE. 2020, pp. 54–72.

[222] Intel®. Load Value Injection. https : / / www . intel . com / content / www / us / en /
developer/articles/technical/software-security-guidance/technical-
documentation/load-value-injection.html. [Accessed 14-09-2024].

[223] Mathias Morbitzer et al. “Severity: Code injection attacks against encrypted virtual ma-
chines”. In: 2021 IEEE Security and Privacy Workshops (SPW). IEEE. 2021, pp. 444–455.

[224] Moritz Schneider et al. SoK: Hardware-supported Trusted Execution Environments. 2022. arXiv:
2205.12742 [cs.CR]. url: https://arxiv.org/abs/2205.12742.

[225] Ayaz Akram et al. “Sok: Limitations of confidential computing via tees for high-performance
compute systems”. In: 2022 IEEE International Symposium on Secure and Private Execution
Environment Design (SEED). IEEE. 2022, pp. 121–132.

[226] Apple. Secure Enclave. https://support.apple.com/guide/security/secure-
enclave-sec59b0b31ff/web. [Accessed 01-10-2024].

[227] Sandro Pinto and Nuno Santos. “Demystifying arm trustzone: A comprehensive survey”.
In: ACM computing surveys (CSUR) 51.6 (2019), pp. 1–36.

[228] IBM. IBM Secure Execution for Linux. Solution Brief. 2022. url: https://www.ibm.com/
downloads/cas/O158MBWG.

[229] C. Bornträger et al. “Secure your cloud workloads with IBM Secure Execution for Linux
on IBM z15 and LinuxONE III”. In: IBM Journal of Research and Development 64.5/6 (2020),
2:1–2:11. doi: 10.1147/JRD.2020.3008109.

[230] IBM. Introducing IBM Secure Execution for Linux describe secure execution concepts, how to
set it up as a cloud provider, and how to secure your workload as a workload owner. https:
//www.ibm.com/docs/en/linux- on- systems?topic=management- secure-
execution. [Accessed 21-10-2024].

[231] Guerney D. H. Hunt et al. “Confidential computing for OpenPOWER”. In: Proceedings of
the Sixteenth European Conference on Computer Systems. EuroSys ’21. Online Event, United
Kingdom: Association for Computing Machinery, 2021, pp. 294–310. isbn: 9781450383349.
doi: 10.1145/3447786.3456243. url: https://doi.org/10.1145/3447786.
3456243.

[232] Intel®. Intel® Software Guard Extensions (Intel® SGX).https://www.intel.com/content/
www/us/en/products/docs/accelerator-engines/software-guard-extensions.
html. [Accessed 01-10-2024].

[233] Intel®. https://download.01.org/intel-sgx/latest/linux-latest/docs/.
[Accessed 01-10-2024].

[234] Victor Costan. “Intel SGX explained”. In: IACR Cryptol, EPrint Arch (2016).
[235] Nico Weichbrodt et al. “AsyncShock: Exploiting synchronisation bugs in Intel SGX enclaves”.

In: Computer Security–ESORICS 2016: 21st European Symposium on Research in Computer
Security, Heraklion, Greece, September 26-30, 2016, Proceedings, Part I 21. Springer. 2016,
pp. 440–457.

[236] Scott Constable et al. “{AEX-Notify}: Thwarting Precise {Single-Stepping} Attacks through
Interrupt Awareness for Intel {SGX} Enclaves”. In: 32nd USENIX Security Symposium (USENIX
Security 23). 2023, pp. 4051–4068.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
93 / 95

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/load-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/load-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/load-value-injection.html
https://arxiv.org/abs/2205.12742
https://arxiv.org/abs/2205.12742
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://www.ibm.com/downloads/cas/O158MBWG
https://www.ibm.com/downloads/cas/O158MBWG
https://doi.org/10.1147/JRD.2020.3008109
https://www.ibm.com/docs/en/linux-on-systems?topic=management-secure-execution
https://www.ibm.com/docs/en/linux-on-systems?topic=management-secure-execution
https://www.ibm.com/docs/en/linux-on-systems?topic=management-secure-execution
https://doi.org/10.1145/3447786.3456243
https://doi.org/10.1145/3447786.3456243
https://doi.org/10.1145/3447786.3456243
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://download.01.org/intel-sgx/latest/linux-latest/docs/

D-16-468
Public

[237] Intel®. Intel® Software Guard Extensions (Intel® SGX) SDK for Linux* OS. Developer Refer-
ence. Documentation. Sept. 2024. url: https://download.01.org/intel-sgx/sgx-
linux/2.25/docs/Intel_SGX_Developer_Reference_Linux_2.25_Open_
Source.pdf.

[238] Intel®. Intel® Trust Domain Extensions. White Paper. Feb. 2023. url: https://cdrdv2.
intel.com/v1/dl/getContent/690419.

[239] Intel®. Intel® Trust Domain Extensions (Intel® TDX). https://www.intel.com/content/
www/us/en/developer/tools/trust-domain-extensions/overview.html. [Ac-
cessed 01-10-2024].

[240] Pau-Chen Cheng et al. “Intel tdx demystified: A top-down approach”. In: ACM Computing
Surveys 56.9 (2024), pp. 1–33.

[241] Erdem Aktas et al. Intel trust domain extensions (TDX) security review. Technical Report.
Google, 2023.

[242] Magnus Kulke. Building Trust into OS images for Confidential Containers. 2024. url: https:
//confidentialcontainers.org/blog/2024/03/01/building-trust-into-os-
images-for-confidential-containers/ (visited on 08/01/2024).

[243] Vikram Narayanan et al. “Remote attestation of confidential VMs using ephemeral vTPMs”.
In: Proceedings of the 39th Annual Computer Security Applications Conference. ACSAC ’23.
Austin, TX, USA: Association for Computing Machinery, 2023, pp. 732–743. doi: 10.1145/
3627106.3627112. url: https://doi.org/10.1145/3627106.3627112.

[244] AMD. Strengthening VM isolation with integrity protection and more. White Paper. Jan. 2020.
url: https://www.amd.com/content/dam/amd/en/documents/epyc-business-
docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-
protection-and-more.pdf.

[245] Petar Paradžik, Ante Derek, and Marko Horvat. “Formal Security Analysis of the AMD SEV-
SNP Software Interface”. In: arXiv preprint arXiv:2403.10296 (2024).

[246] Charles Garcia-Tobin and Mark Knight. “Elevating Security with Arm CCA: Attestation and
verification are integral to adopting confidential computing.” In: Queue 22.2 (2024), pp. 39–
56.

[247] Xupeng Li et al. “Design and verification of the arm confidential compute architecture”. In:
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). 2022,
pp. 465–484.

[248] John Redford and Xiang Wen Kuan. AWS Nitro System API & Security Claims. Technical Re-
port. NCC Group Security Services, Inc., Apr. 2022. url: https://www.nccgroup.com/
us/research-blog/public-report-aws-nitro-system-api-security-claims/.

[249] Paweł Płatek. A few notes on AWS Nitro Enclaves: Attack surface.https://blog.trailofbits.
com/2024/09/24/notes-on-aws-nitro-enclaves-attack-surface/. [Accessed
08-10-2024]. Sept. 2024.

[250] AWS. Data protection in Amazon EC2 - Amazon Elastic Compute Cloud. https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html. [Accessed
22-10-2024].

[251] Intel®. Intel® SGX SDK. https://github.com/intel/linux-sgx.
[252] Microsoft. Open Enclave SDK. https://openenclave.io/sdk/. [Accessed 01-10-2024].
[253] AWS. AWS Nitro Enclaves SDK for C. https://github.com/aws/aws-nitro-enclaves-

sdk-c.

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
94 / 95

https://download.01.org/intel-sgx/sgx-linux/2.25/docs/Intel_SGX_Developer_Reference_Linux_2.25_Open_Source.pdf
https://download.01.org/intel-sgx/sgx-linux/2.25/docs/Intel_SGX_Developer_Reference_Linux_2.25_Open_Source.pdf
https://download.01.org/intel-sgx/sgx-linux/2.25/docs/Intel_SGX_Developer_Reference_Linux_2.25_Open_Source.pdf
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://confidentialcontainers.org/blog/2024/03/01/building-trust-into-os-images-for-confidential-containers/
https://confidentialcontainers.org/blog/2024/03/01/building-trust-into-os-images-for-confidential-containers/
https://confidentialcontainers.org/blog/2024/03/01/building-trust-into-os-images-for-confidential-containers/
https://doi.org/10.1145/3627106.3627112
https://doi.org/10.1145/3627106.3627112
https://doi.org/10.1145/3627106.3627112
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.nccgroup.com/us/research-blog/public-report-aws-nitro-system-api-security-claims/
https://www.nccgroup.com/us/research-blog/public-report-aws-nitro-system-api-security-claims/
https://blog.trailofbits.com/2024/09/24/notes-on-aws-nitro-enclaves-attack-surface/
https://blog.trailofbits.com/2024/09/24/notes-on-aws-nitro-enclaves-attack-surface/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html
https://github.com/intel/linux-sgx
https://openenclave.io/sdk/
https://github.com/aws/aws-nitro-enclaves-sdk-c
https://github.com/aws/aws-nitro-enclaves-sdk-c

D-16-468
Public

[254] Chia-Che Tsai, Donald E Porter, and Mona Vij. “Graphene-SGX: A practical library OS for
unmodified applications on SGX”. In: 2017 USENIX Annual Technical Conference (USENIX ATC
17). 2017, pp. 645–658.

[255] Enarx. https://enarx.dev/. [Accessed 01-10-2024].
[256] Mathias Brossard et al. Private delegated computations using strong isolation. Technical re-

port. Systems Research Group, Arm Research, 2022, p. 20. doi: https://doi.org/10.
48550/arXiv.2205.03322.

[257] KubeVirt CVM. https://github.com/cc-api/kubevirt-cvm.
[258] Confidential Containers. Confidential Containers. https://confidentialcontainers.

org/. [Accessed 09-09-2024].
[259] Lorenzo Fero, Antonio Lioy, et al. “Standard-Based Remote Attestation: The Veraison Project”.

In: Proceedings of The Italian Conference on Cybersecurity (ITASEC 2024). CEUR-WS. 2024,
pp. 1–13.

[260] Gianluca Scopelliti, Christoph Baumann, and Jan Tobias Mühlberg. “Understanding Trust
Relationships in Cloud-Based Confidential Computing”. In: 2024 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). IEEE. 2024, pp. 169–176.

[261] Microsoft. Azure confidential virtual machines FAQ. https://learn.microsoft.com/en-
us/azure/confidential-computing/confidential-vm-faq#can-i-perform-
attestation-for-my-intel-based-confidential-vms-. [Accessed 01-10-2024].

JOCONDE D2.1 Technology Survey and Analysis
30.12.2024

1.0
95 / 95

https://enarx.dev/
https://doi.org/https://doi.org/10.48550/arXiv.2205.03322
https://doi.org/https://doi.org/10.48550/arXiv.2205.03322
https://github.com/cc-api/kubevirt-cvm
https://confidentialcontainers.org/
https://confidentialcontainers.org/
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-faq#can-i-perform-attestation-for-my-intel-based-confidential-vms-
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-faq#can-i-perform-attestation-for-my-intel-based-confidential-vms-
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-faq#can-i-perform-attestation-for-my-intel-based-confidential-vms-

	Introduction
	Secure Multiparty Computation
	Main Properties
	Number of Parties and Threshold
	Adversary Models
	Security Assumptions
	Additional Security Properties
	Relations Between Security Properties
	Converting Between Security Models
	Online-Offline Paradigm

	Core Secure Multiparty Computation Methods
	Secret Sharing
	Function Secret Sharing and Homomorphic Secret Sharing
	Garbled Circuits
	Homomorphic Encryption

	Protocol Families
	Additive Secret Sharing
	Shamir's secret sharing
	Function Secret Sharing
	Garbled Circuits
	Homomorphic Encryption
	Mixed-mode protocols

	Secure Computation Tools
	Asterisk
	Carbyne Stack
	CBMC-GC
	CipherCompute
	CirC
	COMBINE
	Conclave
	Demeter
	Divvi Up and Prio
	EMP
	EasySMPC
	EzPC
	Fairplay
	FANNG-MPC
	FBPCP
	FRESCO
	Frigate
	FudanMPL
	Helium
	FUSE
	HybrTC
	HyCC
	JIFF
	Lattigo
	LIBSCAPI
	Manticore
	MOTION and ABY
	MP-SPDZ
	MPyC
	Obliv-C
	ObliVM
	OpenFHE
	PICCO
	PySyft, SyMPC and Sycret
	SCALE-MAMBA
	SEAL
	Secrecy
	SecretFlow
	SEEC
	Sequre
	Senate
	SEPIA
	Sharemind MPC
	Silent Compute
	Swanky
	Symphony
	Tandem
	TASTY
	TF-Encrypted
	TinyGarble
	TNO-MPC
	VIFF
	Virtual Data Lake
	Wysteria
	XOR
	XSCE

	Overview and Comparison of the Secure Multiparty Computation Tools
	Prior Comparisons
	Classification

	Published MPC Projects Using Large Scale Real Data

	Trusted Execution Environments
	Fundamentals of TEE Technologies
	Security Challenges
	TEE Technologies on the Market
	Overview
	Intel SGX
	Intel TDX
	AMD SEV-SNP
	ARM CCA
	AWS Nitro Enclave

	TEE Software Ecosystem
	TEE Availability in the Cloud

	Considerations for the JOCONDE System
	Secure Multiparty Computation
	Trusted Execution Environments
	Combining Secure Multiparty Computation and Trusted Execution Environments

	Bibliography

