# Economic and Finance statistics



Block 4: Micro data for Statistics Part 1 – Benefits, challenges & key aspects of financial micro data

Nicolas Griesshaber • Javier Huerga • Antonio Matas • Arek Wyka (European Central Bank)

Spring semester 2021



| Part 1: Introduction to financial micro statistics - Benefits, challenges and key aspects of financial micro data |                                                                                              |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1                                                                                                                 | Background                                                                                   |
| 2                                                                                                                 | Financial micro data for statistics – Benefits and costs; Operation of micro databases       |
| 3                                                                                                                 | Data quality management                                                                      |
| 4                                                                                                                 | Key aspects for financial micro databases – International Standards; Identifiers and linking |
| 5                                                                                                                 | Outlook                                                                                      |
| Part 2: Security-by-Security databases                                                                            |                                                                                              |
| Part 3: Loan-by-loan data on credit and credit risk                                                               |                                                                                              |
| Part 4: MMSR, €STR and Yield curve                                                                                |                                                                                              |



## Background The rise of micro data for statistics

# More granular data collections and micro-databases have become increasingly relevant for the production of statistics





### Background Why do we need micro data for statistics?

- Collection/compilation of aggregate financial, monetary and economic statistics has become increasingly burdensome
  - Difficult quality control of aggregated reporting
  - o International statistical standards differ from market concepts used by reporting agents
  - Aggregate statistics are often not able to cope with financial innovation
  - o Reporting burden increases with new or amended statistical requirements
- Need for a data collection system where reported information is simple and remains unchanged in case of new requirements, while data can be used in a flexible/agile way for multiple purposes
- > Solution: Granular data reporting (e.g. security-by-security, loan-by-loan, etc.)



### Financial micro data for statistics Benefits and Costs

### Advantages of micro data

- Increased harmonisation and data quality
  - o Harmonisation in statistical concepts and calculation methods
  - o Promote statistical standardisation, as discrepancies are easily recognised in the micro data
  - o Quality checks can be done at very detailed level
  - Greater accuracy and consistency, as compilers rather than reporters are responsible for statistical classification of the data

### • Easier implementation of statistics

- o Allows re-defining output aggregates without modifying the input data
- Empowers compilers, while limiting reporting obligations for reporting agents  $\rightarrow$  allowing increased timeliness of statistics



# Financial micro data for statistics Benefits and Costs

### Advantages of micro data (continued)

- Flexible use and adaption
  - Flexibility to produce new aggregates on demand, going beyond totals and averages (e.g. dispersion)
  - Data can be flexibly combined to serve various requirements, while data quality needs to be checked only once
  - New statistical requirements usually do not require changes in reporting  $\rightarrow$  Lower reporting burden
- Increased possibilities for analysis and use
  - o Permits analysis of individual assets and institutions
  - o Allows analysing the developments that are underlying the aggregates (drilling down aggregates)
  - o Allows use of micro data in the design, implementation and monitoring of central bank or government policies



# Financial micro data for statistics **Benefits and Costs**

### Micro-databases however involve some non-negligible costs

- IT infrastructure setting, maintenance and operation

Requires more sophisticated database infrastructure

- o Large data volumeso Granular data structure
- Data provision & revisions
- Data quality management
- Technological advancements facilitate the use and operation of micro databases



### Financial micro data for statistics Operation of micro databases

### The operation of financial micro databases broadly consists of three stages

#### Data input

### Data can be collected and/or purchased from a range of sources

- Central banks or government agencies
- Numbering agencies
- Commercial data providers
- Exchanges
- Regulatory or statistical reporting

#### Key aspects:

- Input standardisation (e.g. via data input dictionary)
- Definition of file format (xml, csv, json, etc,)
- Data source management (educate data providers)

#### Storage, DQM and compilation

#### Data receipt, merging and storage

#### **Data quality management (DQM)** Checks for completeness, consistency and plausibility

- Internal consistency & stability over time
- Checks on individual & aggregate level
- Comparison with benchmark data

#### **Data compilation**

#### Enrichment of the data

- Calculations
- Default values

#### Production of a 'golden copy'

#### Data output

#### Micro data

#### Compilation of aggregates

• Not an easy task

#### Data dissemination:

Access to the data is a key issue

- IT tools
- Confidentiality aspects
- Different users may require different access restrictions or access routes (e.g. database access vs. output files)



# Data quality management

Challenges and focus of data quality management for micro data

# Complexity of data, number of data points and multipurpose use provide different challenges for data quality management (DQM) compared to macro statistics

- Standardised set of encompassing data quality checks (both at individual and aggregate level) that ensure sufficient confidence in the data
- Concise and transparent presentation of data quality to all parties (reporters, compilers, users)
- Ensuring 100% quality (no inconsistencies, no missing data, etc.) from all relevant user perspectives is hardly feasible (would require immense resources)
  - Important to ensure the most relevant potential data issues are detected and prioritised (requiring weighting of potential issues)



# Data quality management

Comprehensive set of data quality checks

### Checks can be usually distinguished in two types

- Formal validity checks (mostly automated)
  - o Aim: Identify errors with certainty
  - o Technical checks
    - Ensure data is reported according to specifications
    - > e.g. unexpected number of attributes

#### o Business checks

Ensure data is reported according to the business logic

> e.g. mandatory input not provided

### • Plausibility checks

- Aim: Identify data that <u>may</u> not be correct (need to be validated)
  - > Focus on consistency and stability over time;
  - > Conducted both at individual and aggregate level
- $\circ$  Internal checks  $\rightarrow$  ensure data reported is consistent within database
  - Per reporting agent/data provider
    (e.g. consistency of data points; across time; outliers, etc.)
  - Across reporting agents/data providers
    (e.g. consistency of attributes on same type of information; outliers, etc.)

#### o Comparisons with external benchmarks

Defined at aggregate level (e.g. comparing security-by-security data with balance sheet statistics; securities issues statistics)

### Prioritisation is key for effective and efficient DQM



# Key aspects for financial micro databases International standards

### International standardisation is of key importance when defining micro data attributes

- In particular with regard to classifications and identifiers (e.g. country names/codes, instrument classifications, sector classifications, entity/instrument names, currencies, etc.)
- For many financial and economic data attributes, international statistical standards (e.g. SNA) or financial industry standards (e.g. ISO standards) can be relied upon
  - These should be applied whenever possible
    - o to achieve consistent and comparable statistics at a cross-country/global level
    - o to facilitate linking with other micro data sets
    - o even the structure of the files to transmit micro data can be an ISO standard (e.g. MMSR)



EMOS core module on economic and finance statistics

# Key aspects for financial micro databases International standards

# **Complementary use of financial industry standards** (e.g. ISO codes)

- Statistical standards are not always known to reporting agents
  - e.g. most market participants do not know the System of National Accounts (SNA), while they are familiar with the Classification of Financial Instruments (CFI) code
- Mapping of financial standards (e.g. CFI) to statistical standards (e.g. SNA) can support statistical compilation

#### Background information:



### International Organization for Standardization (ISO)

- founded in 1946 (Geneva)
- 164 member countries (national standards bodies)
- 794 technical committees (TCs) and subcommittees in charge of standards development for different sectors

e.g. TC 1 on Screw threads (est. 1947) – TC 324 on Sharing economy (est. 2019) → TC 68 on Financial services (est. 1972)

• over 22,850 International Standards covering almost all aspects of technology and manufacturing

#### ➢ ISO Standards …

- o respond to global market needs
- are developed by global groups of experts (relevant industry, consumer associations, academia, NGOs and government) through a long and multistakeholder process
- o are based on consensus



# Key aspects for financial micro databases Identifiers and linking

### Financial micro databases often require the use of unique identifiers (e.g. for instruments, entities, etc.)

- To avoid duplications  $\rightarrow$  example: unique identification of a security
- To simplify the reporting  $\rightarrow$  instead of providing multiple classification details, just refer to the unique identifier
- To ensure quality  $\rightarrow$  permits to receive and check data only once in a central manner
- To combine data from different data providers  $\rightarrow$  e.g. on the same security or the same issuer/holder or borrower/lender
- To link the data internally  $\rightarrow$  e.g. to group information of individual securities/loans under the issuing/borrowing or holding/lending entity
- To link the data with other databases  $\rightarrow$  e.g. linking with entity reference information; linking securities, loan and derivatives data
- To exchange data externally  $\rightarrow$  e.g. with other central banks or institutions
- ► Unique identifiers should ideally be **global and licence-free** to allow standardised use across databases of different economies  $\rightarrow$  e.g. Legal Entity Identifier (LEI) for institutions; International Securities identification Number (ISIN) for Instruments EMOS

# Key aspects for financial micro databases Identifiers and linking

### Let's say that reporting agents have to provide info on the counterparties of their operations

- Without a unique identifier
  - o Each reporting agent needs to ...
    - ✓ independently find out a number of details for each counterparty (e.g. economic sector, country)
    - Repeat all the details of a counterparty or an instrument every time it is reported
  - o It is not possible for the statistical compiler to ...
    - X check correctness of the data
    - X put together transactions for the same counterparty
    - X link to other sources

- With a unique identifier
  - o Just the identifier of the counterparty is reported (always the same)
  - The statistical compiler uses the identifier to retrieve the necessary information from a reference database
    - ✓ Ensures higher quality and multiple possibilities of checking, grouping information, etc



# Key aspects for financial micro databases ECB's broader strategy for statistics

# The availability of granular data has been gradually increasing at the ECB

- A holistic approach is followed with a view to allowing information from different frameworks to be combined
  - Repository of counterparty data plays a central role in this regard







The remainder of this lecture aims to further address the aspects mentioned, focusing on some concrete examples of relevant financial micro data collections and databases

- Security-by-security (SBS) databases
- Loan-by-loan data on credit and credit risk (AnaCredit)
- MMSR, €STR and Yield curve



EMOS core module on economic and finance statistics



Happy to receive any question or comments at the Q&A session on 13 July, 14 c.t.



EMOS core module on economic and finance statistics