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Course Outline

I The first part of the course will be devoted to describing
what are spatial data and which are the different types of
spatial data. The spatial autocorrelation indices will be
introduced. An R example will be provided using EU-SILC
data.

I The second part of the course will be focused on the study
of areal data exploring the use and the types of spatial
econometric models to study the spatial dependency.
Geographically weighted regression and spatial models for
categorical data will be also introduced. A case study using
R will be proposed.
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Course Outline: first part

I Exploratory data analysis

I Types of spatial data

I The spatial autocorrelation indices

I Defining neighborhood and spatial weights

I R example
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Spatial statistics

I Spatial statistics is the analysis of statistical observations
taking into account the position in which they occur in a
given space.

I The main aim of spatial analysis is to understand and
explore the connection between the spatial positioning of a
phenomenon and its characteristics.

I Using specific statistical methods aiming to establish and
quantify the presence of dependence between observations
in space.
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Spatial data

A spatial process in d dimensions is denoted as

{Z (s) : s ∈ D ⊂ Rd}.

I Z denotes the attribute we observe, such as income or
employment rate

I s is the location at wich Z is observed and it is a (d × 1)
vector of coordinates. In two-dimensional space d = 2.

I D is possibly a random set in Rd .
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Typology of spatial data

I geostatistical data

I lattice or area (regional) data

I point pattern data
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Geostatistical data

{Z (s) : s ∈ D ⊂ Rd}

I D is a fixed subset of Rd , with positive d-dimensional
volume

I The spatial index s varies continuosly throughout D

I Z (s) is a random variable at each of the infinite continuous
locations s ∈ D
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Predicting pollution

(source: Insee-Eurostat, 2018)
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Lattice data

{Z (s) : s ∈ D ⊂ Rd}

I lattice data refers to the case where D is a countable
collection of spatial sites.

I the neighbors (N(i)) of each point are defined

9/163



Local spatial dependency
Are privileged lower secondary schools always located in a
privileged environment?

(source: Insee-Eurostat, 2018) 10/163



Spatial Point patterns

I D is a collection of random events whose realization is
called a spatial point pattern

I The data are the locations of the sites themselves, and the
collection of all the sites is the event of interest. The data do
not consist of realizations of some random variable at a
given site.
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Cluster Detection

(source: Insee-Eurostat, 2018)
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The importance of spatial data

I Integrating geographical and statistical information offers
significant opportunities to maximise the utility of data
collected for statistical purposes (Eurostat website)

I GISCO activities

I GEOSTAT activities. Merging Statistics and Geoinformation
grants

I The Global Statistical Geospatial Framework which
facilitates the integration of statistical and geospatial
information
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Mapping and Geovisualisation

I Exploratory spatial data analysis

I Mapping

I Spatial scales (grid cells covering the European land
territory, e.g. 1km grid in Eurostat statistical atlas )

I Administrative units:

I NUTS 1: major socio-economic regions

I NUTS 2: basic regions for the application of regional policies

I NUTS 3: small regions for specific diagnoses
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Visualization: NUTS
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Visualization: example
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Spatial relation

The first law of geography

Everything is related to everything else, but near things are more
related than distant things. (Tobler 1970)

The strength of the spatial relation can be measured by spatial
autocorrelation
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What is Spatial autocorrelation?

I Autocorrelation measures the correlation of a variable with
itself.

I It allows to detect regularities in the variable.

I Spatial autocorrelation allows us to describe the degree to
which observations (values) at spatial locations are similar
to each other
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Spatial autocorrelation

I If Z (s) is the attribute Z observed in the plane at spatial
location s = [x , y ], the term spatial autocorrelation refers to
the correlation between Z (si ) and Z (sj ).

I Many statistical analysis are based on the hypothesis of
independence of variables, therefore when a variable is
spatially auto-correlated, the independence hypothesis is no
longer respected.
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Spatial autocorrelation

I If there is no autocorrelation the spatial allocation of the
observations is random: if two points si and sj are close or
far has no bearing on the relationship between the values
Z (si ) and Z (sj ).

I Spatial autocorrelation is positive when similar values tend
to be geographically grouped; similar values are close to
each other, or cluster, in space

I Spatial autocorrelation is negative when nearby locations
are more different than remote locations, or, equivalenty,
that similar values are dispersed
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Illustration Spatial autocorrelation

I Spatial autocorrelation helps to analyze whether the
parameters like income are clustered or uniformly
distributed in a certain region.

Example: Evaluate if exist some spatial structure in median
income in Paris by IRIS, aggregated units for statistical
information. (Example from Insee-Eurostat, 2018)
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Illustration Spatial autocorrelation

(source: Insee-Eurostat, 2018)
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Illustration Spatial autocorrelation

(source: Insee-Eurostat, 2018)
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Moran’s diagram
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Moran’s diagram: Example income in Paris

(source: Insee-Eurostat, 2018)
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Moran’s diagram: Example income in Paris

(source: Insee-Eurostat, 2018)
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Test spatial autocorrelation

I Test if the value of a variable at one location is independent
of values of that variable at neighboring locations.

I Could the values taken by the neighbouring observations
have been similar (or dissimilar) by mere chance?{

H0 no spatial autocorrelation
H1 spatial autocorrelation
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Moran’s I

IW =
n∑n

i=1
∑n

j=1 wij

∑n
i=1

∑n
j=1 wij (yi − ȳ )(yj − ȳ )∑n

i=1(yi − ȳ )
, i 6= j

I yi is the value of a variable for the i th observation

I ȳ is the sample mean

I wij is a spatial weight

I Values range from −1 (perfect dispersion) to +1 (perfect
correlation). A zero value indicates a random spatial pattern.

I Under H0, E[IW ] = − 1
n − 1
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Moran’s I

The variance of Moran’s I is a little more complicated

var(I) =
ns1 − s2s3

(n − 1)(n − 2)(n − 3)(
∑

i
∑

j wij )2

s1 = (n2 − 3n + 3)(1
2

∑
i
∑

j (wij + wij )2)

s2 =
n−1 ∑

i (yi − x̄)4

(n−1 ∑
i (yi − x̄)2)2

s3 =
1
2

∑
j (wij + wij )2 − 2n(1

2
∑

i
∑

j (wij + wij )2) + 6(
∑

i
∑

j wij )2
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Moran’s I

IW − E[IW ]√
Var[IW ]

∼ N(0,1)

Assumption:

I Normality hypothesis

I Randomisation hypothesis
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Moran’s I: visualization

(source: Insee-Eurostat, 2018)
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Geary’s C

Another index to measure the spatial autocorrelation is the
Geary’s C

CW =
(n − 1)

∑n
i=1

∑n
j=1 wij (yi − ȳ )2

2
∑n

i=1
∑n

j=1 wij
∑n

i=1(yi − ȳ )

I It ranges from 0 (perfect correlation) to 2 (perfect dispersion)
where 1 is no spatial autocorrelation. Positive spatial
autocorrelation is found with values ranging from 0 to 1 and
negative spatial autocorrelation is found between 1 and 2.
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Geary’s C

Test Geary’s C

I Under H0, E[IW ] = − 1
n − 1

CW − E[CW ]√
Var[CW ]

∼ N(0,1)
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Spatial autocorrelation of categorical variables

I When the variable of interest is not continuous but
categorical, the degree of local association is measured by
analysing the statistics of the join count

I Binary variable representing two colours, White (B) and
Black (N) so that a relation can be called W-W(0-0),
B-B(1-1) or W-B(0-1)
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Spatial autocorrelation of categorical variables

Join count analysis:

I positive spatial autocorrelation (clustering) if the number of
W-B joins is significantly lower than what would have
resulted with random spatial distribution

I negative spatial autocorrelation (dispersion) if the number of
W-B joins is significant greater than what would have
resulted with random spatial distribution

I null spatial autocorrelation if the number of W-B joins is
approximately the same to what would have occurred with
random spatial distribution
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Spatial autocorrelation of categorical variables

PB =
nB

n
PW =

nW

n
= 1− PB

- n is the number of observations

- nW is the number of white observations

- nB = n − nW are the black observations
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Spatial autocorrelation of categorical variables

In the presence of null spatial autocorrelation, the probabilities of
observations of the same colour occurring in two neighbouring
cells are

PBB = PB · PB = P2
B PW = (1− PB) · (1− PB) = (1− PB)2

the probability of observations of different colour occurring in two
neighbouring cells is

PBW = PB · (1− PB) + (1− PB) · PB = 2PB · (1− PB)
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Spatial autocorrelation of categorical variables

Expected counts:

E[BB] =
1
2

∑
i
∑

j wijP2
B

E[WW ] =
1
2

∑
i
∑

j wij (1− PB)2

E[BW ] =
1
2

∑
i
∑

j wij2PB(1− PB)

Assuming a binary connectivity matrix,
1
2

∑
i
∑

j wij is the total
number of joins.
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Spatial autocorrelation of categorical variables

Observed counts:

BB =
1
2

∑
i
∑

j wijyiyj

WW =
1
2

∑
i
∑

j wij (1− yi )(1− yj )

BW =
1
2

∑
i
∑

j wij (yi − yj )2

yi = 1: the observation is black; yi = 0: the observation is white
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Spatial autocorrelation of categorical variables

A test statistics for the black-white join counts is :

Z (BW ) =
BW − E[BW ]√

σ2
BW

where σ2
BW is the variance of BW .

The statistic is assumed to be asymptotically normally distributed
under the null hypothesis of no spatial autocorrelation
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Spatial autocorrelation: recap

I Spatial autocorrelation allows to determine if the overall
spatial distribution of the variable of interest was reflective of
a geographically random process.

I Measures of spatial autocorrelation are useful beacuse the
presence of spatial autocorrelation has important
implications for the next statistical analysis

I Determine whether spatial autocorrelation is present in a
data set is a critical aspect

I Using the global measures of spatial autocorrelation we
obtain a single statistic for the whole data set.
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Local Spatial autocorrelation

I Using global spatial autocorrelation statistics (Moran’s I and
Geary’s c) we can reject the null hypothesis of spatial
randomness in favour of an alternative of clustering.

I Such clustering does not provide an indication of the
location of the clusters.
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Local Spatial autocorrelation: example

I Considering the income as our target variable in a given
country.

I We are interested in evaluating which are the regions with
high (low) income values surrounded by high (low) income
regions
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Local Spatial autocorrelation: example
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Local Spatial autocorrelation

I Global statistics are based on the assumption of a spatial
stationary process

I Using (local) measures for identifying local patterns of
spatial association and local instabilities in overall spatial
association
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A first measure: Getis and Ord index

Gi =
∑

j wijyj∑
j wij

I Gi > 0 grouping of values higher than average.

I Gi < 0 grouping of values lower than average.

This index allows to detect significant groupings of identical
values around a particular location (clusters)
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Local spatial autocorrelation indicators (LISA)

I These indicators allow for the decomposition of global
indicators into the contribution of each individual
observation

I They allow to detect clusters (units with similar neighbors)
and hotspots (units with dissimilar neighbors)

I They allow to identify spatial non-stationarity zones, which
do not follow the global process.
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Local Indicators of Spatial Association properties

I For each observation, Local Indicators of Spatial
Association (LISA) indicate the intensity of the grouping of
similar or values around this observation;

I The sum of local indices on all observations is proportional
to the corresponding global index.
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Local Moran’s I

The local Moran’s I for unit i is:

Ii = (yi − ȳ )
∑

j

wij (yj − ȳ )

I Ii > 0: a grouping of similar values (cluster).

I Ii < 0: a unit has neighboring units with dissimilar values

49/163



Local Moran’s I: example

Values of local Moran’s I, on Parisian IRIS

(source: Insee-Eurostat, 2018)
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Local Moran’s I: example

Significant local Moran’s I, on Parisian IRIS

(source: Insee-Eurostat, 2018)
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Defining neighbours

I To measure the spatial autocorrelation, we need to know
the proximity of our observations: how do we define our
neighbourhood?

I Need to impose structure on the extent of spatial interaction

I Spatial connectivity (neighborhood) is defined based on the
conntections between units in the data: how do we know
which points are in our neighbourhood and which ones are
not?
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Defining neighbours

(source: Insee-Eurostat, 2018) 53/163



Connectivity matrix

I The connectivity, or neighbourhood, matrix C measures how
similar observations are

I C is an n × n binary matrix, i = {1,2, · · · ,n} and
j = {1,2, · · · ,n} are the units in the system

- cij = 1 if two units, i and j , are considered connected
(spatially linked)

- cij = 0 if they are not
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Spatial neighbours based on contiguity

I Neighborhoods can be defined in a different ways:

I Contiguity (common boundary): what is a shared boundary?

I Distance (K-nearest neighbors, distance band)

I General weights (social distance, distance decay)
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Spatial neighbours based on contiguity

I Spatial neighbours based on contiguity (used to study social
and demographic data).

I One way to represent the spatial relationships is through the
concept of contiguity. First order contiguous neighbours are
defined as areas that have a common boundary.
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Rook’s contiguity

Cells sharing a common edge are considered contiguous
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Bishop’s contiguity

cells sharing a common vertex are considered contiguous
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Queen’s contiguity

Cells sharing a common edge or common vertex are considered
contiguous
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Spatial neighbours based on distance

I Neighbourhood graphs based on nearest neighbours

I Finding the k closest observations for each observation (k
is an integer)

I xj is a neighbor of xi if xj ∈ Nkxi , where Nkxi are the k
nearest neighbors of xi
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Spatial neighbours based on distance

I Assign neighbors based on a specified distance

I Neighbors of unit xi defined by interpoint distance:

- Lower bound: 0

- Upper bound: maxn
i=1(minn−1

j 6=1 d(xi , xj ))
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Spatial weights

I The weights matrix reflects the neighbour definition

I The weights matrix is the "formal expression of spatial
dependency between observations" (Anselin et al. 1988)

I Translate binary indicators into weights, which will form the
elements wij of matrix W
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Spatial weights matrix

I W is a n × n matrix

I wij 6= 0 if i and j are neighbours

I wij = 0 if i and j are not neighbours

I wii = 0

I Usually, the weights matrix is row-standardized,
∑n

j=1 wij = 1
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Binary spatial weights matrix

I Commonly, the weight matrix is a binary contiguity matrix

wij =

{
1 if i and j are spatially linked to each other
0 otherwise

I The spatial weights matrices can take into account the
distance between the geographical zones
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Binary weight matrix

65/163



Spatial weights matrix

I The spatial weights matrices can take into account the
distance between the geographical zones
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Spatial weights matrix
I Power Distance Weights. Weights are a negative power

function of distance of the form

wij = d−αij

I Exponential Distance Weights. Weights are negative
exponential functions of distance of the form:

wij = exp(−αdij )

I Double-Power Distance Weights. For each positive
integer k :

wij =

{
[1− (dij/d)k ]k 0 ≤ dij ≤ d
0 otherwise
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What did you learn?

I Three types of spatial data

I Mapping the data can offer a synthesized view of the
situation

I Spatial autocorrelation measures the spatial dependence
between values of the same variable in different places in
space

I Global and local versions of spatial autocorrelation indices

I Defining the neighborhood is essential for measuring the
strength of the spatial relationships between objects

I Attributing weights to neighbors
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Example in R

I Now

I Mapping data with R (RStudio)

I Measuring and testing spatial autocorrelation in R (RStudio)

I Using EU data
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Example in R

# Load shapefile of the Italian provinces
library(rgdal)
setwd("C:/Users/franc/Dropbox/EMOS_LO_fra/Prov01012007")
italy <- readOGR("Prov01012007_WGS84.shp",stringsAsFactors=F)
italy <- italy[order(as.numeric(italy@data$COD_PROV)),]
# Loading data
silcIT3 <- read.csv("silcIT3.csv",sep=";")
# Merge datasets
Silc.Spat <- merge(italy, silcIT3,

by.x="COD_PROV", by.y="Prov.Cod")
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Example in R

# Mapping data
library(tmap)
tm_shape(Silc.Spat) +

tm_fill("LogIncome",
palette = "Reds",
style = "quantile",
title = "") +

tm_borders(alpha=.7) +
tm_layout("",inner.margins=c(0,0,0,0),

legend.width=1,
legend.text.size = 1,
legend.position = c("left","bottom"),
legend.bg.color = "white",
legend.bg.alpha = 1,
legend.stack = "vertical")
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Example in R

9.075 to 9.376
9.376 to 9.535
9.535 to 9.648
9.648 to 9.735
9.735 to 9.912
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Example in R

# Weight matrix
# To create spatial weight matrices we need to use
# the spdep package
library("spdep")
# neighbour list based on the 'Queen' criteria for
# italian provincens
neigh <- poly2nb(italy,row.names=italy$COD_PROV,queen=TRUE)
# Rook's case neighbors-list
neigh.ROOK <- poly2nb(italy, queen=FALSE)
# Transform the list into an actual matrix W
italy.lw <- nb2listw(neigh, style="W", zero.policy=TRUE)
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Example in R

# We can also set style="B" for the basic binary coding
italy.sp_w2 <- nb2mat(neigh, glist=NULL, style="B",

zero.policy=TRUE)

# Matrix based on distance: k-nearest neighbors criteria
italy.nb <- knn2nb(knearneigh(coordinates(italy),k=2))

# Inverse distance weight matrix
library(fields) # to calculate the distance between two points
distance <- rdist.earth(coordinates(italy),coordinates(italy))
diag(distance) <- 0
distance.inv <- ifelse(distance!=0, 1/distance, distance)
# Standardized inverse weight matrix
distance.inv <- mat2listw(distance.inv, style = "W")
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Example in R

# Moran's I index
Moran.I<-moran.test(x=silcIT3$LogIncome,listw=italy.lw,

zero.policy=T)
Moran.I

##
## Moran I test under randomisation
##
## data: silcIT3$LogIncome
## weights: italy.lw
##
## Moran I statistic standard deviate = 11.471, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.760072180 -0.009433962 0.004500357

75/163



Example in R

moran.plot(silcIT3$LogIncome, italy.lw,
labels=F,
xlab="Observed distribution of log mean income

by NUTS-3",
ylab="Spatially lagged log mean income")
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Example in R
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Example in R

LocalMoran.I <- localmoran(silcIT3$LogIncome, italy.lw,
zero.policy=TRUE)
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Example in R

−0.437 to 0.111
0.111 to 0.373
0.373 to 0.673
0.673 to 1.288
1.288 to 4.466
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Course Outline: second part

I Study of areal data

I Spatial econometrics: common models

I Geographically weighted regression

I R example
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Spatial regression

I Inadequacies of traditional linear modelling

I Spatial autocorrelations of residuals: inefficiency OLS

I Biased estimator
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Non-spatial analysis

I spatial data are analyzed using conventional statistical
methods (susch as linear regression)

I the geographical coordinates are excluded from the analysis

I the results are independent of the spatial arrangement of
the geographical entities

Variable 1 Variable 2 ... Variable m
unit 1 attribute11 attribute21 ... attribute1m
unit 2 attribute12 attribute22 ... attribute2m

... ... ... ... ...
unit n attribute1n attribute2n ... attributenm
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Spatial analysis

I spatial data are analyzed using spatial statistical methods

I the geographical coordinates are included into the the
analysis

I the results depend on the spatial arrangement of the
geographical entities

Lon (X) Lat (Y) Variable 1 Variable 2 ... Variable m
unit 1 X1 Y1 attribute11 attribute21 ... attribute1m
unit 2 X2 Y2 attribute12 attribute22 ... attribute2m

... ... ... ... ...
unit n Xn Yn attribute1n attribute2n ... attributenm
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Spatial analysis: example

I Suppose we want to model the unemployment rate in
France and we have data for employment zone (example
from Insee-Eurostat, 2018)

I After defining a neighbourhood matrix using one of methods
previous presented, the data can be mapped and spatial
autocorrelation can be evaluated.
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Spatial analysis: example

(source: Insee-Eurostat, 2018)
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Spatial analysis: example

I The map seems to show a pattern in the variable

I Calculate the p-value of the Moran test we have a near-null
p-value indicating that the null hypothesis assuming no
spatial autocorrelation should be rejected.

I The descriptive analysis showed that space was not neutral
in characterising local unemployment rates.
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Spatial analysis: example

I Fitting a standard LM we assume independence between
the observations: what happens in area i is not in any way
related (it is independent) of what happens in area j .

I Moran test on residuals of OLS can be help to detect
spatially dependence

I In the contest of spatial modelling, some alternatives exist
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Spatial models

Classification of Elhorst (2010):

i) endogenous interaction effects, the decision of a spatial unit
depends on depend on the decision of its neighbours

ii) exogenous interaction effects, the decision of a spatial unit
will depend on the observable characteristics of its
neighbours;

iii) correlated effects due to the same unobserved
characteristics

Y = ρWY + Xβ + WXθ + u

u = λWu + ε
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Spatial models
I WY is the endogenous interaction effects among the

dependent variables

I WX is the exogenous interaction effects among the
explanatory variables

I Wu is the interaction effects among the error terms of the
different spatial units

I ρ is the spatial autoregressive coefficient

I λ is the autocorrelation coefficient

I β is the vector of unkown parameters for exogenous
explanatory variables

I θ is the vector of unkown parameters for exogenous
interaction effects
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Spatial models

(source: Elhorst, 2010)
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Spatial dependence

Starting from the linear regression model (OLS)

Y = Xβ + ε

Spatial dependence may be introduced into the model in two
major ways

I spatial lag dependence→ Spatial Lag Models

I spatial error dependence→ Spatial Error Models
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Spatial Lag dependence

I With spatial lag in OLS regression, the assumption of
independent observations and the assumption of
uncorrelated error terms are violated

I The estimates are biased and inefficient (the size and the
sign of the coefficients are not close to the true value and
their standard errors are underestimated)

I Spatial lag dependence→ Spatial Lag Models
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Spatial Error dependence

I With spatial error in OLS regression, the assumption of
uncorrelated error terms is violated.

I The estimates are inefficient (standard errors are
underestimated).

I Spatial error dependence→ Spatial Error Models
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Spatial Lag Models

I It incorporates spatial dependence explicitly by adding a
spatially lagged variable y on the right hand side of the
regression equation.

I Using this model for modelling the unemployment rate in
France, we are saying that the employment rate in a in the
neighbouring areas of observation i is an important
predictor of employment rate on each individual area i .
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Spatial Lag Models

The basic spatial lag model is the so-called first order spatial
autoregressive (SAR) model:

yi = ρ
n∑

j=1

wijyj +
p∑

k=1

xikβk + εi

I the error term, εi , is iid, εi ∼ N(0, σ2In)

I wij is the (i , j)th element of the n × n spatial weights matrix
W

I ρ determine the strength of the spatial autoregressive
relation between yi and

∑n
j=1 wijyj . If ρ = 0 we have a

standard regression model
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Spatial Lag Models: when?

I A spatial lag model and is appropriate when the focus of
interest is the assessment of the existence and strength of
spatial interaction
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Spatial Error Models

I The spatial error model treats the spatial autocorrelation as
a nuisance that needs to be dealt with.

I For example, adjoining neighbohoods in France may have
similar employment rate because because citizens with
similar educational level tend to cluster geographically, and
level of edcations also predicts employment
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Spatial Error Models

In Spatial Errors Models (SEM) the disturbances exhibit spatial
dependence.

The most common specification is a spatial autoregressive
process of first order:

ui = λ
n∑

j=1

wijuj + εi

I λ is the autoregressive parameter

I εi ∼ N(0, σ2In)
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Spatial Error Models

In matrix notation
u = λWu + ε

Assuming |λ| < 1 and solving for u:

u = (I − λW )−1ε

Inserting this in the standard linear regression model we obtain
the Spatial Error Model (SEM):

Y = Xβ + (I − λW )−1ε

Regression coefficients have the same interpretation of linear
models: E[Y ] = Xβ
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Spatial Error Models: when?

I It is appropriate when the concern is with correcting for the
potentially biasing influence of the spatial autocorrelation,
due to the use of spatial data (irrespective of whether the
model of interest is spatial or not).
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Spatial Durbin model

I Spatial dependence in the errors of a standard regression
model

I Omitted explanatory variable having non-zero covariance
with a variable included in the model

101/163



Spatial Durbin Model

The Spatial Durbin Model (SDM) is the SAR model with the
insertion of spatially lagged explanatory variables

Y = ρWY + Xβ + WXθ + ε

The model may be rewritten in reduced form as:

Y = (I − ρW )−1(Xβ + WXθ + ε)

with εi ∼ N(0, σ2In)

θ is vector of parameters that measure the marginal impact of
the explanatory variables from neighbouring observations on the
outcome variable
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Spatial Durbin model

Let Z = [XWX ] and δ = [βθ]
′

this model can be written as a SAR
model:

Y = ρWY + Xβ + Zδ + ε

or:
Y = (I − ρW )−1Zδ(I − ρW )−1ε
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Spatial Durbin model

I if θ = 0→ spatial autoregressive model

I estabilish θ = −ρβ (common factor hypothesis) yields the
spatial error regression model specification. In this case the
SDM: Y = Xβ + ρW (Y − Xβ)
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Spatial Durbin model: when?

I Conjunction of two circumstances: spatial dependence in
the errors of OLS model and the presence of an omitted
covariate that has non-zero covariance with a variable
included in the model

I It includes the spatially lagged dependent variable and the
explanatory variables, and also the spatially lagged
explanatory variables: it is suitable to capture externalities
and spillovers arising from different sources

I SDM can mitigate the bias of the OLS estimates when
unobservable characteristics, such as the neighborhood
prestige, play an influence on the outcome variable
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Spatial Lag X model

Imposing in the SDM the restriction ρ = 0 we obtain the spatially
lagged X regression model (SLX)

SLX is model with exogenous interactions. It assumes
independence between observations of the outcome variable,
but includes features from neighbouring areas in the form of
spatially lagged explanatory variables.
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Spatial Autoregressive Confused model

I The Kelejian-Prucha model (also referred to Spatial
Autoregressive Confused - SAC) represent a mixture of both
spatial dependence in the dependent variable reflected in
WY and spatial dependence in the disturbances
represented by Wu.

Y = ρWY + Xβ + u

u = λWu + ε

I β are biased and not convergent when the real model
includes exogenous interactions WX

I Interaction effect among error terms: λWu
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Estimation of Spatial Regression Models

I Ordinary least-squares cannot be used to produce
consistent estimates for spatial regression models.

I Maximum likelihood (ML) approach is typically used
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Estimation of Spatial Regression Models

The log-likelihood function for the SDM (and SAR) models takes
the form

lnL(ρ, δ, σ2) = −n
2

ln(πσ2) + ln|I − ρW | − ee
′

2σ2

I Z = X for SAR model and Z = XWX for SDM

I e = Y − ρWY − Zδ

I The parameters with respect to which this likelihood has to
be maximised are ρ, δ and σ2
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Estimation of Spatial Regression Models

A convenient approach is to use the scalar concentrated
log-likelihood function value:

lnLcon(ρ) = κ + ln|I − ρW | − n
2

ln[(eO − eρL)
′
(eO − eρL)]

I e0 = Y − ZδO and e0 = WY − ZδL, with δO = (Z
′
Z )−1Z

′
Y

and δL = (Z
′
Z )−1Z

′
WY

I This approach simplifies the optimising problem by reducing
a multivariate optimisation problem to a univariate one.

I Maximising the concentrated log-likelihood function with
respect to ρ yields ρ? that is equal to the maximum
likelihood estimate
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Estimation of Spatial Regression Models

The log-likelihood function for the SEM models takes the form

lnL(λ, β, σ2) = −n
2

ln(πσ2) + ln|I − ρW | − ee
′

2σ2

I e = (Y − Xβ)(I − λW )
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Estimation of Spatial Regression Models

Estimates of model parameters in SEM can be obtained as:

β̂ML = [X
′
(I − λW )

′
(I − λW )X ]−1X

′
(I − λW )

′
(I − λW )Y

and

σ̂2
ML =

1
n

[(y−X β̂ML)−λW (y−X β̂ML)
′
][(y−X β̂ML)−λW (y−X β̂ML)

′
]

A consistent estimate for λ cannot be obtained from a simple
auxiliary regression, but the first order conditions must be solved
explicitly by numerical means
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Interpretation of the parameter estimates

I When ρ 6= 0 the interpretation of the parameter in the spatial
models is different from a conventional linear regression:
the spatial interactions, the variation of an explanatory
variable for a given area directly affects its result and
indirectly affects the results of all other areas.

I However, the conventional interpretation of linear models is
still valid if only the spatial autocorrelation of errors is taken
into account (SEM model).

I The reference book for the intepretation model parameters
in spatial regression models is LeSage & Pace (2009)
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Interpretation of the parameter estimates in OLS

I In OLS a regression coefficient for variable Xk indicates how
much Y goes up or down for every one unit increase in Xk
when all other variables in the model are fixed. In our
example, for the nonspatial model this effect is the same for
every county in our dataset
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Interpretation of the parameter estimates in OLS

I In standard linear regression model y =
∑p

k=1 xikβk the
partial derivatives of yi with respect to xik have a simple
form: ∂yi

∂xik
= βk for all i , k and ∂yj

∂xik
= 0 for j 6= i and all

variables xk

I Changes in observation i on the k th explanatory variable,
xik ,only influence observation yi
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Interpretation of the parameter estimates

I In the spatial lag model there are two components to how X
affect Y .

I X affects Y within each area directly...but we are also
including the spatial lag (the measure of Y in the
surrounding counties B, C, and D)
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Interpretation of the parameter estimates

I The spatial lag model includes not only the effect of X in the
area A in the level of Y in area A.

I Including the spatial lag (a measure of Y in county B, C and
D) we are incorporating as well the effects that X has on Y
in areas B, C, and D.

I The effect of a covariate is the sum of two particular effects:
a direct, local effect of the covariate in that unit, and an
indirect, spillover effect due to the spatial lag.
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Interpretation of the parameter estimates
Considering the SAR model:

Y = (I − ρW )−1Xβ + (I − ρW )−1ε

It can be rewritten as:

Y =
p∑

k=1

Sk (W )XK + V (W )ιnβ0 + V (W )ε

I Sk (W ) = V (W )(Iβk )

I V (W ) = (I − ρW )

I ιn is a vector of ones and β0 is the constant term

I For SDM Sk (W ) = V (W )(Iβk + Wθk )
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Interpretation of the parameter estimates

Sk (W ) =


Sk (W )11 Sk (W )12 · · · Sk (W )1n
Sk (W )21 Sk (W )22 · · · Sk (W )2n

...
...

. . .
Sk (W )n1 Sk (W )n2 · · · Sk (W )nn


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Interpretation of the parameter estimates
Considering the determination of a single dependent variable
observation yi :

yi =
p∑

k=1

[Sk (W )i1X1k + · · · + Sk (W )inXnk ] + V (W )i ιnβ0 + V (W )iε

I Sk (W )ij is the (i , j)th element of the matrix Sk (W )

I V (W )i is the i th row of V (W )

It follows (j 6= i):

∂yi

∂xjk
= Sk (W )ij

and
∂yi

∂xik
= Sk (W )ii
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Interpretation of the parameter estimates

I Average direct effect (n−1tr(Sk )), the impact of changes in
the i th observation of xk on yk

I Average total effect: the average of n effects across a zone i
due to the modification of a unit of variable Xk in all zones
(n−1 ∑

i (
∑

j Sk (W )ij )), or the average of the n effects from
modifying a unit of variable Xk in a zone i across all zones
(n−1 ∑

j Sk (W )ji )

I Average indirect effect is the difference between the
average total effect and the average direct effect.
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An applied example

I Relationship between regional total factor productivity (y) as
the dependent variable y and regional knowledge stocks (x)
as the single explanatory variable (Example from LeSage &
Pace, 2009)

I SDM:

y = 0.568 + 0.647Wy + 0.111x − 0.016Wx
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An applied example

Mean effects SD
Direct effet 0.120 0.024
Indirect effet 0.172 0.081
Total effet 0.292 0.111

The direct impacts are close to the SDM model coefficient

The difference between the coefficient estimate of 0.111 and
thedirect effect estimate of 0.120 equal to 0.009 represents
feedback effects that arise as a result of impacts passing
through neighboring regions and back to the region itself.
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An applied example

I A significant indirect impact (spillover) arising from changes
in the variable x .

I The total impact estimates can be viewd as elasticities (the
model is specified using logged levels y and x). The total
effect is 0.292: a 10 percent increase in regional knowledge
would result in a 2.9 percent increase in total factor
productivity.
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Model selection

An issue that arises in applied practice is the need to select
among the different models

I Bottom-up approach

I Top-down approach

I Combined approach

Comparison of different model specifications using
likelihood-based testing will be shown in the R example
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Model selection: Bottom-up approach

(source: Insee-Eurostat, 2018)

126/163



Model selection: Top-down approach

(source: Insee-Eurostat, 2018)
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Model selection: Combined approach

(source: Insee-Eurostat, 2018)
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What did you learn?

I Inadequacies of traditional linear modelling in case of
spatial dependency between nearby observations

I Spatially endogenous interactions: Spatial Lag Model

I Spatial interactions in the error: Spatial Error Model

I Both spatially endogenous interactions and spatial
interactions in the error term as well as exogenous
interactions: Spatial Durbin Model
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Example in R

I Example of fitting spatial models with R (RStudio) by using
EU data
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Example in R

# Defining the model
model <- LogIncome ~gender+ employment.rate+isced5+owner

# OLS model
mod.ols <- lm(model, data=Silc.Spat)
summary(mod.ols)
# extract residuals to evaluate spatial autocorrelation
res.ols <- residuals(mod.ols)
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Example in R

−4 to −3
−3 to −2
−2 to −1
−1 to 1
1 to 2
2 to 3
3 to 4
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Example in R

# Moran test to residuals
lm.morantest(mod.ols,italy.lw, zero.policy = T,

alternative="two.sided")

##
## Global Moran I for regression residuals
##
## data:
## model: lm(formula = model, data = Silc.Spat)
## weights: italy.lw
##
## Moran I statistic standard deviate = 5.7922, p-value = 6.947e-09
## alternative hypothesis: two.sided
## sample estimates:
## Observed Moran I Expectation Variance
## 0.365032457 -0.016449168 0.004337689
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Example in R
# Lagrange Multiplier tests
lm.LMtests(mod.ols,italy.lw,test=c("LMerr","LMlag"))

##
## Lagrange multiplier diagnostics for spatial dependence
##
## data:
## model: lm(formula = model, data = Silc.Spat)
## weights: italy.lw
##
## LMerr = 28.561, df = 1, p-value = 9.077e-08
##
##
## Lagrange multiplier diagnostics for spatial dependence
##
## data:
## model: lm(formula = model, data = Silc.Spat)
## weights: italy.lw
##
## LMlag = 71.853, df = 1, p-value < 2.2e-16
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Example in R
# Lagrange Multiplier tests
lm.LMtests(mod.ols,italy.lw,test=c("RLMerr","RLMlag"))

##
## Lagrange multiplier diagnostics for spatial dependence
##
## data:
## model: lm(formula = model, data = Silc.Spat)
## weights: italy.lw
##
## RLMerr = 1.073, df = 1, p-value = 0.3003
##
##
## Lagrange multiplier diagnostics for spatial dependence
##
## data:
## model: lm(formula = model, data = Silc.Spat)
## weights: italy.lw
##
## RLMlag = 44.364, df = 1, p-value = 2.726e-11
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Example in R

# SAR Model
library(spatialreg)
mod.sar<-lagsarlm(model, data=Silc.Spat, italy.lw)

The the spatial autoregressive parameter (ρ = 0.65) is highly significant, as
indicated by the p-value of almost 0 of both the asymptotic t-test and the LR
test on this parameter.

However, the LM test for residual autocorrelation is significant at 1% (test
value: 7.6, p-value: 0.006)
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Example in R

# SDM Model
mod.sdm<-lagsarlm(model, data=Silc.Spat, italy.lw,

type="mixed")
# SEM model
mod.sem<-errorsarlm(model, data=Silc.Spat, italy.lw)
# Common factor hypothesis test
FC.test<-LR.sarlm(mod.sdm,mod.sem); print(FC.test)

##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 27.165, df = 4, p-value = 1.841e-05
## sample estimates:
## Log likelihood of mod.sdm Log likelihood of mod.sem
## 113.7521 100.1695
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Example in R

Direct Indirect Total
gender 0.163 *** 0.459 *** 0.533 ***
employment.rate 0.125 *** 0.399 *** 0.443 ***
isced5 0.263 *** 0.812 0.944 **
owner 0.115 *** 0.357 0.396 *
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Geographically Weighted Regression: when?

I potential spatial heterogeneity in parameter estimates

I GWR permits the parameter estimates to vary locally

I exploratory technique to detect where non-stationarity is
taking place
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Geographically Weighted Regression: example

I Hedonic model to study real estate prices in Lyon (Example
from Insee-Eurostat, 2018).

I The hedonic model is aimed at isolating the effect of
localisation on prices.
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Geographically Weighted Regression: example

(source:
Insee-Eurostat, 2018)
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Geographically Weighted Regression: example

I Positive spatial correlation in the residuals of OLS.

I The hypothesis of spatial stationarity of the relationship
between price and characteristic of the property is not valid

I Existence of spatial heterogeneity

I GeographicallyWeighted Regression allows study a model
that varies spatially in a continuous way.
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Geographically Weighted Regression

yi = Xβi + εi

i is the location at which the local parameters are to be
estimated.

βi = (X T WiX )−1X T Wiy

In order to give a weight to observations decreasing with their
distance to the point of interest, the estimation is performed
using weighted least squares, the weighting being governed by
weight matrix W .
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Geographically Weighted Regression

I Wi contains the weight of each observation according to its
distance to the point i .

I Observations close to point i have more influence over the
estimated parameters at place i than more remote
observations.

I The weight of observations decreases with the distance to
the point i .
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Geographically Weighted Regression

Kernel function

I the shape of the kernel

I fixed kernel versus adaptive kernel

I bandwidth size.
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Continuous Kernel

The shape of continuous kernel:

I Uniform kernel: w(dij ) = 1

I Gaussian kernel: w(dij ) = exp(−1
2 (dij

h )2)

I Exponential kernel: w(dij ) = exp(−1
2 ( |dij |

h ))
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Continuous Kernel

(source: Insee-Eurostat, 2018)
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Kernel with compact support

I Box-Car kernel: w(dij ) = 1 if |dij | < h, 0 otherwise

I Bi-square kernel: w (dij ) = (1− (dij
h )2)2 if |dij | < h, 0 otherwise

I Tri-cube kernel: w(dij ) = (1− (dij
h )3)3 if |dij | < h, 0 otherwise
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Kernel with compact support

(source:
Insee-Eurostat, 2018)
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Fixed kernel versus adaptive kernel

I Fixed kernel. The extent of the kernel is determined by the
distance to the point of interest. The kernel is identical at
any point in space.

I Adaptive kernel. The extent of the kernel is determined by
the number of neighbours of the point of interest. The lower
the density of the observations, the smaller the kernel
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Fixed kernel: example

(source: Insee-Eurostat, 2018)
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Fixed kernel: example

(source: Insee-Eurostat, 2018)
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Bandwidth size

I The bandwidth is a distance beyond which the weight of the
observations is 0.

I This is the most important parameter because, the choice of
the bandwidth h highly influences the results.

I With larger bandwidth, the number of observations to which
the kernel gives a non-zero weight will be higher.

I When the bandwidth tends towards infinity, the results of the
local regression will be similar to those of OLS regression.

I Choose the most suitable bandwidth via cross-validation
(more used) or minimizing the modified AIC.
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Bandwidth size

CV =
n∑

i=1

[yi − ŷ 6=i (h)]”

I ŷ6=i (h) is the value of y at point i predicted when calibrating
the model with all the observations except yi .

I Bandwidth h that minimises CV maximises the model’s
predictive power.
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Geographically Weighted Regression: example

Estimate of real estate prices on a square grid of 100m*100m

(source: Insee-Eurostat, 2018)
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Diagnostic Tools in GWR

I Test the nonstationarity of the coefficients

{
H0 ∀k , βk (u1, v1) = βk (u2, v2) = . . . = βk (un, vn)
H1 ∃k ,allβk (ui , vi ) are not equal
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Diagnostic Tools in GWR

I Multicolinearity

I scatter plots of regression coefficients for pairs of regression
terms

I Local variance inflation factors (VIFs)

I One method for reducing the colinearity problems is ridge
regression
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Example in R

library(spgwr)
# Get the optimal bandwidth.
GWRbandwidth <- gwr.sel(model, data=Silc.Spat, adapt=T,

verbose = F)
# Estimate GWR
mod.gwr <- gwr(model,

data = Silc.Spat,
adapt=GWRbandwidth,
hatmatrix=TRUE,
se.fit=TRUE)
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Example in R

gender

0.163 to 0.256
0.256 to 0.282
0.282 to 0.308
0.308 to 0.345
0.345 to 0.461

gender.1

−0.362 to −0.113
−0.113 to 0.238
0.238 to 0.605
0.605 to 0.929
0.929 to 1.491
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Spatial autologistic model

I Spatial data with binary response.

I The occurrence of an event y = 1 in neighboring units
conditions the likelihood that unit i will itself experience the
event.

I Spatial autologistic model.
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Spatial autologistic model

I The autologistic model states the conditional probability pi
that yi = 1, given values yj at units (j 6= i ):

pi = P(yi = 1|Wyi ) =
exp(α + Xβ + λWyi )

1 + exp(α + Xβ + λWyi )

I β is the vector of parameters for exogenous variables,

I λ is a scalar parameter for the spatial lag of y

I W is a connectivity matrix.
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Other spatial analysis

I In this course, we consider the analysis of areal data

I Geostatistics is a branch af spatial statistics and includes a
set of statistical methods for analysing continuous data

I The variogram is the central tool of geostatistics: it allows to
assess whether the data are spatially correlated and to what
extent.

I With a suitable model for it is possible to combine it with the
data to predict by kriging, which in its simpler forms is one
of weighted averaging.

I More on geostatisics in Oliver, M. A., & Webster, R. (2015).
Basic steps in geostatistics: the variogram and kriging.
Springer
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