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Part I

Introduction to Small Area Estimation
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Introduction to Small Area Estimation

I Problem: demand from official and private institutions of statistics referred to a
given population of interest

I Possible solutions:
I Census
I Sample survey

Sample surveys have been recognized as cost-effectiveness means of obtaining
information on wide-ranging topics of interest at frequent interval over time
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Introduction to Small Area Estimation

I Population of interest (or target population): population for which the survey is
designed
→direct estimators should be reliable for the target population

I Domain: sub-population of the population of interest, they could be planned or
not in the survey design
I Geographic areas (e.g. Regions, Provinces, Municipalities, Health Service Area)
I Socio-demographic groups (e.g. Sex, Age, Race within a large geographic area)
I Other sub-populations (e.g. the set of firms belonging to an industry subdivision)

→we don’t know the reliability of direct estimators for the domains that have
not been planned in the survey design
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Introduction to Small Area Estimation

I Often direct estimators are not reliable for some domains of interest
I In these cases we have two choices:

I oversampling over that domains
I applying statistical techniques that allow for reliable estimates in that domains

Small Domain or Small Area
Geographical area or domain where direct estimators do not reach a minimum
level of precision

Small Area Estimator (SAE)
An estimator created to obtain reliable estimate in a Small Area
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Introduction to Small Area Estimation: Example 1

I Target population: households who live in an Italian Region
I Variable of interest: Income
I Survey sample: EUSILC (European Union Statistics on Income and Living

Conditions), designed to obtain reliable estimate at Regional level in Italy
I planned design domains: Regions
I unplanned design domains: e.g. Provinces, Municipalities

I EUSILC sample size in Tuscany: 1751 households
I Pisa province 158 households→ need SAE (or oversampling)
I Grosseto province 70 households→ need SAE (or oversampling)
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Introduction to Small Area Estimation: Example 2
I US sample sizes with an equal probability of selection method. Sample of

10,000 persons

State 1994 Population (thousands) Sample size
California 31,431 1207

Texas 18,378 706
New York 18,169 698

...
...

...
DC 570 22

Wyoming 476 18

I Suppose to measure customer satisfaction for a government service:
I California 24.86%→ leads to a confidence interval of 22.4%-27.3% (reliable);

Wyoming 33.33%→ leads to a confidence interval of 10.9%-55.7%
(unreliable)
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Part II

Classical Inference Approach
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Definitions

I Design-based estimation: the main focus is on the design unbiasedness.
Estimators are unbiased with respect to the randomization that generates
survey data

I Finite population Ω = 1, . . . ,N
I y : variable of interest, with yi value of the i-th unit of the finite population
I Statistics of interest: e.g. total, Y =

∑
Ω yi or mean, Ȳ = Y/N

I Sample s = 1, . . . ,n
I p(s): probability of selecting the sample s from population Ω. p(s) depends

on sampling design (variables such as stratum indicator and size measures of
clusters)

11/66



Definitions

I Bias of an estimator θ̂ is defined as E [θ̂ − θ]

I Variance of an estimator θ̂ is defined as E [(θ̂ − E [θ̂])2]

I Mean Squared Error of an estimator θ̂ is E [(θ̂ − θ)2] = V [θ̂] + B[θ̂]2

I Design bias: Bias(Ŷ ) = Ep[Ŷ ]− Y
I Design variance: V (Ŷ ) = Ep[(Ŷ − y)2]

Design-based properties

1. Design-unbiasedness: Ep[Ŷ ] =
∑

p(s)Ŷs = Y

2. Design-consistency: Ŷ → Y in probability
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Estimation of Means: Direct Estimator

I Data {yi}, i ∈ s
I Direct estimator for the mean (also known as expansion estimator):

ˆ̄Y =

∑
i∈s wiyi∑
i∈s wi

I wi = π−1
i , the basic design weight

I πi is the probability of selecting the unit i in sample s

Remark: weights wi are independent from yi
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Domain Estimation

I Let partitioning population Ω into m partitions or domains:

Ω = ∪m
i=1Ωi

I Ωi = 1, . . . ,Ni , population of the domain i
I si = 1, . . . ,ni , sample of the domain i
I Statistics of interest for the variable y :

I Yi =
∑

Ωi
yj , the total of domain i

I Ȳi = Yi/Ni , the mean of domain i
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Domain Estimation: Direct Estimator

I Data {yij}, j ∈ si , i = 1, . . . ,m
I Direct estimator of the mean for the domain i :

ˆ̄Yi =

∑
j∈si

wijyij∑
j∈si

wij

I where yij is the observation value and wij is the weight for unit j in area i
I The case of the simple random sampling:

I πij =
(1

1)(Ni−1
ni−1)

(Ni
ni

)
= ni

Ni
→ wij = π−1

ij = Ni
ni

I ˆ̄Yi =
∑ni

j=1 wij yij∑ni
j=1 wij

=

∑ni
j=1

Ni
ni

yij∑ni
j=1

Ni
ni

=
Ni
ni

∑ni
j=1 yij

ni
Ni
ni

= 1
ni

∑ni
j=1 yij (that is the sample mean)

15/66



Domain Estimation: Direct Estimator

I ˆ̄Yi is design unbiased

I V̂ ( ˆ̄Yi) = (1− ni
Ni

)
S2

i
ni

, where S2
i =

∑
j∈si

(yij−ȳi )
2

ni−1 is the sample variance

I The magnitude of the variance depends on 3 factors: ni/Ni , S2
i and ni

I If ni is small the design variance is likely to be large
I In such a situation, estimation of variance is even more problematic
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Synthetic Estimators

I Synthetic assumption: small areas have same characteristic as the large area
(e.g. unemployment rates for different demographic groups for the Pisa
Province is the same as that for Tuscany)

I Advantages of synthetic estimator:
I Simple and intuitive
I Applies to general sampling designs
I Borrow strength from similar
I Provides estimates for areas with no sample from the sample survey
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Synthetic Estimation with no auxiliary variable (dummy
estimator)

I Implicit model assumed:
yj = β + εj , j ∈ Ω

I Synthetic estimator for the mean:

ˆ̄Yi,S =

∑
j∈s wjyj∑
j∈s wj

= ˆ̄Y

I Ep[ ˆ̄Yi,S − Ȳi ] ≈ Ȳ − Ȳi , the bias relative to Ȳi is small if Ȳi ≈ Ȳ
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Synthetic Estimation with auxiliary variables

I Implicit model assumed:
yj = X ′iβ + εj , j ∈ Ωi

I Synthetic estimator:
ˆ̄Yi,GRS = X̄ ′i β̂

I β̂ = (
∑

j∈s wjx jx ′j/cj)
−1(
∑

j∈s wjx jyj/cj)
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Synthetic Estimation with auxiliary variables

I Ep[ ˆ̄Yi,GRS − Ȳi ] ≈ X̄ ′iβ − Ȳi , expected bias
I β = (

∑
j∈Ω x jx ′j/cj)

−1(
∑

j∈Ω x jyj/cj)

I The relative bias is small if both of the following conditions are satisfied
i. βi = β, where βi = (

∑
j∈Ωi

x jx ′j/cj)
−1(
∑

j∈Ωi
x jyj/cj)

ii. Yi = X ′iβi
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Composite Estimators

A composite estimator is an estimator that combine direct and synthetic estimator:

Ŷi,C = φi Ŷi,D + (1− φi)Ŷi,S

where
I Ŷi,D is a direct estimator for the i-th small area

I Ŷi,S is a synthetic estimator for the i-th small area
I φi is a suitably chosen weight, 0 ≤ φi ≤ 1

The aim of the composite estimator is to balance the potential bias of the synthetic
estimator against the instability of the design-based estimator
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The Choice of φi

Optimal φi

a. Minimize the MSE(Ŷi,C) with respect to φi assuming COR(Ŷi,D, Ŷi,S) ≈ 0
I the optimal solution is given by

φ∗i =
MSE(Ŷi,S)

MSE(Ŷi,S) + V (Ŷi,D)

I the parameter φi can be estimated by

φ̂∗i =
M̂SE(Ŷi,S)

(Ŷi,S − Ŷi,D)2
= 1−

V̂ (Ŷi,D)

(Ŷi,S − Ŷi,D)2

Note: very unstable φ̂∗i
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The Choice of φi

b. Minimize m−1∑m
i=1 MSE(Ŷi,C) with respect to a common weight φi = φ

I the optimal solution is given by

φ∗ =

∑m
i=1 MSE(Ŷi,S)∑m

i=1(MSE(Ŷi,S) + V (Ŷi,D))

I the parameter φ can be estimated by

φ̂∗ = 1−
∑m

i=1 v̂(Ŷi,D)∑m
i=1(Ŷi,S − Ŷi,D)2
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Comparison Between Direct, Synthetic and Composite
Estimator

Empirical comparison of small area estimation methods for the Italian Labor Force
Survey (LFS)
I Performance of small area estimators are studied by simulating sample from

1981 Population Census. Samples are drown following the LFS design (two
stages with stratification)

I 400 sample replicates, each of identical size of the LFS sample
I 14 Health Service Areas (HSA) of the Friuli Region are considered to be small

areas

24/66



Comparison Between Direct, Synthetic and Composite
Estimator

Index used to evaluate the performances of the estimators
I Average Relative Bias

ARB =
1
14

14∑
i=1

∣∣∣∣∣ 1
400

400∑
h=1

Ŷ (h)
i − Yi

Yi
100

∣∣∣∣∣
I Relative Root MSE

RRMSE =
1

14

14∑
i=1


√

1
400
∑400

h=1(Ŷ (h)
i − Yi)2

Yi
100


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Comparison Between Direct, Synthetic and Composite
Estimator

ARB and RRMSE for Direct, Synthetic and Composite estimators

Table: Estimators performances

Estimator ARB RRMSE
Direct 2.39 31.08

Synthetic 8.97 23.80
Composite 6.00 23.57

Note: the RRMSE of Direct estimator is approximatively 30% higher than
Synthetic and Composite estimator
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Part III

Introduction to Small Area Predictors based
on Small Area models
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Recap

I Domain: sub-population of the population of interest, they could be planned or
not in the survey design
I Geographic areas (e.g. Regions, Provinces, Municipalities, Health Service Area)
I Socio-demographic groups (e.g. Sex, Age, Race within a large geographic area)
I Other sub-populations (e.g. the set of firms belonging to a industry subdivision)

→we don’t know the reliability of direct estimators for the domains that have
not been planned in the survey design
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Types of models & Data requirements

I Unit-level models
I Use unit-level data (e.g. from surveys) for model fit
I Area level covariates (predictor variables) are sufficient for estimating small area

averages/proportions
I Access to unit-level data→ possible confidentiality issues

I Area-level models
I Use only area-level data for model fit and SAE
I Model specified at the area-level
I Data access possibly less complex than access to unit-level data
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Area Level Approach, the Fay-Harriot Model

I The area level model includes random area-specific effects and area specific
covariates x i

θi = x iβ + ziui , i = 1, . . . ,m

I θi is the parameter of interest (e.g. totals, Yi or means, Ȳi )
I zi are known positive constant
I ui are independent and identically distributed random variables with mean 0

and variance σ2
u (ui ∼ N(0, σ2

u))
I β is the regression parameters vector

30/66



Area Level Approach, the Fay-Harriot Model

Assumption
θ̂i = θi + ei

I θ̂i is a direct design-unbiased estimator
I ei are independent sampling error with mean 0 and know variance ψi

The Fay-Harrior Model is obtained as

θ̂i = x iβ + zivi + ei , i = 1, . . . ,m

Note: this is a special case of the general linear mixed model with diagonal
covariance structure
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Area Level Approach, the Fay-Harriot Model
Under above mentioned assumptions

θ̂i ∼ N(x iβ, z2
i σ

2
u + ψi)

Let us to introduce matrix notation
I θ̂i = Xβ + Zu + e
I u ∼ N(0,G) and e ∼ N(0,R)

I θ̂ ∼ N(Xβ,ZGZ ′ + R), let V = ZGZ ′ + R
Given the estimates of β and u we obtain the Best Linear Unbiased Predictor
(BLUP) for θ
I β̃ = (X ′V−1X )−1X ′V−1θ̂

I ũ = GZ ′V−1(θ̂ − X β̃)

Note: estimates for β and u can be obtained by penalized maximum likelihood (u
considered as fix).
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Area Level Approach, the Fay-Harriot Model

I In the “real world” G (and R) are unknown and they must be estimated
I Using restricted likelihood optimized with scoring algorithm we obtain

estimates for σ2
u (G)

I In the Fay-Herriot model ψi is considered as known (we use sampling
variance)

Plugging in the estimated area-specific variance component σ̂2
u in the estimator for

β and u we obtain their estimates

β̂ = (X ′V̂
−1

X )−1X ′V̂
−1

θ̂

û = ĜZ ′V̂
−1

(θ̂ − X β̂)
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Area Level Approach, the Fay-Harriot Model

Finally using the obtained estimates in the Fay-Herriot model we have the
Empirical BLUP (EBLUP) for the parameter of interest θ

θ̂FH
i = φ̂i θ̂i + (1− φ̂i)(x ′i β̂)

I φ̂i =
z2

i σ̂
2
u

z2
i σ̂

2
u+ψi

, is the shrinkage factor

I θ̂i is the design estimator for θi

Note: using this procedure could happen that the estimate of σ2
u is negative, in this

case it must be truncated to 0
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Area Level Approach, the Fay-Harriot Model

The MSE of the Fay-Herriot small area estimator is

MSE(θ̂FH
i ) = g1i(σ

2
u) + g2i(σ

2
u) + g3i(σ

2
u)

I g1i(σ
2
u) = φiψi is due to the variability of random errors

I g2i(σ
2
u) is due to the variability of β estimate

I g3i(σ
2
u) is due to the variability of the estimate of σ2

u

An approximately correct estimate of the MSE is

M̂SE(θ̂FH
i ) = g1i(σ̂

2
u) + g2i(σ̂

2
u) + 2g3i(σ̂

2
u)

Remark: Alternatively (for more complex models) use bootstrap or jackknife
methods
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Example, Estimation of Mean Consumption Expenditure in
Italian provinces

I Goal: obtain reliable estimate of the household consumption expenditure at
provincial level (LAU 1/NUTS 3) in Italy

I Reliable consumption expenditure estimates in Italy are available at regional
level (NUTS 2)

I Estimates at regional level do not capture (reflect) the heterogeneity of
households’ consumption behaviour and living conditions within each region
(at provincial or at sub-provincial level)

I Depending on the availability of data, small area estimation methods can
reach the goal
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Example, Estimation of Mean Consumption Expenditure in
Italian provinces

Available data:
I Consumption expenditures 2012, unit level data from Household Budget

Survey (HBS)
I Per capita taxable income in 2012, province level data from Italian Revenue

Authority
I Home ownership (percentage of household who have the ownership of the

house where they live), province level data from Population Census 2011
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Example, Estimation of Mean Consumption Expenditure in
Italian provinces

I We use the EBLUP based on the Fay-Herriot model to estimate the mean of
the equivalised consumption expenditures for the 110 Italian provinces

I We use the modified-OECD equivalence scale which assigns a value of 1 to
the first adult in the household, 0.5 to each other adult and 0.3 to each child
under 14

I Direct estimates of the mean equivalised consumption expenditure and their
estimated variances are obtained from the HBS
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Example, Estimation of Mean Consumption Expenditure in
Italian provinces

Fay-Herriot model
I Direct estimate of the mean of equivalised consumption expenditures for each

Italian province and its estimated variance is obtained from the HBS
I Small sample size at province level of the HBS reveal unreliable direct

estimates, as expected. Sample sizes ranges between 4 and 1037, with
quartiles equal to 85, 147 and 303

I Auxiliary variables: per capita taxable income, home ownership
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Example, Estimation of Mean Consumption Expenditure in
Italian provinces

Table: FH-model regression parameters estimation

Aux Var β̂ Std. Err. t-value p-value

Intercept -1966.75 504.99 -3.89 0.000
Taxable income 0.16 0.01 15.49 0.000
Home ownership 19.18 6.40 3.00 0.003

σ̂u = 184
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Example, Estimation of Mean Consumption Expenditure in
Italian provinces

Table: Summary across Italian provinces of direct and small area estimates of the mean
consumptions expenditure

Min. 1st Qu. Median Mean 3rd Qu. Max.

θ̂dir
i 1242 1867 2395 2339 2705 3780
θ̂FH

i 1375 1812 2307 2245 2602 3332
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Example, Estimation of Mean Consumption Expenditure in
Italian provinces
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817.00 1113.00 1325.00 1520.00 1684.00 1789.00 2565.00
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Example, Estimation of Mean Consumption Expenditure in
Italian provinces

Precision gain of the SAE estimates

Table: Summary among provinces of the rmse(θ̂FH
i ) and rmse(θ̂dir

i ) ratio and the CV of
direct and small area estimates

Min. 1st Qu. Median Mean 3rd Qu. Max.

rmse(θ̂FH
i )/rmse(θ̂dir

i ) 0.10 0.53 0.64 0.64 0.80 0.97
CV dir 0.04 0.07 0.11 0.12 0.14 0.56
CV FH 0.04 0.06 0.07 0.07 0.08 0.11
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Example, Estimation of Mean Consumption Expenditure in
Italian provinces

I The small area estimates of the mean consumption expenditure are sound
I Indeed, the reduction of the variability of the estimates is

1− 0.64 = 0.36 = 36% in mean
I Direct and SAE point estimates are quite similar, but SAE fixes some extreme

unrealistic values of the direct estimate
I The success of the exercise depend mainly on the predictive power of the

auxiliary variables, that is high in this application
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Small Area Estimation by Borrowing Strength over Space

I In applications involving economic, environmental and epidemiological data
observations that are spatially close may be more alike than observations that
are further apart

I This creates a type of spatial dependency or spatial association in the data
that invalidates the assumption of independent and identically distributed (iid)
observations used by conventional regression models

I One approach to accounting for spatial correlation in the data is offered by
specifying models with spatially correlated errors (Anselin 1992; Cressie
1993)

I Small area literature suggests that prediction of small area parameters may
be improved by borrowing strength over space (Saei and Chambers 2003;
Singh et al. 2005; Petrucci and Salvati 2006; Pratesi and Salvati 2007, 2009)
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Extension of the basic FH model: Spatial FH model

Under spatial relationship the FH model becomes:

θ̂i = Xβ + Zv + e

where
I v = (I − ρW )−1u and v ∼ N(0,G) with G = σ2

u[(I − ρW )T (I − ρW )]−1;
I W is a m ×m spatial interaction matrix which indicates whether the areas are

neighbour or not (on way to define W is to set wij = 1 if small area i and j are
neighbour or 0 otherwise, however there are other ways to define W );

I ρ is the spatial autoregressive coefficient which defines the strength the
spatial relationship among the random effects associated with the
neighbouring areas.

46/66



Spatial FH model

The Spatial EBLUP (SEBLUP) is obtained as

θ̃S
i = x i β̂ + v̂i

I A second order approximation of the MSE of the SEBLUP has been proposed
by Singh et al. 2005 and Petrucci and Salvati (2006).

I Analytical approximations may require strong model assumptions and many
small areas to approximate well the true values, therefore Molina et al. (2009)
proposed parametric and non-parametric bootstrap procedures for estimation
of the MSE under the SFH model.
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Other Spatial models for SAE

Other approaches to incorporate the spatial structure in the data are:
I Spatially non-stationary Fay-Herriot model (Chandra et al., 2015).
I Non-parametric spatial P-spline model for small area estimation (Opsomer et

al., 2008; Giusti et al. 2012).
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EBLUP: Unit Level Approach
Unit level approach to small area estimation
I y the vector for the y variable for the population Ω

I y = [y ′s,y ′r ]′, where ys is the vector of the observed units (the sampled ones)
and y r is the vector of the non observed units (N − n, r = 1, . . . ,N − n)

I X is the covariates matrix and is considered know for all the population units
I Subscript i refers to small areas (e.g. ysi

is the vector of observed variables in
area i)

I Model for the y variable (known as superpopulation model)

y = Xβ + Zu + e

I that can be alternatively write as

yij = x ijβ + ui + eij
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EBLUP: Unit Level Approach

Given that
I u ∼ N(0,G), e ∼ N(0,R) and u ⊥ e
I R = σ2

eΣe, G = σ2
uΣu

I X is a full rank matrix (say rank equal q) and rank of (X : Z i) > q
I n ≥ q + m + 1

it can be shown that
I V (y) = ZGZ ′ + R = V
I β̃ = (X ′V−1X )−1X ′V−1ys is the BLUE for β
I ũ = GZ ′V−1(y − X β̃) is the BLUP for u
I y ∼ N(Xβ,V )
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EBLUP: Unit Level Approach

Let θ be a statistic of interest (e.g. the mean or the total of y in a given area) that
we want to estimate. It is possible to express θ in terms of linear combination
between observed and unobserved units

θ = α′sys + α′r y r

I α = (α′s,α
′
r ) is a vector of known constants of dimension N

The estimate for θ is easily obtained substituting the unknown vector y r with its
prediction ŷ r

θ̂ = α′sys + α′r ŷ r

I ŷ r = X r β̂ + û
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EBLUP: Unit Level Approach

For example the estimator of the mean for the i-th area is obtained as follow

ˆ̄Yi =
1
Ni

∑
j∈si

yij +
∑
k∈ri

(x ′ik β̂ + ûi)


we can use the composite estimator form

ˆ̄Yi = φ̂i [ˆ̄yi + (X̄ i − x̄ i)β̂] + (1− φ̂i)[X̄ i β̂]

I φ̂i = σ̂2
u

σ̂2
u+

σ̂2
e

ni
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EBLUP: Unit Level Approach

Next step is to derive an MSE estimator
I MSE(θ̂i) ≈ g1i(σ) + g2i(σ) + g3i(σ))

I g1i(σ) = α′r Z r T sZ ′rαr

I g2i(σ) = [α′r bXr −α′r Z r T sZ ′sR′sX s](X ′sV−1X s)−1[X ′rαr − X ′sR−1
s Z sT sZ ′rαr ]

I g3i(σ) = tr{(∇(α′r Z r ΣuZ ′sV−1
s )′)V s(∇(α′r Z r ΣuZ ′sV−1

s )′)′E [(σ̂ − σ)(σ̂ − σ)′]}
I T = Σu − ΣuZ ′s(Σes + Z sΣuZ ′s)−1Z sΣu

I σ = (σ2
e, σ

2
u/σ

2
e)′
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EBLUP: Unit Level Approach

Finally, the estimator for the MSE of θ̂i is

M̂SE(θ̂i) = g1i(σ̂) + g2i(σ̂) + 2g3i(σ̂)

I σ̂ is an unbiased estimator for σ
Remark: it is possible to obtain an estimate of the MSE using alternative
techniques, such as bootstrap and jackknife
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Example, Estimate of Mean Income in Tuscany Provinces

I Data on the equivalised income in 2005 for 1525 households in the 10
Tuscany Provinces are available from the EUSILC survey 2006

I A set of explanatory variables is available for each unit in the population from
the Population Census 2001

I We employ the unit level small area model to estimate the mean of the
household equivalised income

I The Municipality of Florence, with 125 units out of 457 in the Province, is
considered as a stand-alone area
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Example, Estimate of Mean Income in Tuscany Provinces

I The selection of covariates to fit the small area model relies on prior studies
on poverty assessment

I The following covariates have been selected:
I household size
I ownership of dwelling (owner/tenant)
I age of the head of the household
I years of education of the head of the household
I working position of the head of the household (employed/unemployed in the

previous week)
I Design-based estimates of the mean income have been carried out in order to

show the gain in efficiency of the EBLUP
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Example, Estimate of Mean Income in Tuscany Provinces

Table: Mean Income Estimate. Tuscany Provinces

Provinces EBLUP R̂MSEEBLUP Design-Based R̂MSEDB

Arezzo 17328 816.6 18455 1088.9
Florence M. 18139 806.4 21927 1188.8

Florence 16327 628.2 16347 490.1
Grosseto 16593 937.8 17811 1574.5
Livorno 17111 841.5 20257 3258.4
Lucca 15805 868.7 15780 783.5
Massa 15644 868.0 14814 909.0
Pisa 15950 826.5 16741 755.0

Pistoia 16467 850.1 16852 950.4
Prato 16964 824.9 16715 911.5
Siena 16660 852.0 16926 779.4
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Example, Estimate of Mean Income in Tuscany Provinces
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Figure: Black bars represent Design-Based estimates, red bars represent EBLUP
estimates

58/66



Example, Estimate of Mean Income in Tuscany Provinces
Design-Based Estimates EBLUP Estimates
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Conclusions on EBLUP

I The EBLUPs are either a composite estimators and a model-based estimators
I EBLUPs can also be used when we know only the average of the auxiliary

variables
I In many applications the EBLUPs perform better than the design based

estimators in terms of relative root MSE (smaller confidence intervals)
I Actually EBLUPs are used as a standard technique to derive small area

statistics
The Empirical Best Linear Unbiased Predictor is the Industry Standard for
Small Area Estimation
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Conclusions on EBLUP

Drawbacks
I Assumption of normality is needed for area effects and individual effects (but

sensitivity analysis shows that the model is robust against non normality if
symmetry of the distributions hold)

I It is not design-unbiased, in the sense that under complex survey design the
estimates could be biased

I Parameters of interest in out of samples areas (areas with 0 observations)
cannot be estimated (EBLUP needs minimum two observations per area)

I Extensions to the model are not easily implementable (complex derivation of
the MSE estimator)
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Conclusions on EBLUP

I Improvements for the EBLUP
I Spatial process (CAR and SAR models)
I Time process
I Spatiotemporal process
I Robust estimation
I Binary and count data models

I Alternative approaches
I Quantile/M-Quantile approach
I Bayesian approach
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Part IV

Concluding Remarks
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On Going Research on Small Area Estimation

I Robustness in small area estimation
I Small area quantiles estimators (distribution function estimator)
I New models for small area problem
I Inclusion of the design weights in model-based (composite) estimators
I Models for non continuous data
I Big data and SAE
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