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Levels of nonresponse

• We distinguish between two types of nonresponse:

1 Unit (total) nonresponse:
Complete lack of information on a given unit.

2 Item (partial) nonresponse:
Some (but not all) variables are observed.

y1 y2 y3 . . . yp wk

1 X X X . . . X w1
}

Respondents
2 X X X . . . X w2

... X X X . . . X
...

}
Item nonresponse

... X X X . . . X
...

... X X X . . . X
...

}
Unit nonresponse

n X X X . . . X wn

Table 1: Types of nonresponse
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Effects of nonresponse

• Main issue with nonresponse: bias introduced when the respondents
are different from the nonrespondents with respect to the survey
variables −→ Unadjusted estimators are generally biased.

• Additional component of variance: due to the observed sample size,
nr , that is smaller than the initially planned sample size, n.

• Key to reducing both nonresponse bias and variance: use weighting
methods that take advantage of auxiliary information available for
both respondents and nonrespondents.

David Haziza (University of Ottawa) Machine learning for unit nonresponse December 15, 2022 3 / 49



Full sample estimator

• Let U = {1, 2, ...,N} be a finite population of size N.

• Y : Survey variable

• Goal: estimate the finite population parameter

ty =
∑
k∈U

yk .

• We select a probability sample s ⊂ U, with πk = P(k ∈ s) > 0 and
πk` = P(k , ` ∈ s) > 0, for k , ` ∈ U.

• Full sample (Horvitz-Thompson) estimator of ty :

t̂y ,π =
∑
k∈S

yk
πk

=
∑
k∈S

dkyk .

• Design-unbiased: Ep(t̂y ,π) = ty for any survey variable y .
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Nonresponse mechanism

• Let rk be the response indicator attached to unit k such that rk = 1 if
unit k is a respondent and rk = 0, otherwise.

• The set of respondents Sr , is the subset of S which contains all the
units k ∈ S such that rk = 1.

• We assume that the true unknown nonresponse mechanism depends
only on a certain vector of variables vk , k ∈ S .

• The response probability attached to unit k is defined as
pk = P(rk = 1 | S , vk)

• We assume that 0 < pk 6 1.

• We also assume that the sample units respond independently of one
another
• Nonresponse mechanism:

rk ∼ B(pk), k = 1, . . . , n
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Total Error

• Let t̂y ,NR be an estimator of ty after nonresponse treatment.

• The total error of t̂y ,NR can be expressed as:

t̂y ,NR − ty =
(
t̂y ,π − ty

)
+
(
t̂y ,NR − t̂y ,π

)
.

• The term t̂y ,π − ty corresponds to the sampling error.

• The term t̂y ,NR − t̂y ,π corresponds to the nonresponse error.

• Objective of the nonresponse treatment: reduce the nonresponse error
as much as possible
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Unadjusted estimators

• Unadjusted estimator of ty :

t̂y ,naive = NŶ r with Ŷ r =

∑
k∈Sr dkyk∑
k∈Sr dk

• Nonresponse error of t̂y ,naive :

t̂y ,naive − t̂y ,π = N

{
N̂m

N̂π

(
Ŷ r − Ŷm

)}
,

• The nonresponse error of t̂y ,naive tends to be large if:

- The nonresponse rate is large;

and/or

- Ŷ r (mean of the respondents) is far from Ŷm (mean of the
nonrespondents).
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Adjusted estimator: The double expansion estimator

• If pk was known and pk > 0 for all k , an unbiased estimator of ty is
he double expansion estimator

t̂y ,DE =
∑
k∈Sr

dk
pk

yk

• In practice, the pk ’s are unknown −→ They must be estimated.

• Determine a model for rk , called a nonresponse model, and then
obtain the estimated probabilities p̂k using the selected model.
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Adjusted estimators

• Weighting system adjusted for nonresponse:

{w∗k = dk/p̂k = 1/(πk p̂k); k ∈ Sr}.

• An adjusted estimator:

t̂y ,PSA =
∑
k∈Sr

w∗k yk

• There are two main modeling steps:

I Selection of explanatory variables vk that are predictive of rk

I Determination of a suitable model for the relationship between rk and
vk
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How to choose explanatory variables?

• The choice of explanatory variables that are highly predictive of rk
may yield:

I Small p̂k and thus large weight adjustments p̂−1
k

I Unstable propensity score adjusted estimators.

• Recommendation: the vector vk should be related to both the
response indicator rk and the survey variables; e.g., Little and
Vartivarian (2005), Beaumont (2005), Kim et al. (2019)

• Explanatory variables that are related only to rk and not to the survey
variables should be excluded for the estimation of pk :

I Do not contribute to reducing the nonresponse bias;

I May increase substantially its nonresponse variance.
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Parametric estimation of pk

• We assume that vk , k ∈ S do not contain any missing value.

• Under this assumption, the missing y -values are said to be Missing At
Random (MAR).

• We start with parametric estimation of the pk ’s. A general parametric
nonresponse model can be written as:

pk = f (vk ,γ),

for some predetermined function f (·, γ), where γ is a vector of
unknown model parameters.

• The estimated response probability is: p̂k = f (vk , γ̂) for some
estimator γ̂.

• The resulting PSA estimator of ty is consistent for ty if the
nonresponse model is correctly specified.
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Parametric estimation of pk

• There are many possible functions f (·).

• For example, with logistic regression, the response probability is
modeled as:

pk = f (vk ,γ) =
ev>k γ

1 + ev>k γ
.

• There are many methods for estimating γ.

• Maximum Likelihood (ML) method: γ̂ must satisfy the equation:∑
k∈S

[rk − f (vk , γ̂)] vk = 0.

• Pseudo ML (design weighted):∑
k∈S

dk [rk − f (vk , γ̂)] vk = 0.
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Parametric estimation of the response probabilities

• Issues associated with the use of a parametric model: it is not robust
to model misspecification

I The function f (·) may not be appropriate for describing the relationship
between the response indicator and the explanatory variables.

I There may be missing interactions in the model that were not detected
during model selection.

I Predictors accounting for curvature (quadratic terms, cubic terms, etc.)
may be missing.

I Parametric models such as the logistic model may yield some estimated
response probabilities, p̂k , that are very small resulting in very large
weight adjustments p̂−1

k and potentially unstable estimates.
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Nonparametric estimation of the response probabilities

Nonparametric procedures include:

• Homogeneous nonresponse classes:

I The score method: e.g., Little (1986), Eltinge and Yansaneh (1997)
and Haziza and Beaumont (2007)

I Regression trees: Phipps and Toth (2012), Earp et al. (2018).

I The CHAID algorithm: Kass (1980).

• Kernel regression: e.g., Giommi (1984) and Da Silva and Opsomer
(2006)

• Local polynomial regression: DaSilva and Opsomer (2009).

• Machine learning methods: Lohr and Montaquila (2015), Gelein
(2018), Kern et al. (2019).

Nonparametric methods protect (to some extent) against the
misspecification of the form of the function or against the non-inclusion of
predictors accounting for curvature or interactions.
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Nonparametric estimation: The score method

• The steps for forming the classes are as follows:

I Step 1: Obtain preliminary estimated response probabilities, p̂LRk ,
k ∈ S , from a logistic regression.

I Step 2: Form the classes based on the estimated response probabilities,
p̂LRk , using either

the equal quantile method: it consists of ordering the sample from the
lowest estimated response probability computed in Step 1 to the
largest.

Use a classification algorithm based on the p̂LR
k ’s to form the classes.

I Step 3: Perform weight adjustment within each class (i.e, divide the
design weight of the respondents within a class by the response rate
observed within the same class).

• This method is nonparametric in nature → Robust to misspecification
of the nonresponse model.
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QUESTIONS?



Estimation vs. prediction: Empirical illustration

• We generated a population of size N = 10, 000 with 7 variables: one
survey variable y and 6 auxiliary variables v1-v6.

• We first generated the variables v1-v6 from different Gamma
distributions.

• Given v1-v6, we generated the y -variable according to the linear model

yk = 2− 2v1k + 4v2k + εk

• From the population, we selected B = 10, 000 samples, each of size
n = 1000, according to simple random sampling without replacement.
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Estimation vs. prediction: Empirical illustration

• In each sample, each unit was assigned a response propensity pk
according to the logistic function:

pk = {1 + exp(−0.05v1k + 0.05v2k − 0.05v3k + 0.05v4k − 0.05v5k + 0.02v6k)}−1 .

• The coefficients were set so that the overall response rate was
approximately equal to 50% in each sample.

• In each sample, the response indicators rk were generated from a
Bernoulli distribution with probability pk .

• We were interested in estimating ty =
∑

k∈U yk .

• The values of the variables v1-v6 were available for all the sample
units (respondents and nonrespondents). Only the survey variable Y
is prone to missing values.
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Using superfluous variables: empirical illustration

                             v1 

                                            v2 

           y                              v3                                        p 

                                           v4 

                            v5 

                            v6 

                               

Figure 1: Relationships between the variables
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Estimation vs. prediction: Empirical illustration

• We considered two estimators of ty :

I The unadjusted estimator t̂y ,naive = NŶ r ;

I The propensity score adjusted estimator t̂y ,PSA =
∑

k∈Sr

dk
p̂k
yk , where

p̂k was obtained using a the score method (based on 20 classes) based
on different subsets of v1-v6 as predictors.

• We computed the following Monte Carlo measures:

I Monte Carlo percent relative bias:

RBMC (t̂) =
1

10, 000

10,000∑
b=1

(t̂(b) − ty )

ty
× 100.

I Monte Carlo mean square error:

MSEMC (t̂) =
1

10, 000

10,000∑
b=1

(
t̂(b) − ty

)2
.
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Estimation vs. prediction: Empirical illustration

• We also computed the Monte Carlo percent coefficient of variation of
the adjusted weights w∗k = dk/p̂k defined as

CVMC (w∗k ) = 100× 1

10, 000

10,000∑
b=1

sw∗(b)

w∗(b)

,

where

s2
w∗ =

1

nr − 1

∑
k∈Sr

(w∗k − w∗)2

with w∗ = n−1
r

∑
k∈Sr w

∗
k .

• Finally, we computed the Monte Carlo mean square error of the
predictions defined as

MSEMC (p̂) = 100× 1

10, 000

10,000∑
b=1

1

nr

∑
k∈Sr

(
p̂k(b) − pk

)2
.
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Estimation vs. prediction: empirical illustration

Estimator t̂y,naive t̂y,PSA t̂y,PSA t̂y,PSA t̂y,PSA t̂y,PSA t̂y,PSA
v1 v1-v2 v1-v3 v1-v4 v1-v5 v1-v6

RBMC (t̂) -13.4 -12.2 -0.2 -0.8 -0.3 -1.0 -0.4
in (%)

REMC (t̂) 623 561 134 141 142 161 206

CVMC (w∗) 0 12.8 16.3 18.7 30.13 49.7 83.7
in (%)

MSEMC (p̂) 4.7 5.0 4.9 4.6 4.1 1.3 0.4

Table 2: Monte Carlo quantities associated with several estimator of ty : The
score method

Note: REMC (t̂) = 100× MSEMC (t̂)

MSEMC (t̂y,π)
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Same experiment with regression trees

• We repeated the same simulations but with regression trees instead of
the score method. We computed:

I The unadjusted estimator t̂y ,naive = NŶ r ;

I The propensity score adjusted estimator t̂y ,PSA =
∑

k∈Sr

dk
p̂k
yk , where

p̂k was obtained using a regression tree based on different subsets of
v1-v6 as predictors.

• We varied different parameters:

I The sample size n;

I n0: minimal number of respondents in each terminal node;

I c : threshold of the complexity parameter.

• Note: A value of c = 1 will always result in a tree with no splits; if a
split does not increase the overall R2 of the model by at least c, then
that split is not worth pursuing. Default value: c = 0.01.
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Same experiment with regression trees

RBMC (t̂) in (%) REMC (t̂) in (%) MSEMC (p̂) CVMC (w∗) in (%)
cp = 0

t̂y,PSA
v1

-11.1 572 4.0 29.5

t̂y,PSA
v1-v2

-0.6 116 4.3 36.5

t̂y,PSA
v1-v3

-1.7 140 3.9 43.5

t̂y,PSA
v1-v4

-2.6 162 3.8 48.3

t̂y,PSA
v1-v5

-4.1 206 3.4 53.3

t̂y,PSA
v1-v6

-6.5 318 2.9 62.1

Table 3: Monte Carlo quantities associated with several estimator of ty :
Regression trees with n0 = 10

Note: Average number of nodes between 53-61
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Same experiment with regression trees

RBMC (t̂) in (%) REMC (t̂) in (%) MSEMC (p̂) CVMC (w∗) in (%)
cp = 0.001

t̂y,PSA
v1

-11.2 577 3.9 28.7

t̂y,PSA
v1-v2

-0.7 117 4.2 36.1

t̂y,PSA
v1-v3

-1.8 142 3.8 43.3

t̂y,PSA
v1-v4

-2.8 164 3.7 48.1

t̂y,PSA
v1-v5

-4.1 209 3.3 53.3

t̂y,PSA
v1-v6

-6.6 322 2.9 62.0

Table 4: Monte Carlo quantities associated with several estimator of ty :
Regression trees with n0 = 10

Note: Average number of nodes between 50-57
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Same experiment with regression trees

RBMC (t̂) in (%) REMC (t̂) in (%) MSEMC (p̂) CVMC (w∗) in (%)
cp = 0.01

t̂y,PSA
v1

-13.7 802 3.0 4.7

t̂y,PSA
v1-v2

-8.0 414 3.0 13.8

t̂y,PSA
v1-v3

-7.3 360 2.9 23.1

t̂y,PSA
v1-v4

-7.3 341 2.8 33.1

t̂y,PSA
v1-v5

-7.8 364 2.6 39.0

t̂y,PSA
v1-v6

-10.0 519 2.4 49.2

Table 5: Monte Carlo quantities associated with several estimator of ty :
Regression trees with n0 = 10

Note: Average number of nodes between 2-22
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Ensemble methods

• Ensemble methods consist of:

I Obtaining estimated response probabilities using several (machine
learning or non machine learning) procedures;

I Combining these probabilities in some way to obtain a set of weights
adjusted w∗k = dk/p̂k for nonresponse;

• Why use an ensemble method?

I It is highly likely that no machine learning procedures will outperform
all the other competitors in all the scenarios;

I A machine learning procedures may do well in a particular scenario but
not as well in another scenario;

I One cannot tell in advance which procedure will perform well.

I An ensemble method that combines several machine learning
procedures, may outperform a single procedure.
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Ensemble methods

• Three ensemble methods:

(1) Calibration;

(2) Refitting through linear regression;

(2) Refitting through linear regression followed by calibration.

• Suppose that we use M machine learning procedures;

• Let p̂k = (p̂
(1)
k , . . . , p̂

(M)
k ) be a M-vector of estimated response

probabilities associated with unit k.

• The component p̂
(m)
k in p̂k corresponds to an estimated response

probability based on the mth machine learning procedure,
m = 1, . . . ,M.

• The idea is to combine the estimated probabilities obtained from each
method into a single score.
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QUESTIONS?



Simulation study: Generating the data

• We conducted a simulation study to assess the performance of several
machine learning procedures in terms of bias and efficiency.

• We generated several finite populations of size N = 50, 000.

• Each population consisted of a survey variable Y and 7 auxiliary
variables (4 continuous + 3 discrete).

• Two scenarios:

I These variables were independently generated;

I Correlation among the predictors through Gaussian copulas.
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Simulation study: Generating the data

• Given the values of the auxiliary variables, we have generated several
y -variables according to the following models:

yk = γ0 + γ
(s)
1 X

(s)
1k + γ

(c)
1 X

(c)
1k + γ

(c)
2 X

(c)
2k + γ

(c)
3 X

(c)
3k +

5∑
j=2

γ
(d)
1j (1{X (d)

1k
=j})

+ γ
(d)
2 X

(d)
2k +

5∑
k=2

γ
(d)
3j (1{X (d)

3k
=j}) + εk

and

yk = δ1X
(c)
2k +δ2(X

(c)
2k )2(1−1{X (d)

3k
=2}∪{X (d)

3k
=3})+log(1+δ3X

(c)
2k )(1{X (d)

3k
=2}∪{X (d)

3k
=3})+εk ,

where ε ∼ N (0, σ2
ε).

• Two types of models: linear and nonlinear.
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Simulation study: Sampling design

• Each population was partitioned into ten strata on the basis of the
auxiliary variable X (s) using an equal quantile method.

• From each population, we selected B = 1, 000 samples according to
stratified simple random sampling without replacement of size
n = 1, 000 based on Neyman’s allocation.

• Two types of sampling designs:

I Non-informative: no correlation between the sampling weights nh/Nh

and the survey variable;

I Informative: correlation between the sampling weights nh/Nh and the
survey variable set to 0.3 approximately.

• This led to 7 different survey variables.
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Simulation study: Nonresponse mechanism

Six nonresponse mechanisms:

NR1 : p
(1)
k = logit−1{−0.8− 0.05X

(s)
1k + 0.2X

(c)
1k + 0.5X

(c)
2k − 0.05X

(c)
3k

+
∑5

k=2 0.2(1{X (c)
1k =k}) + 0.2X

(d)
2k +

∑5
k=2 0.3(1{X (d)

3k =k})}.

NR1 : p
(2)
k = 0.1 + 0.9 logit−1(0.5 + 0.3X

(s)
1k − 1.1X

(c)
1k − 1.1X

(c)
2k −

1.1X
(c)
3k +

∑5
k=2 0.8(1{X (c)

1k =k}) + 0.8X
(d)
2k +

∑5
k=2 0.8(1{X (d)

3k =k})).

NR3 : p
(3)
k =

0.1 + 0.9 logit−1

{
−1 + sgn (X c

1k) (X c
1k)2 + 3× 1{

X
(d)
1k <4

}
∩
{
X

(d)
2k =1

}}.

NR4 : p
(6)
k = 0.1 + 0.6 logit−1(0.85X

(s)
1k + 0.85X

(c)
2k − 0.85X

(c)
3k

−
∑5

k=2 0.2(1{X (c)
1k =k}) + 0.2X

(d)
2k −

∑5
k=2 0.3(1{X (d)

3k =k})).

NR5 : p
(4)
k = 0.55 + 0.45 tanh (0.05yk − 0.5).

NR6 :p
(5)
k = 0.1 + 0.9 logit−1 (0.2yk − 1.2).
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Simulation study: Nonresponse mechanism

• The parameters in each nonresponse model were set so as to obtain a
response rate approximately equal to 50%.

• The response indicators r
(j)
k were generated from a Bernoulli

distribution with probability p
(j)
k , j = 1, . . . , 6..

• The nonresponse mechanism (1)-(4) are ignorable, whereas the
nonresponse mechanism (5) and (6) are nonignorable.

Figure 2: Distribution of response probabilities in the population U
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Simulation study: Machine learning procedures

(a) logit: Logistic regression;

(b) logit lasso: Logistic regression with variable selection based on
LASSO (amount of penalization λ is obtained using a 10-fold cross
validation).

(c) Classification and regression trees:

I cart1 : Pruned trees, at least 10 observations in each leaf.

I cart2 : Pruned trees, at least 20 observations in each leaf.

I cart3 : Pruned trees, at least 30 observations in each leaf.

I cart4 : Unpruned trees, at least 20 observations in each leaf.
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Simulation study: Machine learning procedures

(d) Random forests:

I rf1 : Probabilities estimation trees, at least 10 observations in each
leaf, 100 trees.

I rf2 : Probabilities estimation trees, at least 10 observations in each
leaf, 500 trees.

I rf3 : Probabilities estimation trees, at least 30 observations in each
leaf, 100 trees.

I rf4 : Probabilities estimation trees, at least 30 observations in each
leaf, 500 trees.

I rf5 : Probabilities estimation trees, at least 30 observations in each
leaf, 500 trees, variable used for the allocation is always drawn.

(e) k-nearest neighbors:

I knn : k determined by 10-fold cross validation with k ∈ {3, 12};
I knn reg : k determined by 10-fold cross validation with k ∈ {3, 30}.
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Simulation study: Machine learning procedures

(f) Bayesian additive regression trees:

I bart Bart as a classification method with parameters described in the
original paper for all priors.

I bart reg : Bart as a regression method with parameters described in
the original paper for all priors.

(g) Extreme Gradient Boosting (XGBoost).

I xb1 : 500 trees, learning rate: 0.5, max depth : 2.

I xgb2 : 2000 trees, learning rate: 0.5, max depth : 2.

I xgb3 : 1000 trees, learning rate: 0.01, max depth : 1.

I xgb4 : 500 trees, learning rate: 0.05, max depth : 3.
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Simulation study: Machine learning procedures

(h) Support vector machine:

I svm1 : ν−SVM with a Gaussian kernel.

I svm2 : ν−SVM with a linear kernel.

(i) Cubist algorithm:

I cb1 : Unbiased, with extrapolation, 10 committees.

I cb2 : Unbiased, without extrapolation, 10 committees.

I cb3 : Biased, with extrapolation, 10 committees.

I cb4 : Unbiased, with extrapolation, 50 committees.

I cb5 : Unbiased, with extrapolation, 100 committees.

(j) Model-based recursive partitioning:

I mob : Model-based recursive partitioning.

(k) CAL: Ensemble method based on calibration;

(l) COMPRESS: Ensemble method based on refitting;

(m) COMPRESS-CAL: Ensemble method based on calibration.
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Simulation study: Point estimators

• In each sample, we computed the propensity score adjusted estimator:

t̂y ,PSA =
∑
k∈Sr

dk
p̂k

yk .

• Monte Carlo percent relative bias:

RBMC (t̂y ) =
100

B

B∑
k=1

(
t̂y ,k − ty

)
ty

.

• Monte Carlo relative efficiency, using the complete data estimator t̂y ,π
as the reference:

REMC (t̂y ) = 100× MSEMC (t̂y )

MSEMC (t̂y ,π)
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QUESTIONS?



Simulation study: Results

Algorithm Min Q1 Med Q3 Max Mean
xgb1 155 225 324 1 124 12 551 1 677

COMPRESS CAL 139 208 328 798 7 772 908
xgb4 148 221 330 1 139 12 111 1 589
xgb3 143 239 344 928 11 581 1 394
cart3 175 259 345 1 506 9 627 1 393
cart2 175 256 348 1 464 9 472 1 376

COMPRESS 137 199 348 906 10 382 1 317
CART reg 162 269 350 1 367 9 522 1 293

cart1 172 259 351 1 448 9 373 1 370
xgb2 148 215 368 1 016 11 479 1 405
cart4 145 262 369 1 382 8 881 1 231
bart 129 199 384 852 10 595 1 314
knn 172 282 392 921 11 513 1 621

logit and score 134 216 392 1 252 9 998 1 359
svm1 129 280 407 780 12 482 1 639

Table 6: Monte Carlo relative efficiency across the 42 scenarios for the PSA
estimators: the best 15 methods (out of 33)
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Simulation study: Results

Figure 3: x (independent), y(linear), non-informative, NR1 and NR2, PSA
estimator
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Simulation study: Results

Figure 4: x (independent), y(linear), non-informative, NR3 and NR4, PSA
estimator
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Simulation study: Results

Figure 5: x (independent), y(linear), non-informative, NR5 and NR6, PSA
estimator
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Simulation study: Results

Figure 6: x (dependent), y(nonlinear), non-informative, NR1 and NR2, PSA
estimator
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Simulation study: Results

Figure 7: x (dependent), y(nonlinear), non-informative, NR3 and NR4, PSA
estimator
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Simulation study: Results

Figure 8: x (dependent), y(nonlinear), non-informative, NR5 and NR6, PSA
estimator
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Final remarks

• The use of the most predictive method does not necessarily lead to
the best (most efficient) estimator of a population total.

• Ensemble methods did behave well in our experiments. More research
is needed.

• Ensemble methods related to multiply robust estimation procedures
(e.g., Han and Wang, 2013; Chen and Haziza, 2017) and the
Superlearner algorithm (van der laan et al., 2007);

• Theoretical results about consistency of propensity score estimators is
a topic of research.
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QUESTIONS?


