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Topics

- Overview of types of disclosure risk in traditional forms of 

statistical data

- Common statistical disclosure limitation methods 

- Disclosure risk-data utility paradigm 

- Inferential disclosure and differential privacy

- New dissemination strategies: 

- Online flexible table builder 

- Other open data options 

- Discussion 
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• Survey Microdata   

• Social surveys (census/register and business survey 

microdata  generally not released) 

• Available from  data archives  for registered users

• Tabular Data

Frequency Tables                             Magnitude Tables

Census/registers                              Business Statistics,

(whole population) counts                  eg., total turnover     

Weighted sample counts

Traditional Statistical Outputs
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Identification is widely referred to in 

confidentiality pledges and code of 

practice 

Types of Disclosure Risks

Identity Disclosure

Individual Attribute 

Disclosure

Group Attribute 

Disclosure

Confidential information  about a 

data subject is revealed and can be 

attributed to the  subject (Identity 

disclosure a necessary pre- condition)

Confidential information is learnt 

about a group and may cause harm
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Common SDC Methods

Identity Disclosure (assume no 

response knowledge)-

rare categories of identifying 

variables (population unique)

Recoding/grouping  identifying 

variables, eg. k-anonymity 

Sub-sampling, eg. census 

samples

Social Survey Microdata

Attribute disclosure  - individual(s) 

identified and survey target 

variables learnt, eg. health, income

Top-coding sensitive variables  

Recoding / Microaggregation, 

eg. l-diversity

Suppressing variables such as 

high level geographies
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Common SDC Methods

Identity Disclosure –small cells

Table design, eg. spanning 

variables and grouped 

categories

Minimum population thresholds

Frequency Tables (whole population counts)

Attribute disclosure  - zeros in 

row/column and one populated cell

Pre-tabular and/or post-

tabular perturbation to 

introduce ambiguity in zero 

cells 

Nested tables to avoid 

disclosure by differencing 6



Common SDC Methods

Assumptions: 

• Intruders are competitors in the 

cell and can form coalitions

• Businesses in a cell are known 

• The ranking of the businesses 

with respect to their size is known  

Table design 

Minimum population thresholds

Magnitude Tables (Business statistics)  

Attribute disclosure  - What can a 

competitor learn with sufficient 

precision 

Cell suppression:  primary and 

secondary

(mathematical programming 

and optimization)
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Disclosure risk

Disclosure Risk and Data Utility

Microdata: 

Set of cross-classified quasi-

identifiers defined by k=1,…,K


𝑘
𝐼(𝑓𝑘 = 1, 𝐹𝑘 = 1)

where

𝑓𝑘 sample count 

𝐹𝑘 population count 

Probabilistic modelling for 

estimation:  Poisson-log linear 

modelling

Magnitude tables (Business statistics): 

Let 𝑇𝑘 = σ𝑖𝜖𝑘 𝑥𝑖 in cell k

(n,p) Dominance Rule classifies cell as disclosive if  

x(1) +…..+x(n) ≥ (p/100)× 𝑇𝑘

Frequency tables: 

Whole population counts and 

disclosure risk is visible:  small 

cells, placement of zero cells

Let 𝐹 = {𝐹1, 𝐹2,…, 𝐹𝐾}

𝐻
𝐹

𝑁
= −σ𝑘

𝐹𝑘

𝑁
log(

𝐹𝑘

𝑁
) and 

1 − [
𝐻(

𝐹

𝑁
)

𝑙𝑜𝑔𝐾
]
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Utility 

• Impact on variance

• Impact on bias

Disclosure Risk and Data Utility

Distortions to distributions: 

distance metrics, eg. 

Hellinger’s Distance*, 

variation in propensity scores  

Changes in associations: 

change in correlations and 

rankings, Cramer’s V   

* 2

1
)(

2

1
),( k

K

k k FFFFHD −=  =

Changes in inference: 

confidence interval overlap, 

change in 𝜒2 or 𝑅2
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Disclosure Risk and Data Utility

R-U Confidentiality Map   (Duncan, et.al. 2001)

Original Data
Maximum Tolerable Risk

Released Data
No data

Data Utility: Quantitative measure on the statistical quality

Disclosure 

Risk: 

Probability of 

re-

identification
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Questions
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Confidential information may be revealed exactly or to 

a close  approximation with high confidence from statistical 

properties of released and combined data   

Examples: 

Survey microdata – a good prediction model with very high 

Census tables – disclosure by differencing  and linking tables

This type of disclosure has  largely been ignored  and  dealt with 

through strict control of data that is released  

• Microdata deposited in archives for registered users 

• Strict control of tabular data, eg. review boards for special 

request  tabulations 

Inferential Disclosure

2R
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Where do we go from here?

• Traditional forms of statistical data and  their confidentiality 

protection  rely heavily on assumptions that may no longer be 

relevant  

• Growing demand for more open and accessible data via 

web-based applications

• Need for more  rigorous data protection mechanisms with 

stricter privacy guarantees  

• Collaborations with computer scientists through scientific 

programs

Digitalization of all aspects 

of our society leading to new 

and linked data sources 

offering opportunities for 

research and  evidence-

based policies

With detailed personal 

information easily accessible 

from the internet, traditional 

SDL may no longer be  

sufficient and   agencies  

relying  more  on restricting 

and licensing data   
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• Computer Science differential privacy (Dwork and Roth 2014):

the intruder has knowledge of entire database except for one 

target unit  (“worst case” scenario)

Differential Privacy 

Definition: Mechanism M satisfies (𝜀, 𝛿)-differential privacy if for 

all neighbouring databases D,D’ differing by one individual, all 

possible queries q  and  𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 𝑀 all possible outputs:

𝑃(𝑀 𝑞 𝐷 𝜖𝑆) ≤ 𝑒𝜀𝑃(𝑀 𝑞 𝐷′ 𝜖𝑆) + 𝛿

and the probability is taken over the randomness of the mechanism

If 𝛿 = 0 then we have 𝜀-differential privacy
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Example of Differential Privacy Mechanism

Laplace Mechanism

Calibrating noise: what scale of noise b is large

enough to ensure privacy on a query q?  

q(D)+Z and  Z sampled from Lap(0,b)

Amount of noise depends on 𝜀 and sensitivity of query  q

denoted ∆𝑞
∆𝑞 = 𝑚𝑎𝑥𝐷,𝐷′|𝑞 𝐷 − 𝑞 𝐷′ |

where D D’  any neighbouring databases

Theorem: setting scale (b) of Laplace noise to Δq/ε ensures ε-
differential privacy   

Example:

query ∆𝑞
count         1

max(age)  120

avg(age)   120/n
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Mechanisms in Differential Privacy

Non-interactive Mechanism

Data custodian produces a 

‘safe’ object, such as a  

synthetic database or collection 

of summary statistics  

After this release all post-

perturbative analyses are safe 

(no privacy budget spent after 

the original object)

Interactive Mechanisms

Data analyst sends queries  

(functions applied to a database)  

adaptively, deciding which query 

to pose next based on observed 

responses to previous queries  

Accuracy will deteriorate with the 

number of questions asked, and  

providing accurate answers to all 

possible questions will be infeasible
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Differential Privacy in the SDC Tool-kit

at Statistical Agencies

Non-interactive mechanisms as agencies  unable to monitor queries

DP useful when perturbative methods are needed with stricter 

privacy guarantees such as  outputs disseminated via the internet 

where agencies relinquish control of the releases

Examples:  flexible table builder, synthetic data, and multiple data

products  released from survey microdata

Agencies should  still maintain ‘safe data’ and  ‘safe access’  SDC 

approaches, eg.  Data Labs for ‘trusted’ users  
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Differential Privacy vs. SDC

No distinction between key variables and sensitive variables,  types 

of disclosure risks, sample or population or prior intruder knowledge   

Designed for output perturbation and in this case a sum/average is 

disclosive and needs to be protected (same as  disclosure by 

differencing)   

Zeroes need to be perturbed

Perturbation mechanism not hidden and can be used to correct 

statistical analysis
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Questions
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Online Flexible Table Builder 
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Online Flexible Table Builder 

• Increasing demands for online dissemination and open access of 

census tables (ABS, USA, EU)

– Web-based  platform (drop down lists) with restrictions:  

number of dimensions,   population thresholds, no sparse tables   

– SDL on-the-fly:  pre-tabular (hypercubes, swapping)  and/or 

post-tabular methods (noise addition, rounding)

• Perturbation matrix  𝑝𝑖𝑗 = 𝑃 𝑝𝑒𝑟𝑡𝑢𝑟𝑏 𝑐𝑒𝑙𝑙 𝑡𝑜 𝑗 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑒𝑙𝑙 𝑖𝑠 𝑖

• Change (or do not change) value according to 𝑝𝑖𝑗 and random 

draw 
21



Online Flexible Table Builder 

• Other principles in SDC: 

• Differential Privacy  (DP) for flexible table builders (Rinott, 

O’Keefe, Shlomo and Skinner  2018)

Perturbations unbiased, bounded, maximal entropy, non-negative 

and zeros not perturbed  

Microdata keys for same perturbations on  same cells across tables  

(Fraser and Wooton  2005)

Additivity - probability perturbation matrix with property of 

‘invariance’ (ensures margins in expectations) and IPF  (Shlomo and 

Young  2008)  
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Exponential Mechanism

Exponential mechanism defined by:  given a, choose          (B: range 

of b) with probability proportional to:                       where 

Assuming additive loss functions and independent perturbations

Bound the perturbations                      , then  for all             ,  if                            

implies                           then           satisfies 𝐷𝑃(𝜀, 𝛿)

Examples of Laplace  perturbation vectors:

𝜀 = 1.5, 𝛿 = 0.00002

𝜀 = 0.5, 𝛿 = 0.008

Bb
uue /)2/(

|)b,a'()b,a(|maxmax
'~

uuu
AaaBb

−=


kmba kk − ,||

Aaa '~

0))'(( == baMP

= ))(( baMP

(.)M

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

0.00002 0.00008 0.00035 0.00157 0.00706 0.03162 0.14172 0.63516 0.14172 0.03162 0.00706 0.00157 0.00035 0.00008 0.00002

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

0.0076 0.0125 0.0206 0.0339 0.0559 0.0922 0.1520 0.2506 0.1520 0.0922 0.0559 0.0339 0.0206 0.0125 0.0076



Exponential Mechanism

Original 

Value

Laplace m=7 Laplace m=7

0 0.82 0.96 0.99 1 1 0.63 0.78 0.87 0.93 0.96

1 0.64 0.96 0.99 1 1 0.25 0.77 0.86 0.92 0.95

2 0.64 0.92 0.99 1 1 0.25 0.55 0.85 0.91 0.94

3 0.64 0.92 0.98 1 1 0.25 0.55 0.74 0.88 0.92

4 0.64 0.92 0.98 1 1 0.25 0.55 0.74 0.85 0.88

0.64 0.92 0.98 1 1 0.25 0.55 0.74 0.85 0.92

Normal m=12 Normal m=10

0 0.57 0.7 0.81 0.89 0.94 0.54 0.63 0.71 0.78 0.84

1 0.14 0.7 0.81 0.89 0.94 0.09 0.62 0.7 0.78 0.84

2 0.14 0.4 0.81 0.89 0.94 0.09 0.26 0.69 0.76 0.82

3 0.14 0.4 0.62 0.89 0.94 0.09 0.26 0.42 0.74 0.8

4 0.14 0.4 0.62 0.78 0.94 0.09 0.26 0.42 0.57 0.78

0.14 0.4 0.62 0.78 0.88 0.09 0.26 0.42 0.57 0.69

*Negative values to  0 24



Exponential Mechanism

Implications: 

• DP  leads to negative values, setting to zero still ensures DP but 

biased perturbations

• All (non-structural) zeroes must be perturbed  

• If list-space has  internal cells only            , margins summed from 

internal cells DP  but low utility  

• In a  t-way table all margins,                  (not including total) much 

larger perturbations  implying smaller utility

• Margins can be perturbed (with appropriate sensitivity) and 

prorated to ensure additivity (post-processing does not violate DP)  

1=u

12 −= tu

Parameters of Differential Privacy  not secret and can be 

used to adjust statistical analysis 25



Generated independent table, N=10000, K=100 (average cell size=100)  

 

Laplace Perturbations  Normal Perturbations  

P-Value 

  
Cramer’s V 

  
l1 Loss Function 

  

0.1 0.5 1 1.5 2 3

0.0
0.2

0.4
0.6

0.8
1.0

Epsilon

P-
va

lue

0.1 0.5 1 1.5 2 3

0.0
0.2

0.4
0.6

0.8
1.0

Epsilon

P-
va

lue

0.1 0.5 1 1.5 2 3

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

Epsilon

Cr
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er'
s V

0.1 0.5 1 1.5 2 3

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

Epsilon
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er'
s V

0.1 0.5 1 1.5 2 3

0
1

2
3

4
5

Epsilon

l1 
Lo

ss

0.1 0.5 1 1.5 2 3

0
1

2
3

4
5

Epsilon

l1 
Lo

ss
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Generated independent table, N=10000, K=1000 (average cell size=10)  

 

Laplace Perturbations  Normal Perturbations  

P-Value 

  
Cramer’s V 

  
l1 Loss Function 

  

0.1 0.5 1 1.5 2 3

0.0
0.2

0.4
0.6

0.8

Epsilon

P-v
alu

e

0.1 0.5 1 1.5 2 3

0.0
0.2

0.4
0.6

0.8

Epsilon
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e

0.1 0.5 1 1.5 2 3

0.0
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0.1
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0.1
2

0.1
4

0.1
6
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8

0.2
0

Epsilon
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2
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6

0.1
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0.2
0

Epsilon
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s V

0.1 0.5 1 1.5 2 3

0
1

2
3

4

Epsilon

l1 
Lo

ss

0.1 0.5 1 1.5 2 3

0
1

2
3

4

Epsilon

l1 
Lo

ss
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Real (dependent) Table from UK Census Data
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Other Open Data Options 
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• Fit models from original data, eg. posterior predictive distributions  

Can be implemented on parts of data where a mixture is obtained 

of real and synthetic data

• Draw and release  several samples  to  account for the  uncertainty  

and obtain ‘proper’ variance estimates (Reiter 2005)

Other Open Data

• In practice, difficult to capture all conditional relationships between 

variables and within sub-populations

- If models of interest are sub-models of the synthesis model, 

then the analysis of (multiple) synthetic samples should give

valid inferences

Synthetic Data
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• Synthetic data

Differential Privacy for Synthetic Data

Ongoing Research: 

• Bayesian Modeling with

differentially private  priors

• Current work on adding noise to estimating equations and also 

looking at  ridge regression to  regularize linear regression by 

adding a constraint to likelihood function:   use in  Sequential 

Regression modeling   (Ragunathan  et al. 2001)

• Reproducing microdata from differentially private counts 
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• Initial research in 

developing platforms 

for remote analysis or 

allowing researchers 

to submit code  

• Aim to protect outputs 

without the need for 

human intervention

Remote Analysis
Other Open Data

32



Differential Privacy with formal privacy guarantees may provide 

solutions for SDC  

Challenges and Discussion

Allows statistical agencies to consider new ways of disseminating 

open  data via the internet  

It provides a  formal ‘by-design’  privacy guarantee against 

inferential disclosure

Combined with other SDC approaches of coarsening,  subsampling, 

variable suppression etc. impacts on the privacy budget 

Further research is needed to set these privacy budgets

Additive noise perturbation of DP can provide more utility than other 

additive SDC noise perturbations 

Agencies should release parameters of the perturbation and DP 

parameters are  not secret and can be used to adjust analyses 33
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Questions
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