

Statistical data editing

Rudi Seljak Statistical Office of the Republic of Slovenia

Summary of the content

- Data editing in the statistical process
- Basic concepts and definitions
- Modernisation of the data editing process
- Imputation methods

What is data editing

- Data basic material for statistical production
- Almost each data set "infected" with errors
- Errors occur in different stages of survey implementation
- Term "data editing" denotes all activities aiming at detecting and correcting errors in the data

GSBPM model

Data editing – graphical presentation

X ... Inconsistent or suspicious data

Types of errors

Systematic error

- Measurement unit error
- Misunderstanding error

Random error

- Typing errors
- Rounding errors

Methods for data editing

- Micro editing
 - Each individual record is verified and corrected (if needed)
- Macro editing
 - Validation of aggregates
 - Aggregated data are analysed and verified
 - Analyses of distributions
 - Usually used to detect outliers
 - Usually placed at the end of statistical process
 - Only used to detect suspicious data → should be followed again by the procedures on micro level

Manual vs. automated editing

- Detection of errors: to a great extent automated
- Correction of errors: still to a great extent manual
- Manual editing (also called interactive editing)
 - Each suspicious unit treated individually
 - Suspicious items verified and eventually corrected:
 - By re-contacting reporting unit
 - Using other (e.g. administrative sources)
 - Using "expert estimates"
 - Very time consuming and costly
 - A lot of space for improvements

Data validation

- Procedure for detection of erroneous or suspicious values
- Based on the set of validation rules
- Set of validation rules is cornerstone of the data editing process
 - Hard rules: Certainly or with high probability detect erroneous data

Turnover >= Profit

Age=16 AND Status=,Student'

Soft rules: Only detect suspicious values
Number of employees (Y) / Number of employees (Y-1)>1.5

Validation rules

- Integrity checks basic database constraint rules
 - Non-existence of unique identifier
 - Duplicates
- Plausibility checks check if the value is in the prescribed range
 - Gender = {"Male"; "Female"}
 - Turnover ≥0

Validation rules cont'd

- Consistency checks we check relations among several variables
 - Status="Employed" \rightarrow Age \geq 15
 - Export_{EUR_area} + Export_{Non-EUR_area} = Export_{Total} (balance checks)
- Checks in distribution we examine distribution of the variable(s)
 - Mostly used for detection of outliers

Outliers (extreme values)

- Value that significantly deviate in the data distribution
- Can be:
 - Correct value
 - Representative outlier
 - Non-representative outlier
 - Incorrect value (e.g. due to the measurement unit error)
- Some statistics are more sensitive on outlying values (e.g. mean) as others (e.g. median)

How to detect outliers

- Graphical methods (manual detection)
- Automatic detection
 - Univariate detection
 - Distance from the median
 - Distribution of ratios with historical values/auxiliary variable → asymmetric distribution → appropriate transformation needed
 - Multivariate distribution
 - Several methods, most of them based on multivariate distance (e.g. Mahalanobis distance)

Types of charts for detection of outliers

Line chart

Box-plot

Acceptance region

- The set of acceptable values determined by the set of validation rules
- Each validation rule determines one sub-region
- Rules with one variable: absolute (independent) sub-region
- Rules with several variables: relative (dependent) sub-region

Acceptance region - example

ID	X	Υ	Z
1	5	10	4
2	6	4	7
3	11	11	10

Validation rules :

Z>5 and Z<10 ; X>0 ; Y>0 ; X>Y

Acceptance region - example cont'd

Acceptance region:

- Z:(5,10)
- X: Unit 1: $(10, \infty)$; Unit 2: $(4, \infty)$; Unit 3: $(11, \infty)$
- Y: Unit 1: (0,5); Unit 2: (0,6); Unit 3: (0,11)

Categorisation of data validity

- Correct/Incorrect
 - Correct: data would be confirmed as plausible, if could be checked with any disposable means
- Acceptable/Suspicious
 - Acceptable: data have passed all the validation rules
 - n number of edited units

	Acceptable	Suspicious
Correct	n ₁	n ₂
Incorrect	n ₃	n ₄

Overediting

- Too many validation rules with too strict conditions
- Too much interactive verification (manual editing)
- Negative consequences
 - Input resources are not in proportion with improvements of quality
 - If too many edit rules have to be verified → the significant errors can be left in the data
- Remedies:
 - Careful planning and testing of controls
 - Restriction of individual verification to the influential errors

Selective editing

- Procedure for selection of significant errors
- Based on the difference between reported and expected value
- Score function is the mathematical tool to detect influential error
 - Local score: score for particular variable
 - Global score: combines the local scores into the score of the unit
- Selective editing can significantly improve efficiency of data editing

REPUBLIKA SLOVENIJA STATISTIČNI URAD RS

Implementation of selective editing –basic schema

Automatic editing - fully automated procedure

 Correction are implemented only on a basis of a set of validation rules

- The most known approach for automatic editing:
 - Fellegi-Holt approach (minimum change approach)

Fellegi-Holt approach – graphical presentation

Automatic editing - semi-automated procedure

 Corrections are implemented on the basis of the processing rules defined and provided by the statisticians

- Processing rules:
 - Deductive correction rules
 - Imputation rules

Imputation methods

- Mean imputation
 - Mean value of responding units imputed
 - Decreases variability
 - Sensitive to outliers
 - Trimmed mean
 - Median
- Ratio imputation
 - If highly correlated auxiliary variable on disposal
 - Average ratio of responded units calculated first
 - Average ratio multiplied with the value of auxiliary variable of "imputed unit"

Imputation methods cont'd

- Hot-deck imputation
 - Imputed value taken from (appropriately selected) donor
 - Several implementations:
 - Random hot-deck
 - Sequential hot-deck
 - Distance based hot-deck
- Historical imputation
 - Used in the case of periodical surveys
 - Reported value from previous period(s) used
 - Several implementations:
 - Average trend imputation
 - Donor trend imputation

Imputations – final remarks

- Imputations can be used to replace missing or erroneous data.
- The aim is not to predict the correct value
 - The main goal is to reduce bias
 - The focus should be on macro level
- Imputation should always be performed by automated procedure
- Each imputed valued should be appropriately flagged.

Data editing and quality dimensions

- Editing have significant impact on quality dimensions
 - Accuracy
 - Improvements of accuracy is a basic goal of data editing
 - More editing → higher accuracy ???
 - Timeliness
 - Important factor in trade-off between timeliness and accuracy
 - Especially significant in short-term business surveys
 - Costs and burden
 - Costs reduction is the main driver of improvements of editing procedure
 - Reducing number of re-contacts \rightarrow reducing respondent's burden
 - Implicit impact to other dimensions:
 - Coherence, Comparability

Toward effective statistical editing A few guidelines

- Include data editing in different stages of the statistical process
- Invest in building an optimal set of validation rules
- Combine manual and automatic editing
- Each editing process should be accompanied with the set of performance indicators:
 - Edit failure rate
 - Hit rate
 - Data editing impact
- Each survey cycle should be followed by the:
 - Analysis of the data editing process
 - Improvement actions