

How to integrate information from different data files? An introduction to statistical matching

Eva Endres and Thomas Augustin Department of Statistics, LMU Munich

April 4, 2018

EMOS Webinar

Table of contents

motivation & basic framework the conditional independence assumption

selected macro & micro approaches

a parametric macro approach

a nonparametric micro approach

outlook on mixed methods

selected results of the Eurostat application

summary

motivation & basic framework

how to obtain data to statistically answer a research question?

(D'Orazio et al. (2006), Chap. 1)

- carry out surveys or experiments but
 - time-consuming
 - hight cost
 - too long questionnaire might lead to nonresponse or low quality
- practical solution: exploit information from already available data sources (secondary data analysis)
- but: what can we do if we need joint information on features which are only available in different sources?

Eurostat example (simplified)

(Serafino and Tonkin (2017b), Serafino and Tonkin (2017a))

Statistical matching of European Union statistics on income and living conditions (EU-SILC) and the household budget survey

017 edition

STATISTICAL WORKING PAPERS | eurostat

Monitoring social inclusion in Europe

EDITED BY ANTHONY B. ATKINSON

2017 edition

eurostat eurostat

Eurostat example (simplified)

(Serafino and Tonkin (2017b))

- background: measure poverty and social exclusion to monitor the progress of the social inclusion target
- income is not adequate as sole measure of poverty (especially if poverty is interpreted in terms of achieved standards of living)
- the question arises whether expenditure or material deprivation provide more appropriate measures of standards of living than income
- compare people's exposure to poverty using three different measures: income, expenditure and material deprivation
- no single data source provides joint information on all these variables
- statistically match the Household Budget Survey with the EU-SILC for six EU countries

Eurostat example (simplified) (Serafino and Tonkin (2017b))

material deprivation	n income		EU-SILC	
	income	expenditure	HBS	
	\Downarrow			
material deprivation	n income	expenditure	joint information	

the statistical matching framework

(D'Orazio et al. (2006))

specific y	common x	common x	
	common x	specific z	data source B
	\Downarrow		
specific y	common x	specific z	joint information

the statistical matching framework

(D'Orazio et al. (2006))

n _A {	y _{al} ··· y _{aq}	x _{a1} x _{ap}		data source A
n _B {		<i>x</i> _{b1} <i>x</i> _{bp}	z_{b1} z_{br}	data source B
		\Downarrow		
	у	x	z	joint information

how to achieve joint information?

(D'Orazio et al. (2006))

objectives of statistical matching:

- micro approach: create complete (synthetic) data file
- macro approach: estimate the joint distribution

solutions for the statistical matching task either

- are based on the conditional independence assumption (CIA),
- incorporate (sufficient) auxiliary information, or
- respect the uncertainty and yield set-valued results

the conditional independence

assumption

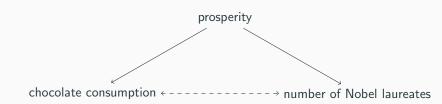
(conditional) independence of random variables

if X, Y and Z are (continuous) random variables

- Y and Z are stochastically independent iff
 f_{Y,Z}(y,z) = f_Y(y) · f_Z(z) ⇔ f_{Y|Z}(y|z) = f_Y(y)
 i.e. knowing the value of Z, does not change my assessment of the distribution of Y
- Y and Z are conditionally independent given X iff $f_{Y,Z|X}(y,z|x) = f_{Y|X}(y|x) \cdot f_{Z|X}(z|x) \Leftrightarrow f_{Y|X,Z}(y|x,z) = f_{Y|X}(y|x)$ i.e. knowing the value of Z, does not change my assessment of the distribution of Y given x is known

(conditional) independence of random variables

number of different colours in the national flag



statistical matching and the CIA

(D'Orazio et al. (2006))

- assume the conditional independence of Y and Z given X
- yields an identifiable model for (X, Y, Z) on the available data $A \cup B$, the joint density simplifies to

$$f_{Y,Z,X}(y,z,x) = f_{Y|Z,X}(y|z,x) \qquad f_{Z|X}(z|x) \qquad f_{X}(x)$$

$$\stackrel{ClA}{=} f_{Y|X}(y|x) \qquad f_{Z|X}(z|x) \qquad f_{X}(x)$$

$$\stackrel{ClA}{=} A \qquad \stackrel{A \text{ and } B}{=} \qquad A$$

selected macro & micro approaches

selected macro & micro approaches

a parametric macro approach

(D'Orazio et al. (2006))

- $f(x, y, z; \theta) \in parametric family of distributions and <math>\theta \in \Theta$
- ullet aim of the macro approach is the estimation of $heta_{Y|X}, \ heta_{Z|X}, \ heta_X$
- likelihood approach:

$$L(\theta|A \cup B) \stackrel{iid \& MCAR}{=} \prod_{a=1}^{n_A} f_{XY}(x_a, y_a; \theta_{XY}) \cdot \prod_{b=1}^{n_B} f_{XZ}(x_b, z_b; \theta_{XZ})$$

$$= \underbrace{\prod_{a=1}^{n_A} f_{Y|X}(y_a|x_a; \theta_{Y|X})}_{A} \cdot \underbrace{\prod_{b=1}^{n_B} f_{Z|X}(z_b|x_b; \theta_{Z|X})}_{B} \cdot \underbrace{C(x)}_{A \text{ and } B}$$
with $C(x) = \prod_{a=1}^{n_A} f_X(x_a; \theta_X) \cdot \prod_{b=1}^{n_B} f_X(x_b; \theta_X)$

CIA ⇒ sufficient to determine the joint distribution

Table of contents

motivation & basic framework

the conditional independence assumption

selected macro & micro approaches

a parametric macro approach

a nonparametric micro approach

outlook on mixed methods

selected results of the Eurostat application

summary

If
$$(X,Y,Z) \sim MVN(\mu, \Sigma)$$
 with $\theta = (\mu, \Sigma)$ and

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_X \\ \mu_Y \\ \mu_Z \end{pmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_X^2 & \sigma_{XY} & \sigma_{XZ} \\ \sigma_{XY} & \sigma_Y^2 & \sigma_{YZ} \\ \sigma_{XZ} & \sigma_{YZ} & \sigma_Z^2 \end{pmatrix}$$

• marginal distribution of the common variable:

$$X \sim N(\mu_X, \sigma_X^2)$$

(D'Orazio et al. (2006), Fahrmeir and Hamerle (1996), Wang (2018)

 conditional distribution of the specific variable(s) given the common variable:

$$Y|X \sim N(\mu_{Y|X}, \sigma_{Y|X}^2)$$

express unknown conditional parameters by known parameters which leads to a 'regression model form' ($Y = \alpha + \beta \cdot X + \epsilon$):

$$\begin{split} \mu_{Y|X} &= \alpha + \beta \cdot X \\ \alpha &= \mu_Y - \beta \cdot \mu_X \\ \beta &= \frac{\sigma_{XY}}{\sigma_X^2} \\ \sigma_{Y|X}^2 &= \sigma_Y^2 - \frac{\sigma_{XY}^2}{\sigma_X^2} = \sigma_Y^2 - \beta^2 \sigma_X^2 \end{split}$$

• analogously for Z|X

selected macro & micro approaches

a nonparametric micro approach

hot deck imputation

- no assumption of any parametric family of distributions
- substitute missing entries with live values
- assign the roles of recipient file and donor file

y _{a1} ··· y _{aq}	X _{al} X _{ap}	$ ilde{z}_{a1}$ $ ilde{z}_{ar}$
	<i>x</i> _{b1} <i>x</i> _{bp}	z_{b1} z_{br}

recipient file

common hot deck methods in statistical matching:

- random hot deck
- rank hot deck
- distance hot deck
- distance hot deck
 - match each recipient record with the closest donor record in terms of a predefined (distance) metric
 - use, for example, the Manhattan distance for (standardised) continuous common variables:

$$\Delta(a,b) = \sum_{\ell=1}^{p} |x_{a\ell} - x_{b\ell}|$$

rec	ĩ	n	ĩ	ρ	n	t
100	ı	ν	ı	L		·

а	У	<i>x</i> ₁	<i>X</i> ₂	ĩ
1	27	22	88	202
2	35	19	101	155
3	39	27	93	182

donor

Ь	у	<i>x</i> ₁	<i>X</i> ₂	Z
1		18	96	155
2		30	92	182
3		22	89	202

$$\Delta(a,b) = \sum_{\ell=1}^{p} |x_{a\ell} - x_{b\ell}|$$

$$\Delta(1,1) = |22 - 18| + |88 - 96| = 12$$

 $\Delta(1,2) = |22 - 30| + |88 - 92| = 12$

$$\Delta(1,3) = |22 - 22| + |88 - 89| = 1$$

$$\Delta(2,1) = |19 - 18| + |101 - 96| = 6$$

 $\Delta(2,2) = |19 - 30| + |101 - 92| = 20$

$$\Delta(2,3) = |19 - 22| + |101 - 89| = 15$$

$$\Delta(3,1) = |27 - 18| + |93 - 96| = 12$$

 $\Delta(3,2) = |27 - 30| + |93 - 92| = 4$

$$\Delta(3,3) = |27 - 22| + |93 - 89| = 9$$

```
1 # install and load package
2 install.packages("StatMatch")
3 library (StatMatch)
4
5 # create data files
6 A \leftarrow data.frame(y = c(27,35,39), x1 = c(22,19,27),
       x2 = c(88.101.93)
8 > A
  v x1 x2
10 1 27 22 88
11 2 35 19 101
12 3 39 27 93
14 B <- data.frame(z = c(155, 182, 202), x1 = c(18, 30, 22),
       x2 = c(96, 92, 89))
16 > B
  z x1 x2
18 1 155 18 96
19 2 182 30 92
20 3 202 22 89
```

```
# detect specific and common variables
common.x <- intersect(names(A), names(B))
common.x
[1] "x1" "x2"

specific.y <- setdiff(names(A), names(B))
specific.y
[1] "y"

specific.z <- setdiff(names(B), names(A))
specific.z
[1] "z"</pre>
```

```
# nearest neighbour using Manhattan distance
  matching.ids <- NND.hotdeck(data.rec=A, data.don=B,
                  match.vars=common.x, dist.fun="Manhattan")
33
34 > matching.ids
35 $mtc.ids
      rec.id don.id
36
37 [1,] "1"
           "3"
38 [2.] "2"
          "1"
39 [3.] "3" "2"
40
41 $dist.rd
42 [1] 1 6 4
43
44 $noad
45 [1] 1 1 1
46
47 $call
48 NND.hotdeck(data.rec = A, data.don = B, match.vars = common.x,
      dist.fun = "Manhattan")
49
```

selected macro & micro approaches

outlook on mixed methods

basic idea of mixed methods

(D'Orazio et al. (2006))

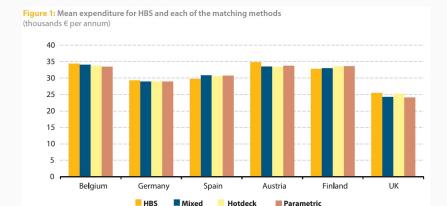
- 2-step procedure combining parametric and nonparametric methods
 - 1. estimate parameters for the parametric model and create *indermediate* values
 - 2. apply a hot deck method: choose donor records based on indermediate values and impute correpsonding *live* values

application

selected results of the Eurostat

selected results of the Eurostat application i

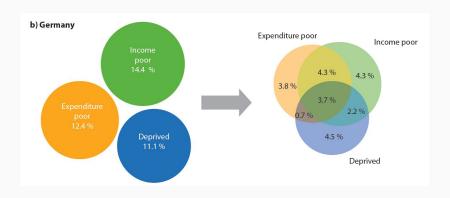
(figure taken from Serafino and Tonkin (2017b))



Source: EU-SILC 2009 (Austria), 2010 and 2012 (Finland): EU-SILC Users' database; HBS 2010: Eurostat/ONS.

selected results of the Eurostat application ii

(figure taken from Serafino and Tonkin (2017a))



summary

summary

- fusion of data files with
 - a partially overlapping set of variables
 - disjoint observation units
- parametric and nonparametric approaches to estimate the joint distribution or to create a complete synthetic file
- common assumption: conditional independence of the specific variables given the common variables
- carefully assess whether the assumptions are justified to produce credible results from the matched data files

References

- D'Orazio, M. (2017). StatMatch: Statistical Matching. R package version 1.2.5. URL: https://CRAN.R-project.org/package=StatMatch
- D'Orazio, M., Di Zio, M. and Scanu, M. (2006). Statistical Matching: Theory and Practice, Wiley, Chichester, United Kingdom.
- Fahrmeir, L. and Hamerle, A. (1996). Mehrdimensionale Zufallsvariablen und Verteilungen, in L. Fahrmeir, A. Hamerle and G. Tutz (eds), Multivariate statistische Verfahren, 2 edn, Walter de Gryter, Berlin, pp. 18–48.
- Messerli, F. (2012). Chocolate consumption, cognitive function, and nobel laureates, New England Journal of Medicine 367(16): 1562–1564.
- R Core Team (2017). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/

Serafino, P. and Tonkin, R. (2017a). Comparing poverty estimates using income, expenditure and material deprivation, *in A. B. Atkinson, A.-C. Guio and E. Marlier* (eds), *Monitoring social inclusion in Europe*, Publications Office of the European Union, Luxembourg, pp. 241–258.

URL: http://ec.europa.eu/eurostat/documents/3217494/8031566/KS-05-14-075-EN-N.pdf/c3a33007-6cf2-4d86-9b9e-d39fd3e5420c

Serafino, P. and Tonkin, R. (2017b). Statistical matching of European Union statistics on income and living conditions (EU-SILC) and the household budget survey. Theme: Population and social conditions, Collection: Statistical working papers. URL: http://ec.europa.eu/eurostat/web/products-statistical-working-papers/-/KS-TC-16-026

Wang, R. (2018). Marginal and conditional distributions of multivariate normal distribution. Accessed on March 19, 2018.

URL: http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html