

Visualization

Presenter: *Mojca Bavdaž (mojca.bavdaz@ef.uni-lj.si)* Guest: *Jorge Camoes (excelcharts.com)*

EMOS Webinar, 17 May 2017

EUROPEAN MASTER IN OFFICIAL STATISTICS University of Ljubljana EMOS FACULTY OF ECONOMICS Outline Classic Representation **Official** Visual processing & perception examples statistics 16:30 Break 18:00

Icon by Giuditta Valentina Gentile from Noun Project

Classic examples of visualization

Bar chart & time-series line chart: Price of wheat & wages

Chart shewing at one view the price of the quarter of wheat, & wages of labour by the week, from the year 1565 to 1821 by William Playfair (1822). (The second edition / with an additional chart.). Retrieved from http://brbl-dl.library.yale.edu/vufind/Record/3566707

4

Pie chart: Turkish Empire

The pie chart Turkish Empire by William Playfair (1801). In *Statistical Breviary*. Retrieved from https://commons.wikimedia.org/wiki/File:Playfair-piechart.jpg

Disease dot map: Cholera in London

Variant of cholera map by John Snow (1854). In *Wikimedia Commons,* Retrieved from https://commons.wikimedia.org/wiki/File:Snow-cholera-map.jpg

Polar area diagram: Causes of mortality in Crimean War

Polar area diagram of the causes of mortality by Florence Nightingale (1858). In *Wikimedia Commons*, Retrieved from https://commons.wikimedia.org/wiki/File:Nightingale-mortality.jpg

Flow map: Napoleon's March on Moscow

Role of design: London Underground map

By Henry C. Beck (1933). In *Wikipedia*, Retrieved from https://en.wikipedia.org/wiki/File:Beck_Map_1933.jpg

Baron Pierre Charles Dupin (1826): Choropleth map

Charles Joseph Minard (1861): Map with diagrams

Francis Amasa Walker (1874): Population pyramid

Michael George Mulhall (1884): Pictograms

Karl Pearson (1892)(?): Histogram

John W. Tukey (1969): Stem-and-leaf, box-and-whisker plots...

Friendly, M. & Denis, D. J. (2001). Milestones in the history of thematic cartography, statistical graphics, ¹⁰ and data visualization. Retrieved on May 12, 2017 from http://datavis.ca/milestones/

Basics of visual processing

FACULTY OF ECONOMICS

Figure illustrates The Multi-Store Model by Atkinson & Shiffrin (1968),

Preattentive attributes

Preattentive attributes: Color

Munsell Color System (2006). In *Wikimedia Commons,* Retrieved from https://commons.wikimedia.org/wiki/File:Munsell_Color.jpg

FACULTY OF ECONOMICS

Preattentive attributes: Form

Preattentive Visual Properties and How to Use Them in Information Visualization (2016). *The Interaction*₁₅ *Design Foundation,* Retrieved from https://www.interaction-design.org/literature/article/preattentivevisual-properties-and-how-to-use-them-in-information-visualization

Preattentive attributes: Spatial positioning

Gestalt principles

Gestalt principles: Proximity

Gestalt Proximity (2008). In *Wikimedia Commons,* Retrieved from https://commons.wikimedia.org/wiki/File:Gestalt_proximity.svg

Gestalt principles: Similarity

Gestalt Similarity (2008). In *Wikimedia Commons,* Retrieved from https://commons.wikimedia.org/wiki/File:Gestalt_similarity.svg

Gestalt principles: Closure

Gestalt Closure (2008). In *Wikimedia Commons,* Retrieved from https://commons.wikimedia.org/wiki/File:Gestalt_closure.svg

Gestalt principles: Common region/Enclosure

Gestalt principles: Connectedness

Gestalt principles: Continuity

Dejan Todorovic (2008) Gestalt principles. Scholarpedia, 3(12):5345., revision #91314, Retrieved from http://www.scholarpedia.org/article/Gestalt_principles

Gestalt principles: Good Gestalt

Dejan Todorovic (2008) Gestalt principles. Scholarpedia, 3(12):5345., revision #91314, Retrieved from http://www.scholarpedia.org/article/Gestalt_principles

Gestalt principles: Good Gestalt

Dejan Todorovic (2008) Gestalt principles. Scholarpedia, 3(12):5345., revision #91314, Retrieved from http://www.scholarpedia.org/article/Gestalt_principles

Visual representation of statistical data and perception

FACULTY OF ECONOMICS

Theory of graphic symbols by Jacques Bertin

Basic visual units (marks): point, line, area.

Visual variables:

- position (position),
- size (taille),
- shape (forme),
- color (couleur),
- brightness (valeur),
- orientation (orientation),
- granularity (grain).

Other visual variables:

- hue
- saturation
- resolution
- crispness
- transparency
- motion

Hans Rosling: Gapminder.org & Moving bubble chart

48 subtitle languages 😧

I1,701,358 Total views

FACULTY OF ECONOMICS

Perception of graphical elements

Weber. If difference between two lines is <u>relatively</u>

- large \Rightarrow easy to detect
- small \Rightarrow hard to detect

Stevens. Bias in judgments length < area < volume

Cleveland. Perception tasks of decoding quantitative variables from most to least accurate:

Position Length Angle, Slope Area Volume Color

A test 🙂

I'll show you three pie charts. Order the slices of each pie chart by size from the largest to the smallest.

Pie charts (2007). In Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Pie_chart

FACULTY OF ECONOMICS

A test 🙂

Pie charts (2007). In Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Pie_chart

FACULTY OF Economics

Theory of data graphics by Edward Tufte

- Above all else show the data.
- Maximize the data-ink ratio.

Data-ink ratio = Data ink / Total ink

= Share of ink devoted to non-redundant display of data-information

- = 1 Share of ink that can be erased without loss of data-information
- Erase non-data ink.

- Erase redundant data ink.
- Revise and edit.

MS PowerPoint 2016: Insert Chart: Clustered Column

Chart Title

CHART TITLE

EUROPEAN MASTER IN OFFICIAL

STATISTICS EMOS

Graphical integrity (Edward Tufte)

• Clear, detailed, thorough labeling; explanations of the data on the graphic itself etc.

• Lie factor:

= Size of effect shown in graphics / Size of effect in data

Pictograms

Misleading graphs (2012). In *Wikimedia Commons*. Retrieved from https://commons.wikimedia.org/wiki/File:Improperly_scaled_picture_graph.svg https://commons.wikimedia.org/wiki/File:Picture_Graph.svg https://commons.wikimedia.org/wiki/File:Comparison_of_properly_and_improperly_scaled_picture_graph.svg

Truncated axes

Misleading graphs (2012). In *Wikimedia Commons*. Retrieved from https://commons.wikimedia.org/wiki/File:Truncated_Bar_Graph.svg https://commons.wikimedia.org/wiki/File:Bar_graph.svg https://commons.wikimedia.org/wiki/File:Y-axis_break.svg

Role of visualization in official statistics

FACULTY OF ECONOMICS

European Statistics Code of Practice

Principle 15: Accessibility and Clarity

European Statistics are **presented in a clear and understandable form**, released in a suitable and convenient manner, available and accessible on an impartial basis with supporting metadata and guidance.

FACULTY OF ECONOMICS

Generic Statistical Business Process Model (GSBPM)

Quality Management / Metadata Management							
Specify Needs	Design	Build	Collect	Process	Analyse	Disseminate	Evaluate
1.1 Identify needs	2.1 Design outputs	3.1 Build collection instrument	4.1 Create frame & select sample	5.1 Integrate data	6.1 Prepare draft outputs	7.1 Update output systems	8.1 Gather evaluation inputs
1.2 Consult & confirm needs	2.2 Design variable descriptions	3.2 Build or enhance process components	4.2 Set up collection	5.2 Classify & code	6.2 Validate outputs	7.2 Produce dissemination products	8.2 Conduct evaluation
1.3 Establish output objectives	2.3 Design collection	3.3 Build or enhance dissemination components	4.3 Run collection	5.3 Review & validate	6.3 Interpret & explain outputs	7.3 Manage release of dissemination products	8.3 Agree an action plan
1.4 Identify concepts	2.4 Design frame & sample	3.4 Configure workflows	4.4 Finalise collection	5.4 Edit & impute	6.4 Apply disclosure control	7.4 Promote dissemination products	
1.5 Check data availability	2.5 Design processing & analysis	3.5 Test production system		5.5 Derive new variables & units	6.5 Finalise outputs	7.5 Manage user support	
1.6 Prepare business case	2.6 Design production systems & workflow	3.6 Test statistical business process		5.6 Calculate weights			
		3.7 Finalise production system		5.7 Calculate aggregates			
				5.8 Finalise data files			

UNECE (2013). The Generic Statistical Business Process Model. v5.0. Retrieved from http://www1.unece.org/stat/platform/display/metis/The+Generic+Statistical+Business+Process+Model

Questionnaire design

Jenkins & Dillman (1995) introduced into survey research design principles that emphasize visual presentation of information, e.g.:

- Present survey question + instruction in close proximity
- Deemphasize information that disturbs questionanswering process (e.g. legal basis)

Jenkins, C., & Dillman, D. (1995). Towards a Theory of Self-Administered Questionnaire Design. In *Survey Measurement and Process Quality* by L. Lyberg et al., Wiley. Retrieved from https://www.sesrc.wsu.edu/Dillman/papers/1997/A%20Theory%20of%20Self-Administered%20Questionnaire%20Design.pdf

Processes of statistical production

Salamin, P.-A., & Tomasini, F. (2016). How to Communicate the Content of Quality Indicators of a Statistical Business Register. Paper presented at ICES-V, Geneva.

Processes of statistical production

Kowarik, A., Meindl, B., & Templ, M. (2016). The R-Packages VIM (Visualization of Missing Values) and sparkTable (Generating Graphical Tables). Paper presented at ESS Visualization Workshop, Valencia.

FACULTY OF ECONOMICS

Processes of statistical production

MBA

Daas, P., Puts, M., Buelens, B., et al. (2015). Big Data as a Source for Official Statistics. *Journal of Official Statistics*, 31(2), pp. 249-262. Retrieved 13 May. 2017, from doi:10.1515/jos-2015-0016

Data dissemination

Nature of data

User groups & Purpose

Medium

Jorge Camoes excelcharts.com

Created by Giuditta Valentina Gentile from Noun Project

FACULTY OF ECONOMICS

Color for non-designers: make it functional, not aesthetic

Manage color stimuli intensity: create layers of meaning with gray, pale colors and saturated colors Minimize it, play with gray Define functional tasks

- Categorize
- Group
- Emphasize
- Sequence
- Diverge
- Alert

Stimuli intensity

FACULTY OF ECONOMICS

AFTER MORE THAN 30 YEARS, ARE MEN PLAYING CATCH-UP IN EDUCATION? People aged 25 years and over who have completed college

Source: U.S. Census Bureau

Emphasize

COUNTRIES WHERE THE GAP IN HEALTHY LIFE EXPECTANCY BETWEEN MEN AND WOMEN IS MORE THAN THREE YEARS Healthy life expectancy by sex and country, in 2012

Source: Eurostat

Group

IN MOST COUNTRIES, WOMEN ENJOY A LONGER AND HEALTHIER LIFE THAN MEN

Large gap in life expectancy at birth in Eastern Europe

Sequence

LESS IN FOOD, MORE IN HOUSING: CHANGES IN EXPENDITURE IN SPAIN

Proportion of household expenditure per category and income quintile

LESS IN FOOD, MORE IN HOUSING: CHANGES IN EXPENDITURE IN SPAIN Proportion of household expenditure per category and income quintile

Source: Eurostat

Diverge

FREQUENCY OF BEING HAPPY IN THE LAST 4 WEEKS

Population over 16 years old in 2013

FREQUENCY OF BEING HAPPY IN THE LAST 4 WEEKS Population over 16 years old in 2013

Source: Eurostat

Source: Eurostat

Alert

FREQUENCY OF BEING HAPPY IN THE LAST 4 WEEKS

Population over 16 years old in 2013

Sometimes Most of the time Always Rarely Never

FACULTY OF ECONOMICS

Play with gray

MAIN REASONS FOR PART-TIME EMPLOYMENT BY SEX

From 15 to 64 years old, in the European Union (EU-28), in 2014

Looking after children or incap
Other family or personal respo
In education or training
Own illness or disability
Other reasons

No need for color

MAIN REASONS FOR PART-TIME EMPLOYMENT BY SEX

From 15 to 64 years old, in the European Union (EU-28), in 2014

Source: Eurostat

Use gray for context

Color palettes: color brewer

(axismaps

Source code and fee Back to Flash version Back to ColorBrewer 1.0

http://colorbrewer2.org

Questions?

Further reading: Starting set ©

